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Abstract

We study a family of data augmentation meth-
ods, substructure substitution (SUB2), that gen-
eralizes prior methods. SUB2 generates new
examples by substituting substructures (e.g.,
subtrees or subsequences) with others hav-
ing the same label. This idea can be ap-
plied to many structured NLP tasks such as
part-of-speech tagging and parsing. For more
general tasks (e.g., text classification) which
do not have explicitly annotated substructures,
we present variations of SUB2 based on text
spans or parse trees, introducing structure-
aware data augmentation methods to general
NLP tasks. For most cases, training with
a dataset augmented by SUB2 achieves bet-
ter performance than training with the orig-
inal training set. Further experiments show
that SUB2 has more consistent performance
than other investigated augmentation methods,
across different tasks and sizes of the seed
dataset.1

1 Introduction

Data augmentation has been found effective for
various natural language processing (NLP) tasks,
such as machine translation (Fadaee et al., 2017;
Gao et al., 2019; Xia et al., 2019, inter alia),
text classification (Wei and Zou, 2019; Quteineh
et al., 2020), syntactic and semantic parsing (Jia
and Liang, 2016; Shi et al., 2020; Dehouck and
Gómez-Rodrı́guez, 2020), semantic role labeling
(Fürstenau and Lapata, 2009), and dialogue under-
standing (Hou et al., 2018; Niu and Bansal, 2019).
Such methods enhance the diversity of the train-
ing set by generating examples based on existing
ones, and can make the learned models more robust
against noise (Xie et al., 2020). Most existing work
focuses on word-level manipulation (Kobayashi,

1Project page: https://home.ttic.edu/
˜freda/project/sub2

2018; Wei and Zou, 2019; Dai and Adel, 2020,
inter alia) or global sequence-to-sequence style
generation (Sennrich et al., 2016).

In this work, we study a family of general data
augmentation methods, substructure substitution
(SUB2), which generates new examples by substi-
tuting same-label substructures (Figure 1). While
some instances within this family have been pro-
posed before for certain tasks, we generalize the
idea and investigate it for a variety of tasks and
settings. SUB2 naturally fits structured prediction
tasks such as part-of-speech tagging and parsing,
where substructures exist in the annotations of the
tasks. For more general NLP tasks such as text clas-
sification, we present variations of SUB2 which (1)
define substructures based on text spans or parse
trees for existing examples, and (2) generate new
examples by substructure substitution based on the
substructures and various kinds of constraints.

While data augmentation methods can often be
task-specific or have inconsistent performance, ex-
tensive experiments show that SUB2 consistently
helps models achieve competitive or better perfor-
mance than training on the original dataset across
structured prediction tasks and original dataset
sizes. We further study the effect of different con-
straints for the variations of SUB2 in text classifica-
tion. While there is no consistently winning com-
bination of constraints, SUB2 remains dominant
on both investigated few-shot text classification
datasets.

In addition, when combined with XLM-R (Con-
neau et al., 2019), a cross-lingual pretrained lan-
guage model, SUB2 establishes new state-of-the-art
results for sentiment analysis and low-resource part-
of-speech tagging. Finally, the experimental setups
we define can serve as a benchmark for future work
on NLP with little annotated data.

https://home.ttic.edu/~freda/project/sub2
https://home.ttic.edu/~freda/project/sub2
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Original Sentences

I have a book
PRP VBP DT NN

They ate an orange
PRP VBD DT NN

Generated Sentences
I have an orange

PRP VBP DT NN
They ate a book
PRP VBD DT NN

(a) Part-of-speech tagging.

Original Sentences
S

NP

The cat

VP

is sleeping

S

NP

I

VP

love books

Generated Sentences
S

NP

The cat

VP

love books

S

NP

I

VP

is sleeping

(b) Constituency parsing.

Original Sentences

My cat likes milk

poss nsubj dobj

root

I read books

dobjnsubj

root

Generated Sentences

My cat likes books

poss nsubj dobj

root

I read milk

dobjnsubj

root

(c) Dependency parsing.

Original Sentences

I like the book I like the movie

Label: positive Label: positive

Generated Sentences
I the movie book I like like the

Label: positive Label: positive

(d) Text classification. To apply SUB2, we use text spans
as substructures, with both the number of words in the
span and the text classification label as constraints (see
Sec. 3.2).

Figure 1: Illustration of SUB2 for investigated tasks.
We generate new examples by same-label substructure
substitution, whether or not the generated examples are
semantically or syntactically acceptable. Best viewed
in color.

2 Related Work

Data augmentation aims to generate new examples
based on available ones, without actually collecting
new data. Such methods reduce the cost of dataset

collection, and usually boost model performance
on desired tasks. Most existing data augmentation
methods for NLP tasks can be classified into the
following categories:

Token-level manipulation. Token-level manipu-
lation methods have been widely studied in re-
cent years. They typically create new examples
by substituting (word) tokens with ones having the
same desired features, such as synonym substitu-
tion (Zhang et al., 2015; Wang and Yang, 2015;
Fadaee et al., 2017; Kobayashi, 2018) or substitu-
tion with words having the same morphological
features (Silfverberg et al., 2017). Such methods
have been applied to generate adversarial or nega-
tive examples which help improve the robustness
of neural network–based NLP models (Belinkov
and Bisk, 2018; Shi et al., 2018a; Alzantot et al.,
2018; Zhang et al., 2019; Min et al., 2020, inter
alia), or to generate counterfactual examples which
help mitigate bias in natural language (Zmigrod
et al., 2019; Lu et al., 2020).

Other token-level manipulation methods
introduce noise, such as random token shuffling
and deletion (Wang et al., 2018; Wei and Zou,
2019; Dai and Adel, 2020). Models trained on the
augmented datasets are expected to be more robust
against the considered noise.

Constrained text generation. Recent work has
explored generating new examples by training a
conditional text generation model (Bergmanis et al.,
2017; Liu et al., 2020a; Ding et al., 2020; Liu et al.,
2020b, inter alia), or applying post-processing on
the examples generated by pretrained models (Yang
et al., 2020; Wan et al., 2020; Yoo et al., 2020). In
the data augmentation stage, given task-specific
constraints, such models generate associated text
accordingly. The generated examples, together
with the original datasets, are used to further train
models for the primary tasks. A representative
method is back-translation (Sennrich et al., 2016),
which is effective for not only machine translation,
but also style transfer (Prabhumoye et al., 2018;
Zhang et al., 2020a), conditional text generation
(Sobrevilla Cabezudo et al., 2019), text classifi-
cation (Iyyer et al., 2018), and grammatical error
correction (Xie et al., 2018). Relatedly, automatic
question generation has been used in data augmen-
tation for question answering (Yang et al., 2017;
Song et al., 2018).
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Another approach to example generation is
to generate new examples based on predefined
templates (Kafle et al., 2017; Asai and Ha-
jishirzi, 2020), where the templates are designed
following heuristic, and usually task-specific, rules.

Soft data augmentation. As an alternative
to explicit generation of concrete examples,
soft augmentation directly represents generated
examples in a continuous vector space: Gao et al.
(2019) propose to perform soft word substitution
for machine translation; recent work has adapted
the mixup method (Zhang et al., 2018), which aug-
ments the original dataset by linearly interpolating
the vector representations of text and labels, to text
classification (Guo et al., 2019; Sun et al., 2020),
named entity recognition (Chen et al., 2020), and
compositional generalization (Guo et al., 2020).

Structure-aware data augmentation. Existing
work has also sought potential gain from struc-
tures associated with natural language: Xu et al.
(2016) improve word relation classification by de-
pendency path–based augmentation. Şahin and
Steedman (2018) show that subtree cropping and
rotation based on dependency parse trees can help
part-of-speech tagging for low-resource languages,
while Vania et al. (2019) demonstrate that such
methods also help dependency parsing when very
limited training data is available.

SUB2 also falls into this category. The idea
of same-label substructure substitution has been
used to improve performance on structured pre-
diction tasks such as semantic parsing (Jia and
Liang, 2016), constituency parsing (Shi et al.,
2020), dependency parsing (Dehouck and Gómez-
Rodrı́guez, 2020), named entity recognition (Dai
and Adel, 2020), meaning representation–based
text generation (Kedzie and McKeown, 2020), and
compositional generalization (Andreas, 2020). To
the best of our knowledge, however, SUB2 has not
been systematically studied as a general data aug-
mentation method for NLP tasks. In this work, we
not only extend SUB2 to part-of-speech tagging and
structured sentiment classification, but also present
a variation that allows a broader range of NLP tasks
(e.g., text classification) to benefit from syntactic
parse trees. We evaluate SUB2 and several represen-
tative general data augmentation methods, which
can be widely applied to various NLP tasks.

When constituency parse trees are used, there is

a connection between SUB2 and tree substitution
grammars (TSGs; Schabes, 1990), where the ap-
proach can be viewed as (1) estimating a TSG using
the given corpus and (2) drawing new sentences
from the estimated TSG.

3 Method

We introduce the general framework we investigate
in Section 3.1, and describe the variations of SUB2

which can be applied to text classification and other
NLP applications in Section 3.2.

3.1 Substructure Substitution (SUB2)
As shown in Figure 1, given the original training
set D, SUB2 generates new examples using same-
label substructure substitution, and repeats the pro-
cess until the training set reaches the desired size.
The general SUB2 procedure is presented in Algo-
rithm 1.

Algorithm 1: SUB2.
Input: Original dataset D,
desired dataset size N > |D|
Output: Augmented dataset D′
D′ ← D;
repeat

Uniformly draw s ∈ substructure(D′)
S ← example(s)
Uniformly draw u ∈ {v | v ∈

substructure(D), label(v) =
label(s), v 6= s}

S′ ← replace s with v in S
D′ ← D′ ∪ {S′}

until |D′| = N ;

For part-of-speech (POS) tagging, we let text
spans be substructures and use the correspond-
ing POS tag sequences as substructure labels (Fig-
ure 1a); for constituency parsing, we use subtrees
as the substructures, with constituent labels as the
substructure labels (Figure 1b); for dependency
parsing, we also use subtrees as substructures, and
let the dependency arc labels, which link the heads
of subtrees to their parents, be the substructure la-
bels (Figure 1c).

3.2 Variations of SUB2 for Text Classification
Text classification examples do not typically con-
tain explicit substructures. However, we can obtain
them by viewing all text spans as substructures (Fig-
ure 1d). This approach may be too unconstrained in
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practice, so we consider constraining substitution
based on matching several features of the spans:

• Text classification label: when considering
this constraint, we can only substitute a span
with another span that comes from text anno-
tated with the same class label as the original
one; otherwise we can choose the alternative
from any example text in the training corpus.

• Constituency: when considering this con-
straint, we can only substitute a constituent
with another constituent (according to a con-
stituency parse of the text, whether they have
the same constituent label or not); otherwise
the considered spans do not necessarily need
to be constituents.

• Annotated text span label: in our experi-
ments, this constraint is valid only when the
previous constraint (constituency) is consid-
ered. When considering this constraint, we
can only perform substitution between text
spans with the same annotated label (e.g., con-
stituent label).2

• Number of words: when considering this
constraint, we can only substitute a span with
another having the same number of words;
otherwise we can substitute a span with any
other span.

Shi et al. (2018b) argue that binary balanced
trees are better backbones for recursive neural net-
works (Zhu et al., 2015; Tai et al., 2015) on text
classification; inspired by them, we introduce the
following constraint in this work:

• “Constituency” in binary balanced tree.
we use binary balanced trees, analogously to
constituency parse trees, as the backbone for
SUB2: we (1) generate balanced trees by re-
cursively splitting a span of n words into two
consecutive groups, which consist of

⌊
n
2

⌋
and⌈

n
2

⌉
words respectively, and (2) treat each non-

terminal in the balanced tree as a substructure
to perform SUB2.

We also investigate combinations of the above
constraints, where we require all the chosen con-
straints to be the same to perform SUB2. For exam-
ple, combining text classification label and number

2There can be other text span labels such as sentiment
labels of constituents (Socher et al., 2013).

of words (Figure 1d) requires the original and the
alternative span to have the same text label and the
same number of words.

4 Experiments

We introduce our experimental setups (Section 4.1),
and evaluate SUB2 and several data augmenta-
tion baselines (Section 4.2) on four tasks: part-of-
speech tagging (Section 4.3), dependency parsing
(Section 4.4), constituency parsing (Section 4.5),
and text classification (Section 4.6).

4.1 Setup

For part-of-speech tagging and text classification,
we add a two-layer perceptron on top of XLM-
R (Conneau et al., 2019) embeddings, where we
calculate contextualized token embeddings by a
learnable weighted average across layers. We use
endpoint concatenation (i.e., the concatenation of
the first and last token representation) to obtain
fixed-dimensional span or sentence features, and
keep the pretrained model frozen during training.3

For dependency parsing, we use the SuPar imple-
mentation of Dozat and Manning (2017).4 For
constituency parsing, we use Benepar (Kitaev and
Klein, 2018).5

For all data augmentation methods, including
the baselines (Section 4.2), we only augment the
training set, and use the original development set. If
not specified, we introduce 20 times more examples
than the original training set when applying an
augmentation method. When introducing k× new
examples, we also replicate the original training
set k times to ensure that the model can access
sufficient examples from the original distribution.

All models are initialized with the XLM-R base
model (Conneau et al., 2019) if not specified. We
train models for 20 epochs in high-resource set-
tings (i.e., high-resource part-of-speech tagging,
sentiment classification trained on the full train-
ing set) or when applying data augmentation meth-
ods, and for 400 epochs in the low-resource set-
tings without augmentation; we select the one with
the highest accuracy or F1 score on the develop-
ment set. All models are optimized using Adam
(Kingma and Ba, 2015), with learning rates cho-

3We did not observe significant improvement by finetuning
the large pretrained language model, and for most cases, the
performance is much worse than the current scheme we apply.

4https://github.com/yzhangcs/parser
5https://github.com/nikitakit/

self-attentive-parser

https://github.com/yzhangcs/parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
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sen from {5 × 10−4, 5 × 10−5}. For the hidden
layer size (i.e., the hidden size of the perceptron
for part-of-speech tagging and text classification,
the dimensionality of span representation and scor-
ing multi-layer perceptron for constituency parsing,
and the dimensionality of token representation and
scoring multi-layer perceptron for dependency pars-
ing), we vary it between 128 and 512. We apply a
0.2 dropout ratio to the contextualized embeddings
in the training stage. All other hyperparameters
are the same as the default settings in the released
codebases.

4.2 Baselines

We compare SUB2 to the following baselines:

• No augmentation (NOAUG), where the orig-
inal training and development set are used.

• Contextualized substitution (CTXSUB),
where we apply contextualized augmentation
(Kobayashi, 2018), masking out a random
word token from the existing dataset and
using multilingual BERT (mBERT; Devlin
et al., 2019) to generate a different word.

• Knowledge based guided synonym substi-
tution (SYNO), where we substitute a random
word token by its synonym defined in an ex-
isting knowledge base.6

• Random shuffle (SHUF), where we randomly
shuffle all the words in the original sentence,
while keeping the original structured or non-
structured labels. It is worth noting that for de-
pendency parsing, we shuffle the words, while
maintaining the dependency arcs between in-
dividual word tokens; for constituency pars-
ing, we shuffle the terminal nodes, and insert
them back into the tree structure. Our SHUF

method for constituency parsing is arguably
more noisy than that for dependency parsing.

All of the data augmentation baselines are ex-
plicit augmentations where concrete new examples
are generated and used. The methods above are
generally applicable to a wide range of NLP tasks.

6Specifically, we use the lexical PPDB-XL (Ganitkevitch
and Callison-Burch, 2014; Pavlick et al., 2015) of the appro-
priate language when applicable.

Lang. SOTA mBERT XLM-R XLM-R
Aug. NOAUG NOAUG NOAUG SUB2

high-resource languages

avg. 96.9 97.1 97.7† 97.7†

bg 98.7 98.9 99.4 99.4
cs 99.0 99.0 99.2 99.2
da 97.2 97.8 98.7 98.5
de 94.4 94.6 95.3 95.1
en 96.1 96.5 97.5 97.3
es 96.8 96.9 97.5 97.5
eu 96.1 95.7 96.6 96.8
fa 97.5 96.6 98.6 98.5
fi 95.8 96.9 98.3 98.3
fr 96.6 96.7 96.9 96.9
he 97.4 96.9 97.9 97.8
hi 97.4 96.9 97.9 97.8
hr 96.8 97.6 97.9 98.0
id 94.0 93.7 93.8 93.7
it 98.1 98.6 98.7 98.7
nl 93.8 92.9 94.0 93.6
no 98.5 98.6 99.0 98.9
pl 97.7 98.5 98.8 98.9
pt 98.2 98.3 98.6 98.6
sl 98.1 98.7 99.2 99.2
sv 97.4 98.2 98.9 98.9

low-resource languages

avg. 92.7 94.7 95.4 96.1†

el 98.2 98.6 98.8 98.7
et 92.8 94.1 95.7 96.3
ga 91.1 92.9 94.1 95.8
hu 94.0 96.8 97.7 97.5
ro 91.5 95.0 94.9 95.8
ta 88.7 90.4 91.3 92.5

Table 1: Part-of-speech tagging accuracy (×100) on
the standard test set of UD 1.2 high-resource (top) and
low-resource (bottom) languages, across different pre-
trained models and augmentation methods. The best
numbers in each row are bolded. SOTA: previous state
of the art, i.e., the best test accuracy for each language
among all methods reported by Heinzerling and Strube
(2019), where all numbers in the SOTA column are not
necessarily produced by the same model. † denotes
new state-of-the-art results.

4.3 Part-of-Speech Tagging

We conduct our experiments using the Univer-
sal Dependencies (UD; Nivre et al., 2016, 2020)7

dataset.
First, we compare both NOAUG and SUB2 to

the previous state-of-the-art performance (Heinz-
erling and Strube, 2019) to ensure that our base-
lines are strong enough (Table 1).8 Heinzerling and
Strube (2019) take the token-wise concatenation
of mBERT last-layer representations, byte-pair en-

7http://universaldependencies.org/
8We use UD v1.2 for direct comparison with existing work.

http://universaldependencies.org/
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Language NOAUG CTXSUB SHUF SUB2

(Treebank)

avg. 92.4 87.1 86.8 93.0

be (hse) 96.2 90.3 92.5 96.9
lt (hse) 92.7 90.1 88.4 93.1
mr (ufal) 87.9 81.5 84.5 89.1
ta (ttb) 91.7 85.4 83.2 92.3
te (mtg) 93.8 88.2 85.6 93.0

Table 2: Part-of-speech tagging accuracy (×100) on the
standard test set of selected UD 2.6 low-resource tree-
banks. The best number in each row is bolded.

coding (BPE; Gage, 1994)–based LSTM hidden
states and character-LSTM hidden states as the in-
put to the classifier, and fine-tune the pretrained
mBERT during training. We find that using our
framework with frozen mBERT and extra learn-
able layer weight parameters, we are able to obtain
competitive or better results than those reported
by Heinzerling and Strube (2019); the gains grow
larger when using XLM-R, which is trained on
larger corpora than mBERT. In addition, by aug-
menting the training set with SUB2, we achieve
better average accuracy on low-resource languages
(paired, one-tailed t-test p-value= 0.028) while re-
maining competitive on high-resource languages
(no statistically significant difference).

We further test the part-of-speech tagging ac-
curacy on 5 selected low-resource treebanks in
the UD 2.6 dataset (Table 2), following the offi-
cial splits of the dataset. For four of the five tree-
banks, SUB2 achieves the best performance among
all methods, while also maintaining competitive
performance on the Telugu treebank. In contrast,
other augmentation methods (CTXSUB and SHUF)
are harmful compared to NOAUG on all treebanks.

4.4 Dependency Parsing

We evaluate the performance of models using the
standard Penn Treebank dataset (PTB; Marcus
et al., 1993), converted by Stanford dependency
converter v3.0,9 following the standard splits.

We first compare the performance of SUB2 and
baselines in the low-resource setting (Table 3). All
methods sometimes, though not always, improve
performance over NOAUG. SHUF achieves the
best LAS when there is only an extremely small
training set (e.g., 10 examples) available; however,
when the size of the original training set becomes

9https://nlp.stanford.edu/software/
stanford-dependencies.shtml

|D|
|D′| = k × |D| 10 50 100 500 1,000

2× (CTXSUB) 38.3 55.1 62.9 78.1 80.1
5× (CTXSUB) 35.5 55.9 62.1 81.4 81.0
10× (CTXSUB) 39.8 55.1 61.7 81.7 80.8
50× (CTXSUB) 31.2 52.3 60.9 79.3 78.0
100× (CTXSUB) 32.0 53.1 58.2 77.1 75.9

2× (SHUF) 32.8 55.9 62.5 76.7 78.4
5× (SHUF) 34.4 52.7 60.5 77.5 81.6
10× (SHUF) 39.8 53.1 63.7 77.9 81.9
50× (SHUF) 34.0 52.7 60.9 79.1 79.6
100× (SHUF) 39.1 55.9 61.3 80.4 77.4

2× (SUB2) 38.3 54.3 61.7 81.0 80.0
5× (SUB2) 35.9 54.7 62.9 82.5 80.4
10× (SUB2) 32.0 53.9 63.7 81.7 80.6
50× (SUB2) 33.2 57.0 62.5 81.4 82.5
100× (SUB2) 38.3 52.7 62.5 78.8 82.1

Table 3: Labeled attachment scores (LAS) on the
standard PTB development set (PTB Section 22). We
start with an original training set D, which consists
of |D| ∈ {10, 50, 100, 500, 1000} examples, and aug-
ment it k ∈ {2, 5, 10, 50, 100} times. For each train-
ing set D, the corresponding development set consists
of max

(
10, |D|

10

)
examples. Underlined results cor-

respond to k values tuned to maximize development
set LAS for each combination of augmentation method
and |D| (if there are multiple k values with the same
development LAS, we choose the smallest). The best
number in each column is bolded.

larger, SUB2 begins to dominate, while CTXSUB

and SHUF start to sometimes hurt the performance.
In addition, a larger augmented dataset does not
necessarily lead to better performance, but CTX-
SUB and SHUF often hurt performance as the aug-
mented set size gets too large while SUB2 does not.
Although there is not a consistently best configura-
tion, throughout our experiments, augmenting by
10×–50× the original dataset size produces good
improvements over NOAUG for both development
and test sets. When tuning the augmentation factor
k using small development sets, SUB2 improves
over NOAUG for four out of five seed dataset sizes.
CTXSUB, in contrast, improves performance for
only one out of five.

When training on the full WSJ training set, SUB2

does not necessarily help improve over NOAUG,
but it also does not hurt performance (Table 4).10

10An additional finding here is that a simple biaffine de-
pendency parsing model (Dozat and Manning, 2017) with
XLM-R initialization is able to set a new state of the art for
dependency parsing with only in-domain annotation.

https://nlp.stanford.edu/software/stanford-dependencies.shtml
https://nlp.stanford.edu/software/stanford-dependencies.shtml
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Model UAS LAS

Mrini et al. (2020)† (NOAUG) 97.4 96.3

Zhang et al. (2020b)‡ (NOAUG) 96.1 94.5
BiAffine+XLM-R (NOAUG) 96.7 95.2
BiAffine+XLM-R+SUB2 96.6 95.2

Table 4: Unlabeled attachment score (UAS) and la-
beled attachment score (LAS) on the PTB dependency
test set. Models are trained with the full PTB train-
ing set. †: the previously best result using any kind of
annotation (e.g., constituency parse trees); ‡: the pre-
viously best result using only dependency annotations.
BiAffine: the bi-affine dependency parsing model pro-
posed by Dozat and Manning (2017).

4.5 Constituency Parsing

Shi et al. (2020) have shown that SUB2 can sig-
nificantly improve few-shot constituency parsing
on the Penn Treebank dataset; in this work, we
extend the few-shot parsing evaluation to other
domains, using the Foreebank (FBANK; Kaljahi
et al., 2015) and NXT-Switchboard (SWBD; Cal-
houn et al., 2010) datasets. Foreebank consists of
1,000 English and 1,000 French sentences; for ei-
ther language, we randomly select 50 sentences for
training, 50 for development, and 250 for testing.11

We follow the standard splits of NXT-Switchboard,
and randomly select 50 sentences from the training
set and 50 from the development set for training
and development respectively.

We compare data augmentation methods using
the setup of few-shot parsing from scratch (Table 5).
Among all settings we tested, SUB2 achieves the
best performance, while all augmentation methods
we investigated improve over training only on the
original dataset (NOAUG). Surprisingly, we find
that the seemingly meaningless SHUF, which ran-
domly shuffles the sentence and inserts the shuffled
words back into the original parse tree structure as
the nonterminals, also consistently helps few-shot
parsing by a nontrivial margin.12

For domain adaptation (Table 6), we first train
Benepar (Kitaev and Klein, 2018) on the Penn Tree-
bank dataset, achieving an F1 score of 95.1 on the
PTB standard development set, and use the pre-
trained model as the initialization. While compared
to few-shot parsing trained from scratch, the gain
by data augmentation generally becomes smaller,

11We leave the other 650 sentences for future use.
12This trend may be explained by benefits in learn-

ing/optimization stability in this few-shot setting, but we leave
a richer exploration of potential explanations for future work.

Method FBANK(en) FBANK(fr) SWBD

NOAUG 33.1 27.3 29.1
CTXSUB 64.8 59.9 51.1
SYNO 62.9 60.8 52.1
SHUF 55.9 48.8 37.0
SUB2 71.8 70.8 64.6

Table 5: Labeled F1 scores (×100) on the test set of
each constituency treebank, in the setting of few-shot
parsing. The best number in each column is bolded.

Method FBANK(en) FBANK(fr) SWBD

PTB 82.3 30.8 74.3

NOAUG→ 83.1 70.1 77.2
CTXSUB→ 84.0 71.1 78.2
SYNO→ 84.2 71.0 77.9
SHUF→ 83.5 70.1 75.6
SUB2→ 84.6 72.6 78.3

Table 6: Labeled F1 scores (×100) on the test set of
each constituency treebank, in the setting of domain
adaptation. PTB: directly testing the model trained on
the Penn Treebank;→: transferring a model trained on
PTB to each domain. The best number in each column
is bolded.

SUB2 still works the best across datasets.

4.6 Text Classification

We take text classification as a representative of a
wider range of NLP tasks, and evaluate the meth-
ods introduced in Section 3.2 and baselines on low-
resource versions of two text classification datasets:
SST (Socher et al., 2013) and a sentence version
of the AG News dataset (Zhang et al., 2015).13 To
avoid over-fitting to the small development set and
tuning on test set issues, we introduce small “devel-
opment test” (devtest) sets for each task, and only
evaluate on the test sets using SUB2 variations with
the best devtest performance. For settings requiring
constituency parse trees, we generate them using
Benepar (Kitaev and Klein, 2018) trained on the
standard PTB dataset.

Across the two datasets, any data augmenta-
tion technique usually improves over NOAUG (Ta-
ble 7).14 While methods in the SUB2 family usually
lead to the best performance on both tasks, there is
not a consistently best-performing combination of
constraints. Surprisingly, SUB2 without constraints

13We only keep the single-sentence instances among all
examples in each split of the original AG News dataset, fol-
lowing Shi et al. (2018b).

14To measure variance due to random selection of data from
the full sets, results on additional randomly-sampled few-shot
datasets for both tasks can be found in Appendix A.
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Dataset Method Constraints Accuracy
Text Label Constit. Span Label #Words Dev Devtest Test

AG News-1% NOAUG N/A N/A N/A N/A 55.2 44.8 44.8
|Dtrain| = 0.6K CTXSUB N/A N/A N/A N/A 91.0 89.6 86.0
|Ddev| = 0.06K SYNO N/A N/A N/A N/A 89.6 89.6 85.6
|Ddevtest| = 0.06K SHUF N/A N/A N/A N/A 91.0 88.1 86.3

SUB2 (balanced tree) 7 N/A N/A 3 88.1 92.5 86.7
SUB2 3 3 7 7 91.0 92.5 87.0

SST-10% NOAUG N/A N/A N/A N/A 27.3 35.5 23.3
|Dtrain| = 0.8K CTXSUB N/A N/A N/A N/A 40.0 53.6 44.9
|Ddev| = 0.1K SYNO N/A N/A N/A N/A 40.0 39.1 39.0
|Ddevtest| = 0.1K SHUF N/A N/A N/A N/A 37.3 44.5 38.9

SUB2 (balanced tree) 7 N/A N/A 7 40.0 50.0 44.6
SUB2 3 3 sentiment 7 40.0 55.5 45.8

Table 7: Accuracy (×100) on the low-resource sentence AG News and SST datasets, together with the corre-
sponding constraints, where Constit. denotes constituency labels. We enumerate multiple constraints for data
augmentation with SUB2, and only test the obtained model with the highest devtest accuracy – results for all in-
vestigated combinations of constraints can be found in Appendix A. The best devtest accuracies and the best test
accuracy for each dataset are bolded.

Method Dev. Acc. Test Acc.

XLM-R (NOAUG) 56.1 55.7
XLM-R (SUB2) 56.6 56.6

Brahma (2018) N/A 56.2

Table 8: Accuracy (×100) on the SST standard devel-
opment and test set.

on the text label, which may introduce more noise
than having the constraint, does not necessarily
hurt the performance much.

While constituency parse tree–based SUB2 typi-
cally achieves competitive performance among all
investigated combinations of constraints, the gain
over SUB2 with balanced trees is not consistent.
Our results are in line with Shi et al. (2018b).

We further use SUB2 with constraints of (1) text
label, (2) phrase, and (3) phrase sentiment label,
to augment the full SST training set, since it is
the best augmentation method for few-shot senti-
ment classification, in terms of devtest accuracy
(Table 7). In addition to sentences, we also add
phrases (i.e., subtrees) as training examples, fol-
lowing most existing work (Socher et al., 2013;
Kim, 2014; Brahma, 2018, inter alia),15 to boost
performance. In this setting, we find that SUB2

helps set a new state of the art on the SST dataset
(Table 8).

15That is, unlike in Table 7, we apply the same settings as
most existing work to produce numbers in Table 8.

5 Conclusion and Future Work

We investigate substructure substitution (SUB2), a
family of data augmentation methods that generates
new examples by same-label substructure substi-
tution. Such methods help achieve competitive or
better performance on the tasks of part-of-speech
tagging, dependency parsing, constituency parsing,
and text classification in the few-shot setting, where
the number of annotated examples is limited. While
other data augmentation methods (e.g., CTXSUB

and SHUF) sometimes improve the performance,
SUB2 is the only one that consistently improves
performance for low-resource NLP across tasks
and seed dataset sizes. The experimental setups
used in this work can further serve as a standard
benchmark for future work on NLP with limited
annotations.

There are two open questions remaining to be
addressed. First, it is still unclear why SHUF,
which requires the model to recover the correct
constituency parse tree of a sentence while only ac-
cessing shuffled words, consistently helps improve
few-shot constituency parsing by a nontrivial mar-
gin. Second, while constituency parse tree–based
SUB2 sometimes achieves better performance than
SUB2 without the constituency constraint, the ad-
vantage is not large: whether explicit constituency
parse trees are useful for NLP applications in the
neural network era remains an open question. We
leave the above questions, as well as applications
of SUB2 to more NLP tasks, for future work.
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Slovenia. European Language Resources Associa-
tion (ELRA).

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
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Appendices

A Text Classification: Another Few-Shot
Dataset

For either sentence AG News or SST dataset, we
create two few-shot dataset of the same size, but

with different examples. We report the model per-
formances in Tables 9 and 10. Results in Table 7
are evaluated on the same few-shot dataset as those
in Table 9.
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Method Constraints Accuracy
Text Label Phrase Pharse Label #Words Dev Devtest Test

AG News-1% (|Dtrain| = 0.6K, |Ddev| = |Ddevtest| = 0.06K)

NOAUG N/A N/A N/A N/A 55.2 44.8 44.8
CTXSUB N/A N/A N/A N/A 91.0 89.6 86.0
SHUF N/A N/A N/A N/A 91.0 88.1 86.3
SYNO N/A N/A N/A N/A 89.6 89.6 85.6

SUB2 (balanced tree) 3 N/A N/A 3 89.6 89.6
3 N/A N/A 7 89.6 91.0
7 N/A N/A 3 88.1 92.5 86.7
7 N/A N/A 7 91.0 91.0

SUB2 3 3 const. 3 86.6 89.6
3 3 const. 7 86.6 91.0
3 3 7 3 86.6 89.6
3 3 7 7 91.0 92.5 87.0
3 7 N/A 7 86.6 92.5
3 7 N/A 3 86.6 91.0
7 3 const. 3 86.6 86.6
7 3 const. 7 86.6 86.6
7 3 7 3 91.0 88.1
7 3 7 7 89.6 88.1

SST-10% (|Dtrain| = 0.8K, |Ddev| = |Ddevtest| = 0.1K)

NOAUG N/A N/A N/A N/A 27.3 35.5 23.3
CTXSUB N/A N/A N/A N/A 40.0 53.6 44.9
SHUF N/A N/A N/A N/A 37.3 44.5 38.9
SYNO N/A N/A N/A N/A 40.0 39.1 39.0

SUB2 (balanced tree) 3 N/A N/A 3 36.4 49.1
3 N/A N/A 7 26.4 35.5
7 N/A N/A 3 38.2 49.1
7 N/A N/A 7 40.0 50.0 44.6

SUB2 3 3 senti. 3 39.1 53.6
3 3 senti. 7 40.0 55.5 45.8
3 3 const. 3 37.3 52.7
3 3 const. 7 40.9 50.9
3 3 7 3 36.4 50.9
3 3 7 7 39.1 47.3
3 7 N/A 3 38.2 48.2
3 7 N/A 7 40.9 47.3
7 3 const. 3 39.1 50.9
7 3 const. 7 40.0 54.5
7 3 7 3 38.2 54.5
7 3 7 7 39.1 50.0

Table 9: Accuracy (×100) on the AG News and SST dataset (few-shot set 1). The best devtest numbers in each
section are bolded.
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Method Constraints Accuracy
Text Label Phrase Pharse Label #Words Dev Devtest Test

AG News-1% (|Dtrain| = 0.6K, |Ddev| = |Ddevtest| = 0.06K)

NOAUG 3 N/A N/A N/A 40.3 44.8 38.0
CTXSUB N/A N/A N/A N/A 88.1 89.6 86.1
SHUF N/A N/A N/A N/A 86.6 88.1 85.7
SYNO N/A N/A N/A N/A 88.1 85.1 84.2

SUB2 (balanced tree) 3 N/A N/A 7 88.1 88.1
3 N/A N/A 3 86.6 88.1
7 N/A N/A 7 89.6 89.6
7 N/A N/A 3 89.6 91.0 86.5

SUB2 3 3 const. 3 86.6 88.1
3 3 const. 7 86.6 88.1
3 3 7 3 88.1 88.1
3 3 7 7 86.6 88.1
3 7 N/A 3 86.6 88.1
3 7 N/A 7 89.6 88.1 85.9
7 3 const. 3 86.6 86.6
7 3 const. 7 83.6 88.1
7 3 7 3 83.6 86.6
7 3 7 7 82.1 88.1

SST-10% (|Dtrain| = 0.8K, |Ddev| = |Ddevtest| = 0.1K)

NOAUG 3 N/A N/A N/A 30.0 30.0 26.7
CTXSUB N/A N/A N/A N/A 47.3 43.6 43.2
SHUF N/A N/A N/A N/A 47.3 41.8 41.5
SYNO N/A N/A N/A N/A 45.5 37.3 40.0

SUB2 (balanced tree) 3 N/A N/A 3 46.4 44.5 44.1
3 N/A N/A 7 48.2 43.6
7 N/A N/A 3 31.8 36.4
7 N/A N/A 7 43.6 37.3

SUB2 3 3 senti. 3 49.1 45.5 44.7
3 3 senti. 7 45.5 43.6
3 3 const. 3 47.3 42.7
3 3 const. 7 45.5 41.8
3 3 7 3 42.7 41.8
3 3 7 7 41.8 38.2
3 7 N/A 3 36.4 42.7
3 7 N/A 7 37.3 38.2
7 3 const. 3 48.2 43.6
7 3 const. 7 35.5 37.3
7 3 7 3 48.2 41.8
7 3 7 7 45.5 40.0

Table 10: Accuracy (×100) on the AG News and SST dataset (few-shot set 2). The best devtest numbers in each
section are bolded .


