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Abstract

Event detection tends to struggle when it needs
to recognize novel event types with a few sam-
ples. The previous work attempts to solve this
problem in the identify-then-classify manner
but ignores the trigger discrepancy between
event types, thus suffering from the error prop-
agation. In this paper, we present a novel
unified model which converts the task to a
few-shot tagging problem with a double-part
tagging scheme. To this end, we first pro-
pose the Prototypical Amortized Conditional
Random Field (PA-CRF) to model the label
dependency in the few-shot scenario, which
approximates the transition scores between la-
bels based on the label prototypes. Then Gaus-
sian distribution is introduced for modeling
of the transition scores to alleviate the un-
certain estimation resulting from insufficient
data. Experimental results show that the uni-
fied models work better than existing identify-
then-classify models and our PA-CRF further
achieves the best results on the benchmark
dataset FewEvent. Our code and data are avail-
able at http://github.com/congxin95/

PA-CRF.

1 Introduction

Event detection (ED) systems extract events of
specific types from the given text. Traditionally,
researchers use pipeline approaches (Ahn, 2006)
where a trigger identification (TI) system is used
to identify event triggers in a sentence and then a
trigger classifier (TC) is used to find the event types
of extracted triggers. Such a framework makes the
task easy to conduct but ignores the interaction and
correlation between the two subtasks, being suscep-
tible to cascading errors. In the last few years, sev-
eral neural network-based models were proposed
to jointly identify triggers and classify event types
from a sentence (Chen et al., 2015; Nguyen and
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Marry It served as the location of Bogart's [wedding] to Bacall.

E-Mail If you have a better idea, please [e-mail] me.

Figure 1: An example from FewEvent dataset revealing
the trigger discrepancy. “[·]” marks the event trigger.

Grishman, 2015, 2018; Liu et al., 2018; Yan et al.,
2019; Cui et al., 2020b,a). These models have
achieved promising performance and proved the
effectiveness of solving ED in the joint framework.
But they almost followed the supervised learning
paradigm and depended on the large-scale human-
annotated dataset, while new event types emerge
every day and most of them suffer from the lack of
sufficient annotated data. In the case of insufficient
resources, existing joint models cannot recognize
the novel event types with only few samples, i.e.,
Few-Shot Event Detection (FSED).

One intuitive way to solve this problem is to first
identify event triggers in the conventional way and
then classify the event types based on the few-shot
learning (Vinyals et al., 2016; Snell et al., 2017;
Sung et al., 2018), these two subtasks can be trained
jointly by parameter sharing. Such identify-then-
classify paradigm (Deng et al., 2020) seems to be
convincing because TI aims to recognize triggers
and does not need to adapt to novel classes, so
we just need to solve the TC in the few-shot man-
ner. Unfortunately, our preliminary experiments
reveal that TI tends to struggle when recognizing
triggers of novel event types because novel events
usually contain completely different triggers with
the semantic distinction from the known events, i.e.,
Trigger discrepancy problem. Figure 1 gives an
example that the trigger “e-mail” would only occur
in event E-Mail but not in Marry and triggers of two
events have disparate context. And experiments on
FewEvent (a benchmark dataset for FSED) show
that 59.21% triggers in the test set do not trigger

http://github.com/congxin95/PA-CRF
http://github.com/congxin95/PA-CRF


29

any events in the training set and the F1 score of TI
with the SOTA TI model BERT-tagger (Yang et al.,
2019) is only 31.06%. Thus, the performance of
the identify-then-classify paradigm will be limited
by the TI part due to the cascading errors.

In this paper, we present a new unified method
to solve FSED. Specifically, we convert this task to
a sequence labeling problem and design a double-
part tagging scheme using trigger and event parts
to describe the features of each word in a sentence.
The key to the sequence labeling framework is to
model the dependency between labels. Conditional
Random Field (CRF) is a popular choice to cap-
ture such label dependency by learning transition
scores of fixed label space in the training dataset.
Nevertheless, in FSED, CRF cannot be applied di-
rectly due to the label discrepancy problem, that
is the label space of the test set is non-overlapping
with the training set since FSED aims to recognize
novel event types. Therefore, the learned transition
scores of CRF from the training set do not model
the dependency of the novel labels in the test set.

To address the label discrepancy problem,
we propose Prototypical Amortized Conditional
Random Field (PA-CRF), which approximates
the transition scores based on the label proto-
types (Snell et al., 2017) instead of learning by
optimization. Specifically, we first apply the self-
attention mechanism to capture the dependency
information between labels and then map the la-
bel prototype pairs to the corresponding transition
scores. In this way, PA-CRF can produce label-
specific transition scores based on the few support-
ive samples, which can adapt to arbitrary novel
event types. However, predicting the transition
score as a single fixed value actually acts as the
point estimation, which usually acquires a large
amount of annotated data to achieve accurate es-
timation. Estimated from the handful of samples,
the transition scores may suffer from the statisti-
cal uncertainty due to the random fluctuation of
scant data. To release this issue, inspired by varia-
tional inference (Kingma and Welling, 2014; Yoon
et al., 2018; Gordon et al., 2019), we treat the tran-
sition score as the random variable and utilize the
Gaussian distribution to approximate its distribu-
tion to model the uncertainty. Thus, our PA-CRF
is to estimate the parameters of the Gaussian dis-
tribution rather than the transition scores directly,
i.e., in the amortized manner (Kingma and Welling,
2014; Gordon et al., 2019). The Probabilistic In-

ference (Gordon et al., 2019) is employed based
on the Gaussian distribution to make the inference
robust by taking the possible perturbation of tran-
sition scores into account since the perturbation is
also learned in a way that coherently explains the
uncertainty of the samples.

To summarize, our contributions are as follows:

• We devise a tagging-based unified model for
FSED. To the best of our knowledge, we are
the first to solve this task in a unified manner,
free from the cascading errors.

• We propose a novel model, PA-CRF, which
estimates the distributions of transition scores
for modeling the specific label dependency in
the few-shot sequence labeling setting.

• Experimental results show that our proposed
PA-CRF outperforms other competitive base-
lines on the FewEvent dataset. Further anal-
yses show the effectiveness of our unified
model and the limitation of the identify-then-
classify models.

2 Related Work

Few-shot Event Detection Event Detection
(ED) aims to recognize the specific type of events
in a sentence. In recent years, various neural-based
models have been proposed and achieved promis-
ing performance in ED (Chen et al., 2015; Nguyen
and Grishman, 2015, 2018; Liu et al., 2018; Yan
et al., 2019; Cui et al., 2020b). Chen et al. (2015)
and Nguyen and Grishman (2015) proposed the
convolution architecture to capture the semantic
information in the sentence. Nguyen et al. (2016)
introduced the recurrent neural network to model
the sequence contextual information of words. Re-
cently, GCN-based models (Nguyen and Grishman,
2018; Liu et al., 2018; Yan et al., 2019; Cui et al.,
2020b) have been proposed to exploit the syntactic
dependency information and achieved state-of-the-
art performance. However, all these models are
data-hungry, limiting dramatically their usability
and deployability in real-world scenarios.

Recently, there has been an increasing research
interest in solving event detection in the few-shot
scenarios (Deng et al., 2020; Lai et al., 2020a,b), by
exploiting the Few-Shot Learning (Vinyals et al.,
2016; Snell et al., 2017; Finn et al., 2017; Sung
et al., 2018; Cong et al., 2020). Lai et al. (2020a)
proposed LoLoss which splits the part of the sup-
port set to act as the auxiliary query set to train the
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model. Lai et al. (2020b) introduced two regulariza-
tion matching losses to improve the performance
of models. These works only focus on the few-
shot trigger classification which classifies the event
type of the annotated trigger according to the con-
text based on few samples. This is unrealistic as
triggers of novel events are predicted by some ex-
isting toolkits in advance. Deng et al. (2020) first
proposed the benchmark dataset, FewEvent, for
FSED and designed the DMBPN based on the dy-
namic memory networks. They train a conventional
trigger identifier and a few-shot trigger classifier
jointly and evaluated the model performance in the
identify-then-classify paradigm. Moreover, our pre-
liminary experiments reveal that the conventional
trigger identification model tends to struggle when
recognizing triggers of novel event types because
of the trigger discrepancy between different event
types. Thus, errors of the trigger identifier might
be propagated to the event classification. Different
from the previous identify-then-classify framework,
for the first time, we solve Few-Shot Event Detec-
tion with two subtasks in a unified manner.

Few-shot Sequence Labeling In recent years,
several works (Fritzler et al., 2019; Hou et al., 2020;
Yang and Katiyar, 2020) have been proposed to
solve the few-shot named entity recognition using
sequence labeling methods. Fritzler et al. (2019)
applied the vanilla CRF in the few-shot scenario
directly. Hou et al. (2020) proposed a collapsed
dependency transfer mechanism (CDT) into CRF,
which learns label dependency patterns of a set of
task-agnostic abstract labels and utilizes these pat-
terns as transition scores for novel labels. Yang and
Katiyar (2020) trains their model on the training
data in a standard supervised learning manner and
then uses the prototypical networks and the CDT
for prediction in the inference phase. Different
from these methods learning the transition scores
by optimization, we build a network to generate
the transition scores based on the label prototypes
instead. In this way, we can generate exact label-
specific transition scores of arbitrary novel event
types to achieve adaptation ability. And we further
introduce the Gaussian distribution to estimate the
data uncertainty. Experiments prove the effective-
ness of our method over the previous methods.

3 Problem Formulation

We convert event detection to a sequence labeling
task. Each word is assigned a label that contributes

to detecting the events. Labels consist of two parts:
the word position in the trigger and the event type.
We use the “BI” (Begin, Inside) signs to represent
the position information of a word in the event
trigger. The event type information is obtained
from a predefined set of events. Label “O” (Other)
means that the corresponding word is independent
of the target events. Thus, the total number of labels
is 2N + 1 (N for B-EventType, N for I-EventType,
and an additional O label), where N is the number
of predefined event types.

Furthermore, we formulate the Few-Shot Event
Detection in the typical N -way-K-shot paradigm.
Let x = {w1, w2, . . . , wn} denote an n-word
sequence, and y = {y1, y2, . . . , yn} denote the
label sequence of the x. Given a support set
S = {(x(i),y(i))}N×K

i=1 which contains N event
types and each event type has only K instances,
FSED aims to predict the labels of a unlabeled
query set Q based on the support set S. Formally,
a {S,Q} pair is called a N -way-K-shot task T .
There exist two datasets consisting of a set of tasks
: Dtrain = {T (i)}Mtrain

i=1 and Dtest = {T (i)}Mtest
i=1

where Mtrain and Mtest denote the number of the
task in two datasets respectively. As the name sug-
gests, Dtrain is used to train models in the training
phase while Dtest is for evaluation. It is noted
that these two datasets have their own event types,
which means that the label space of two datasets is
disjoint with each other.

4 Methodology

4.1 Overview

As described above, we formulate FSED as the
few-shot sequence labeling task with interdepen-
dent labels. Following the widely used CRF frame-
work, we propose a novel PA-CRF model to model
such label dependency in the few-shot setting, and
decode the best-predicted label sequence. Our PA-
CRF contains three modules: 1) Emission Module:
It first computes the prototype of each label based
on the support set, and then calculates the similar-
ity between prototypes and each token in the query
set as the emission scores. 2) Transition Module:
It exploits the prototypes to generate the parame-
ters of Gaussian distribution of the transition scores
for decoding. 3) Decoding Module: Based on the
emission scores and Gaussian distributed transition
scores, the Decoding Module calculates the prob-
abilities of possible label sequences for the given
query set and decodes the predicted label sequence.
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Figure 2: Architecture of our proposed PA-CRF. It consists of three modules: a) Emission Module calculates the
emission scores for the query instance based on the prototypes derived from the support set. b) Transition Module
generates the Gaussian distributed transition scores with respect to prototypes. c) Decoding Module exploits the
emission scores and approximated Gaussian distributed transition scores to decode the predicted label sequence
with the Monte Carlo Sampling.

Figure 2 gives an illustration of PA-CRF. We detail
each component from the bottom to the top.

4.2 Emission Module

The Emission Module assigns the emission scores
to each token of sentences in the query set Q with
regard to each label based on the support set S .

4.2.1 Base Encoder

Base Encoder aims to embed tokens in both support
set S and query set Q into real-value embedding
vectors to capture the semantic information.

Since BERT (Devlin et al., 2019) shows its ad-
vanced ability to capture the sequence information
and has been widely used in NLP tasks recently,
we use it as the backbone. Given an input word
sequence x, BERT first maps all tokens into hid-
den embedding representations. We denote this
operation as:

{h1,h2, . . . ,hn} = BERT(x) (1)

where hi ∈ Rdh refers to the hidden representation
of token wi, dh is the dimension of the hidden
representation.

4.2.2 Prototype Layer
Prototype Layer is to derive the prototypes of each
label from the support set S. As described in the
problem formulation, we use the BIO schema to
annotate the event trigger and N event types could
contain 2N + 1 labels. Thus, indeed, we could
get 2N + 1 prototypes. Following the previous
work (Snell et al., 2017), we calculate the proto-
type of each label by averaging all the word rep-
resentations with that label in the support set S:

ci =
1

|S(yi)|
∑

w∈S(yi)

h, i = 1, 2, . . . , 2N + 1, (2)

where ci denotes the prototype for label yi, S(yi)
refers to the token set containing all words in the
support set S with label yi, h represents the corre-
sponding hidden representation of token w, and | · |
is the number of set elements.

4.2.3 Emission Scorer
Emission Scorer aims to calculate the emission
score for each token in the query set Q. The emis-
sion scores are calculated according to the similar-
ities between tokens and prototypes. The compu-
tation of the emission score of the label yi for the
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word wj is defined as:

fE(yi, wj ,S) = d(ci,hj), (3)

where d(·, ·) is the similarity function. In practice,
we choose the dot product operation to measure the
similarity.

Finally, given a word sequence x, the emission
score of the whole sentence with its corresponding
ground-truth label sequence y is computed as:

EMIT(y,x,S) =
n∑
i=1

fE(yi, wi,S). (4)

4.3 Transition Module
In vanilla CRF, the transition scores are learnable
parameters and optimized from large-scale data to
model the label dependency. However, in the few-
shot scenarios, the learned transition scores cannot
adapt to the novel label set due to the disjoint label
space. To overcome this problem, we use neural
networks to generate the transition scores based on
the label prototypes instead of learning transition
scores by optimization to achieve adaptation ability.
In this case, a problem needing to be solved is that
using few support instances with random data fluc-
tuation to generate transition scores would cause
uncertain estimation and result in wrong inference.
To model the uncertainty, we treat the transition
score as a random variable and use the Gaussian
distribution to approximate its distribution. Specif-
ically, the Transition Module is to generate the
distributional parameters (mean and variance) of
transition scores based on the label prototypes. It
consists of two layers: 1) Prototypical Interaction
Layer and 2) Distribution Approximator. Details
of each layer are listed in the following parts.

4.3.1 Prototype Interaction Layer
Since the transition score is to model the depen-
dency between labels, the individual prototype for
each event type with rare dependency information
is hard to generate their transition scores. Thus,
we propose a Prototype Interaction Layer which
exploits the self-attention mechanism to capture
the dependency between labels.

We first calculate the attention scores of each
prototype ci with others:

αij =
exp(c

(q)
i · c

(k)
j )∑2N+1

m=1 exp(c
(q)
i · c

(k)
m )

, (5)

where c(q)i and c
(k)
i are transformed from ci by two

linear layers respectively:

c
(q)
i =W (q)ci + b(q)

c
(k)
i =W (k)ci + b(k)

(6)

Getting the attention scores, the prototype c̃i
with dependency information is calculated as fol-
lows:

c̃i =

2N+1∑
j=1

αijc
(v)
j , (7)

where c
(v)
i is also transformed linearly from ci:

c
(v)
i =W (v)ci + b(v) (8)

4.3.2 Distribution Approximator
This module aims to generate the mean and vari-
ance of Gaussian distributions based on the proto-
types with dependency information.

Given the label set Y with total 2N + 1 la-
bels, we first denote the transition score matrix
as Tr ∈ R(2N+1)×(2N+1) for all label pairs, and
denote the the i-th row j-th column element of
Tr as [Tr]ij which refers to the transition score
for i-th label transiting to j-th label in the label
set Y . As treating [Tr]ij as random variable, we
use the Gaussian distribution [T̃r]ij ∼ N (µij , σ

2
ij)

to approximate [Tr]ij , where N (·, ·) refers to the
Gaussian distribution. To estimate the mean µij
and variance σij of [T̃r]ij , we concatenate the cor-
responding prototypes c̃i and c̃j and feed into two
feed-forward neural networks respectively:

µij =W (µ) [c̃i‖c̃j ] + b(µ) (9)

σ2
ij = exp

(
W (σ2) [c̃i‖c̃j ] + b(σ

2)
)

(10)

where [·‖·] means the concatenation operation.
Given a label sequence y, the transition score of
the whole label sequence is approximated by:

TRANS(y, T̃r) =

n−1∑
i=1

[T̃r]I(yi)I(yi+1) (11)

where I(yi) refers to the label index in Y of yi.

4.4 Decoding Module
Decoding Module derives the probabilities for a
specific label sequence of the query set according
to the emission scores and approximated Gaussian
distributions of transition scores.

Since the approximated transition score is Gaus-
sian distributional and not a single value, we de-
note the probability density function of the approx-
imated transition score matrix as q(T̃r|S). Accord-
ing to the Probabilistic Inference (Gordon et al.,



33

2019), the probability of label sequence y of a
word sequence x based on the support set S is
calculated as:

P (y|x,S) =
∫
P (y|x,S, T̃r)q(T̃r|S)dT̃r (12)

Following the CRF algorithm, the probability
can be calculated based on the Equation 4 and
Equation 11:

P (y|x,S) =∫
1

Z
exp

(
EMIT(y,x,S) + TRANS(y, T̃r)

)
q(T̃r|S)dT̃r

(13)

where

Z =
∑
y′∈Y

exp
(
EMIT(y′,x,S) + TRANS(y′, T̃r)

)
(14)

and Y refers to all possible label sequences.
In the training phase, we use negative log-

likelihood loss as our objective function:

L = − E
(x,y)∼Q

[log P (y|x,S)] (15)

Due to the hardness to compute the integral of
Equation 13, in practice, we use the Monte Carlo
sampling technique (Gordon et al., 2019) to approx-
imate the integral. To make the sampling process
differentiable for optimization, we employ the repa-
rameterization trick (Kingma and Welling, 2014)
for each transition score [T̃r]ij :

[T̃r]ij = µij + εσij ,where ε ∼ N (0, 1) (16)

In the inference phase, the Viterbi algo-
rithm (Forney, 1973) is employed to decode the
best-predicted label sequence for the query set.

5 Experiment

5.1 Dataset
We conduct experiments on the benchmark
FewEvent dataset introduced in the previous
work (Deng et al., 2020), which is the currently
largest few-shot dataset for event detection. It
contains 70,852 instances for 100 event types and
each event type owns about 700 instances on av-
erage. Since Deng et al. (2020) do not share their
split train/dev/test set, we re-split the FewEvent in
the same ratio as Deng et al. (2020). We use 80
event types as the training set, 10 event types as
the dev set, and the rest 10 event types as the test
set. More statistics of FewEvent dataset are listed
in Appendix A.

5.2 Evaluation

We follow the evaluation metrics in previous event
detection works (Chen et al., 2015; Liu et al., 2018;
Cui et al., 2020b), an event trigger is marked correct
if and only if its event type and its offsets in the
sentence are both correct. We adopt the standard
micro F1 score to evaluate the results and report the
averages and standard deviations over 5 randomly
initialized runs.

6 Implementation Details

We employ BERT-BASE-UNCASED (Devlin et al.,
2019) as the base encoder. The maximum sentence
length is set as 128. Our model is trained using
AdamW optimizer with the learning rate of 1e-5.
All the hyper-parameters are tuned on the dev set
manually. In the training phase, we follow the
widely used episodic training (Vinyals et al., 2016)
in few-shot learning. Episodic training aims to
mimic N-way-K-shot scenario in the training phase.
In each epoch, we randomly sample N event types
from the training set and each event type randomly
sample K instances as support set and other M
instances as the query set. We train our model with
20,000 iterations on the training set and evaluate
its performance with 3,000 iterations on the test
set following the episodic paradigm. We run all
experiments using PyTorch 1.5.1 on the Nvidia
Tesla T4 GPU, Intel(R) Xeon(R) Silver 4110 CPU
with 256GB memory on Red Hat 4.8.3 OS.

6.1 Baselines

To investigate the effectiveness of our proposed
method, we compare it with a range of base-
lines and state-of-the-art models, which can
be categorized into three classes: fine-tuning
paradigm, identify-then-classify paradigm and uni-
fied paradigm.

Fine-tuning paradigm solves the FSED in the
standard supervised learning, i.e., pre-training on
the large scale dataset and fine-tuning on the hand-
ful target data. We adopt the state-of-the-art model,
PLMEE (Yang et al., 2019), of the standard ED
into the FSED directly.

Identify-then-classify models first perform
trigger identification (named as TI) and then clas-
sify the event types based on the few-shot learning
methods (named as FSTC). We investigate two
typed of identify-then-classify paradigms: sepa-
rate and multi-task. For the separate models, the
trigger identifier and few-shot trigger classifier are
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Paradigm Model 5-Way-5-Shot 5-Way-10-Shot 10-Way-5-Shot 10-Way-10-Shot

Fine-tuning PLMEE 4.43 ± 0.19 4.69 ± 0.85 2.52 ± 0.28 2.76 ± 0.55

Separate
LoLoss 30.14 ± 0.30 30.91 ± 0.29 29.33 ± 0.40 30.08 ± 0.39
MatchLoss 29.78 ± 0.14 30.75 ± 0.15 28.75 ± 0.23 29.59 ± 0.21

Multi-task
LoLoss 31.51 ± 1.56 31.70 ± 1.21 30.46 ± 1.38 30.32 ± 0.89
MatchLoss 30.44 ± 0.99 30.68 ± 0.78 28.97 ± 0.61 30.05 ± 0.93
DMBPN 37.51 ± 2.60 38.14 ± 2.32 34.21 ± 1.45 35.31 ± 1.69

Unified

Match 39.93 ± 1.67 46.02 ± 1.20 30.88 ± 1.08 35.91 ± 1.19
Proto 50.11 ± 0.77 52.97 ± 0.95 43.51 ± 1.16 42.70 ± 0.98
Proto-Dot 58.82 ± 0.88 61.01 ± 0.23 55.04 ± 1.62 58.78 ± 0.88
Relation 28.91 ± 1.13 29.83 ± 0.78 18.49 ± 1.25 21.47 ± 1.40

Vanilla CRF 59.01 ± 0.81 62.21 ± 1.94 56.00 ± 1.51 59.35 ± 1.09
CDT 59.30 ± 0.23 62.77 ± 0.12 56.41 ± 1.09 59.44 ± 1.83
StructShot 57.69 ± 0.91 61.54 ± 1.23 54.54 ± 0.95 57.14 ± 0.79

PA-CRF 62.25* ± 1.42 64.45* ± 0.49 58.48* ± 0.68 61.64* ± 0.81

Table 1: F1 scores (10−2) of different models on the FewEvent test set. Bold marks the highest number among
all models, underline marks the second-highest number, and ± marks the standard deviation. * marks statistically
significant improvements over the best baseline with p < 0.01 under a boostrap test.

trained separately without parameter sharing. We
first exploit the state-of-the-art BERT-tagger for
the TI task. It uses BERT (Devlin et al., 2019)
and a linear layer to tag the trigger in the sentence
as a sequence labeling task. Since TI just aims
to recognize the occurrence of the trigger, the la-
bel set only contains three labels: O, B-Trigger,
I-Trigger. For the FSTC task, we reimplement
two FSTC models: LoLoss (Lai et al., 2020a),
MatchLoss (Lai et al., 2020b). In the multi-task
models, we reimplement DMBPN (Deng et al.,
2020) and replace its encoder with BERT for the
fair comparison. DMBPN combines a conventional
trigger identification module and a few-shot trigger
classification module by parameter sharing. But in
the inference phase, it detects the event trigger still
in the identify-then-classify paradigm. Addition-
ally, we also provide the multi-task version of the
LoLoss and MatchLoss which are trained jointly
with BERT-tagger with shared BERT parameters.

Unified models perform few-shot event detec-
tion with a single model without task decomposi-
tion. Because we are the first to solve this task in
a unified way, there is no previous unified model
that can be compared. But for the comprehensive
evaluation of our proposed PA-CRF model, we also
construct two groups of variants of PA-CRF: non-
CRF models and CRF-based models. Non-CRF
models use emission scores to predict via softmax

and do not take the label dependency into consider-
ation. We implement four typical few-shot classi-
fiers: 1) Match (Vinyals et al., 2016) uses cosine
function to measure the similarity, 2) Proto (Snell
et al., 2017) uses Euclidean Distance as the sim-
ilarity metric, 3) Proto-Dot uses dot product to
compute the similarity, 4) Relation (Sung et al.,
2018) builds a two-layer neural networks to mea-
sure the similarity. Since CRF with the capacity
of modeling label dependency is widely used in
sequence labeling task, we implement three kinds
of CRF-based models as our baselines: 1) Vanilla
CRF (Fritzler et al., 2019): We adopt the vanilla
CRF in the FSED task without considering the
adaptation problem. 2) CDT (Hou et al., 2020):
As the SOTA of the few-shot NER task, we re-
implement it according to the official code and
adapt it in the FSED task to replace our Transition
Module. 3) StructShot (Yang and Katiyar, 2020):
It is also a few-shot NER model. It first pre-trains
on the training set and utilizes the prototypical net-
works and the CDT for prediction based on the
support set in the inference phase. For the fair com-
parison, the emission module of these CRF-based
baseline models is the same as our PA-CRF.

6.2 Main Results

Table 1 summarizes the results of our PA-CRF
against other baseline models on the FewEvent test
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set.

Comparison with fine-tuning model It is obvi-
ous that PLMEE performs poorly in all four few-
shot settings and all few-shot-based methods out-
perform it with an absolute gap, which powerfully
proves that the conventional supervised methods is
incapable of solving FSED.

Comparison with identify-then-classify mod-
els (1) Most of unified models (except Relation)
perform higher than all identify-then-classify mod-
els, especially for PA-CRF with huge gaps about
30%, proving the effectiveness of the unified frame-
work. (2) Comparing with the separate paradigm,
the multi-task paradigm is able to improve perfor-
mance but it still cannot catch up with the unified
paradigm. (3) DMBPN works better than other two
models but still works poorly to handle the FSED
due to the limitation of the TI. We will discuss the
bottleneck of the identify-then-classify paradigm
in Section 6.3.

Comparison with unified models (1) Over
the best non-CRF baseline model Proto-Dot, PA-
CRF achieves substantial improvements of 3.43%,
3.44%, 3.44% and 2.86% on four few-shot scenar-
ios respectively, which confirms the effectiveness
and rationality of PA-CRF to model the label depen-
dency. (2) Vanilla CRF performs better than other
non-CRF baseline methods, which demonstrates
that CRF is able to improve the performance by
modeling the label dependency, even if the learned
transition scores do not match the label space of the
test set. (3) Compared to Vanilla CRF, both CDT
and StructShot achieve slightly higher F1 scores, in-
dicating the transition scores of abstract BIO labels
can improve the model adaptation ability to some
extent. (4) CDT exceeds the StructShot since CDT
is trained based on the episodic training, which
makes it learns the class-agnostic token represen-
tations. (5) PA-CRF outperforms CDT (2.95%,
1.68%, 2.07% and 2.20% in four few-shot settings
respectively) with absolute gaps. We consider that
it is because CDT learning the transition scores
of the abstract labels cannot model the exact de-
pendency of specific label set, so its adaptation
ability is limited. In contrast, PA-CRF generates
the label-specific transition scores based on the la-
bel prototype, which can capture the dependency
for specific novel event types. (6) Comparing four
few-shot scenarios, we can find that the F1 score
increases as the K-shot increases, which shows that
more support samples can provide more informa-

Model TI FSTC FSED

LoLoss 31.06 95.27 30.14
DMBPN 40.64 95.44 37.51
DMBPN(CDT-TI) 54.69 95.49 53.93
PA-CRF 63.68 96.76 62.25

Table 2: Comparison of PA-CRF and baselines on two
subtasks. F1 scores are reported on the FewEvent test
set in the 5-way-5-shot setting.

tion of the event type. The F1 score decreases as
the N-way increases when the shot number is fixed,
which reveals that the larger way number causes
more event types to predict which increases the
difficulty of the correct detection.

To summarize, we can draw the conclusion that
(1) The identify-then-classify paradigm is inca-
pable of solving the FSED task. (2) Compared
to the identify-then-classify paradigm, the unified
paradigm works more effectively for the FSED task.
(3) Approximating transition scores based on the
label prototypes not by optimization, our PA-CRF
achieves better adaptation on novel event types.

6.3 Bottleneck Analysis

To investigate the bottleneck of the identify-then-
classify paradigm, we evaluate LoLoss (separate
model), DMBPN (multi-task model) and PA-CRF
(unified model) on two subtasks: TI and FSTC sep-
arately in the 5-way-5-shot setting on the FewEvent
test set. To reduce the influence of the cascading
errors, we use the ground truth trigger span for
evaluation in the FSTC. The experimental results
are reported in Table 2. From Table 2, we find that:
(1) All models achieve more than 95% F1 score on
the FSTC task, indicating that both identify-then-
classify and unified models is capable enough of
solving the FSTC problem. (2) For the TI task, two
identify-then-classify baselines perform 31.06%
and 40.64% F1 score respectively, which demon-
strates that the conventional TI module has diffi-
culty in adapting to novel event triggers. Hence,
due to the cascading errors, the poorly-performed
TI module limits the performance of the identify-
then-classify models. (3) PA-CRF achieves 63.68%
F1 score on TI task, which exceeds the two kinds of
identify-then-classify models significantly. Unlike
identify-then-classify models recognizing triggers
based on seen triggers, PA-CRF utilizes the trigger
representations from the support set of the novel
event types to identify novel triggers so our unified
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Model 5-Shot 10-Shot

PA-CRF 44.39 51.06
- Distribution Estimation 43.47 49.41
- Interaction Layer 41.62 45.74
- Transition Score 39.83 45.07

Table 3: Ablation study of PA-CRF in 5-Way settings.
F1 scores are reported on the FewEvent dev set.

model works better in the TI task of FSED. In con-
clusion, the conventional trigger identifier cannot
identify novel triggers in FSED, and exploiting the
support set of novel event types is necessary.

6.4 Effectiveness Analysis
To verify the effectiveness of the unified framework,
we adapt our best baseline model, CDT, to replace
TI module of DMBPN to solve trigger identifica-
tion in the few-shot manner. It identifies triggers
based on the emission scores between tokens and
label prototypes calculating from the support set
and learned abstract transition scores. In this case,
we rename it as DMBPN(CDT-TI) and evaluate it
in TI and FSTC subtasks. Results are also reported
based on the 5-way-5-shot setting in Table 2 and we
observe that: The CDT-TI-based DMBPN achieve
54.69% in TI task, exceeding the conventional TI
based models, which shows that solving TI in the
few-shot manner by utilizing the support set can
reduce the trigger discrepancy to some extent. Al-
though the performance of FSTC is similar to the
original DMBPN, owing to the improvements of
TI task, the final performance of FSED exceeds
the original DMBPN by 16.42% but they are still
inferior to PA-CRF with a huge gap (8.99% on
TI task). Therefore, we draw the conclusion that
solving FSED in the unified manner can utilize the
correlation between two subtasks to improve the
model performance significantly.

6.5 Ablation Study
To study the contribution of each component in
our PA-CRF model, we run the ablation study on
the FewEvent dev set. From these ablations (see
Table 3), we find that: (1) - Distribution Estima-
tion: To study whether distributional estimation is
helpful to improve the performance, we remove it
and make the Distribution Approximator generate
a single value as the transition score directly as the
point estimation. And the inference is based on the
generated transition scores without Probabilistic

Inference. As a result, the F1 score drops 1.02%
and 1.65% in two scenarios, respectively. We at-
tribute these gaps to our proposed Gaussian-based
distributional estimation which can model the data
fluctuation to relieve the influence of data uncer-
tainty. (2) - Interaction Layer: To certify that the
Prototype Interaction Layer contributes to captur-
ing the information between prototypes, we remove
it and evaluate in two scenarios. We read from Ta-
ble 3 that F1 scores decrease significantly by 2.77%
and 5.32% respectively, which indicates that the
Prototype Interaction Layer is able to capture the
dependency among prototypes. (3) - Transition
Score: To prove the contribution of the label depen-
dency, we remove the Transition Module and only
use the emission score for prediction. Results show
that without transition scores, the performance of
the model drops dramatically by 4.56% and 5.99%
respectively, which powerfully proves that the tran-
sition score can improve the performance of the
few-shot sequence labeling task.

Furthermore, we have conducted case study and
error analysis to validate the strength of our PA-
CRF and explore its weakness. Details are listed in
Appendix B and Appendix C.

7 Conclusion

In this paper, we explore a new viewpoint of solv-
ing few-shot event detection in a unified manner.
Specifically, we propose a prototypical amortized
conditional random field to generate the transition
scores to achieve adaptation ability for novel event
types based on the label prototypes. Furthermore,
we present the Gaussian-based distributional esti-
mation to approximate transition scores to relieve
the statistical uncertainty of data fluctuation. Fi-
nally, experimental results on the benchmark Few-
Event dataset prove the effectiveness of our pro-
posed method. In the future, we plan to adapt our
method to other few-shot sequence labeling tasks
such as named entity recognition.
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A Dataset Statistics

Training Set Dev Set Test Set

# Cls. 80 10 10
# Sent. 67982 2173 697
# Tok./sent 36.5 38.6 30.8

Table 4: Statistics of FewEvent Dataset.

Table 4 lists the statistics of FewEvent dataset
containing the number of event type (#Cls.), the
number of sentence(# Sent.), the number of token
per sentence (# Tok./sent) for the train/dev/test set.

Figure 3 demonstrates the data imbalance prob-
lem of FewEvent dataset. Event “Marry” has the
most instance (26135 instances) while event “E-
Mail” only has 30 instances. 69% event types have
less than 100 instances while 7% event types have
more than 1000 instances. However, since we use
episodic training (Vinyals et al., 2016) to train our
model, the data imbalance problem can be relieved
to some extent.

B Case Study

We compare our method with the best identify-
then-classify baseline, DMBPN and the best uni-
fied baseline, CDT in some cases, as shown in
Table 5.

As demonstrated by the first example of a
Sponsorship event, DMBPN, in the identify-then-
classify paradigm, fails to identify the trigger spon-
sorship. According to our statistics about the
FewEvent dataset, 95.16% triggers of Sponsor-
ship event do not occur in the training set. Since
DMBPN uses the conventional TI module which is
trained on the training set to identify the event trig-
ger, it is incapable of identifying the Sponsorship
event trigger. Although the classification module
of DMBPN succeeds to distinguish the event type
as Sponsorship, due to the cascading errors, the fi-
nal prediction of event trigger (containing the span
and type) is incorrect. As a result, the performance
of DMBPN as an identify-then-classify model on
the FSED task is limited. In contrast, our unified
PA-CRF is successful to detect the event trigger
sponsorship of this case since PA-CRF utilizes the
information of the support set of Sponsorship event
in which word sponsorship appears and acts the
trigger.

In the second example, the best unified baseline,
CDT, tags the first trigger word locked with I-Jail
label wrongly. That is because CDT learns the
abstract transition scores among a set of abstract
labels which cannot model the label dependency
for this specific event type accurately. Thanks to
the PA-CRF which models the label dependency
based on the label prototypes from the support set
of Jail event, our model is capable of tagging the
word locked with B-Jail label correctly.

C Error Study

Although our method outperforms all baseline mod-
els, we still observe some failure cases. Table 6
gives a typical example of the wrong prediction of
event Transport (Trans for short). For the query
instance, the ground truth event trigger is “pouring
out”. The word “pouring” should be labeled as
B-Trans and the out should be labeled as I-Trans.
However, our model only detects “pouring” with
B-Trans while missing “out”. From the support set,
we find that all support instances of this event type
only contain the one-word trigger without I-Trans
label tokens, resulting in that the prototype of I-
Trans is zero vector. As a result, the emission score
for the label I-Trans of each query token is calcu-
lated as zero and the transition scores based on the
prototypes are also affected. Therefore, our model
is not able to detect the I-Trans label correctly in
this case. In the future, we will further study to
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Figure 3: The data imbalance of FewEvent dataset.

Model Prediction

DBMPN Candlestick Park was dropped when the [sponsorship]O agreement expired.
PA-CRF Candlestick Park was dropped when the [sponsorship]B−Sponsorship agreement expired.

CDT Willmore will tell everyone for wanting to keep the poor man [locked]I−Jail [up]I−Jail.
PA-CRF Willmore will tell everyone for wanting to keep the poor man [locked]B−Jail [up]I−Jail.

Table 5: Output of PA-CRF, DMBPN and CDT on samples from the FewEvent test set. The subscripts denote the
labels tagged by the models.

Support #1 Cult members [visited]B−Trans and built a laser weapon mounted on a truck
Support #2 Israel [leave]B−Trans the West Bank and Gaza and dismantle Jewish settlements.

Truth Refugees have been [pouring]B−Trans [out]I−Trans of Fallujah over the last few days.
Prediction Refugees have been [pouring]B−Trans [out]O of Fallujah over the last few days.

Table 6: A case of the wrong prediction from the FewEvent test set. The subscripts denote the triggers and their
event types. We only list two support instances to reduce space.

solve the missing I label problem.

D Analyses about Various Dataset Split

Model R1 R2 R3 R4 R5

PA-CRF 59.0 33.4 53.1 42.4 48.0
DMBPN 44.9 31.1 40.8 32.6 27.9

Table 7: Performance of our PA-CRF and DMBPN in
various split FewEvent dataset in the 5-Way-5-Shot sce-
nario. F1 scores (10−2) are reported.

Since Deng et al. (2020) do not public their split
train/dev/test set of FewEvent dataset, to compare
our PA-CRF with DMBPN (Deng et al., 2020),
we re-split the FewEvent randomly in the same
split ratio as the Deng et al. (2020) (80 event
types for training set, 10 event types for dev set

and the rest 10 event types for test set) and evalu-
ate the DBMPN performance on our split test set.
However, in our experiments, the performance of
DMBPN is lower than the original paper. We as-
sume that the different data split may influence
the model performance badly. To validate our as-
sumption, we re-split the FewEvent dataset for five
random seeds and conduct more experiments on
these various split train/dev/test set. The results are
reported in Table 7. From Table 7, it can be ob-
served that: (1) Data split does influence the model
performance significantly indeed. In these five dif-
ferent split train/dev/test set, the performance of
PA-CRF varies from 59.0% to 33.4% with a huge
range. Similarly, DMBPN also varies from 44.9%
to 27.9%, owning a huge gap about 20%. It demon-
strates that for the FewEvent dataset, different split
could cause huge fluctuation of the model perfor-



40

mance. Therefore, our PA-CRF including baselines
performs lower than those Deng et al. (2020) re-
ported due to the different data split. (2) PA-CRF
outperforms DMBPN in all five random split set-
tings, which powerfully proves the robustness of
PA-CRF over the identify-then-classify paradigm.


