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Abstract

Existing bias mitigation methods to reduce
disparities in model outcomes across cohorts
have focused on data augmentation, debiasing
model embeddings, or adding fairness-based
optimization objectives during training. Sep-
arately, certified word substitution robustness
methods have been developed to decrease the
impact of spurious features and synonym sub-
stitutions on model predictions. While their
end goals are different, they both aim to en-
courage models to make the same prediction
for certain changes in the input. In this paper,
we investigate the utility of certified word sub-
stitution robustness methods to improve equal-
ity of odds and equality of opportunity on mul-
tiple text classification tasks. We observe that
certified robustness methods improve fairness,
and using both robustness and bias mitigation
methods in training results in an improvement
in both fronts.

1 Introduction

As natural language processing (NLP) technolo-
gies are increasingly used in essential real-world
applications, such as social media, healthcare, per-
sonal assistants and law (He et al., 2020; Ahmad
et al., 2020), it is important to ensure these systems
do not create unintended outcomes for end-users
or offer disparate experiences to customers from
diverse backgrounds. This includes ensuring that
model performance does not significantly differ
across people belonging to different cohorts, such
as different gender or race groups.

A major subset of industry NLP applications
lies in text classification, such as domain and in-
tent classification in voice assistants (Su et al.,
2018) or code tagging in healthcare (Kemp et al.,
2019). In this study, we focus on toxicity classifi-

∗* Equal contribution

cation (Dixon et al., 2018) and occupation classifi-
cation of Wikipedia biographies (De-Arteaga et al.,
2019). For toxicity classification, ensuring fairness
means ensuring that a model can identify toxicity
to a similar accuracy across all examples regard-
less of the protected groups present in the example.
Past studies (e.g, (Dixon et al., 2018; Zhang et al.,
2020; Zhao and Chang, 2020)) have shown that
toxicity classification models will falsely classify
text containing certain protected attributes as toxic.
Leading social media platforms and internet com-
panies use toxicity classification models for con-
tent moderation (Gorwa et al., 2020), thus having
bias in such models can lead to increased silencing
of under-served groups. Similarly, for occupation
classification, a fair model should correctly iden-
tify occupations given a biography, regardless of
the protected group that a person belongs to (De-
Arteaga et al., 2019).

Recently, several studies have demonstrated so-
cietal bias in NLP systems (Hutchinson et al., 2020;
Tan and Celis, 2019; Liang et al., 2020) and vari-
ous approaches have been proposed to mitigate the
bias. These approaches include creating balanced
datasets (Park et al., 2018; Zhao et al., 2018a), de-
veloping methods optimized for particular fairness
notions (Zhang et al., 2017, 2020), model calibra-
tion (Zhao et al., 2017; Jia et al., 2020), and reduc-
ing representational bias (Bolukbasi et al., 2016b;
Zhao et al., 2018b; Liang et al., 2020).

Separately, certified robustness approaches (Jia
et al., 2019; Ye et al., 2020) have been developed
to ensure robustness against word substitution at-
tacks. Specifically, these strategies ensure small
perturbations in the input embedding space do not
alter model predictions. Despite never having been
discussed in prior literature, this corresponds to
notions of fairness, since protected attribute infor-
mation (e.g. gender) is often irrelevant to the task
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at hand (i.e. “She is a good singer” and “He is a
good singer” should have the same sentiment label).
Thus, we posit that word substitution robustness
methods can be used to make models invariant to
protected attribute tokens and identifiers.

We explore the effect of robustness methods
on fairness with GloVe-based CNN models (Kim,
2014) trained with Interval Bound Propagation
(IBP) (Jia et al., 2019), and BERT (Devlin et al.,
2019a) trained with SAFER (Ye et al., 2020). We
compare the effect of these robustness methods to
popular bias mitigation methods. We find that ro-
bustness methods achieve promising performance
on fairness metrics exceeding that of bias mitiga-
tion methods in several text classification tasks on
gender and sexual orientation dimensions. Fur-
thermore, training on both fairness and robustness
exceeds performance over robustness and bias miti-
gation methods alone. Comprehensive analysis and
visualization demonstrate that the robust methods
decrease feature importance on gender tokens.

Our contributions are two-fold. First, we show
that certified robustness methods can be used and
integrated with bias mitigation methods to effec-
tively improve models’ performance on several no-
tions of fairness, notably equality of opportunity
and equality of odds. Secondly, by integrating ro-
bustness methods with fairness, we can improve
a model’s robustness while reducing bias, which
is important in creating trustworthy NLP systems.
Our study’s practical implications include applica-
tions to models used in the industry that can handle
customer inputs that may differ from the training
data (robust) and that minimize any unintended con-
sequences on the customers (fair). With this study,
we aim to motivate future work geared towards de-
veloping methods that jointly optimize for multiple
trustworthy aspects of models; specifically, those
addressing model robustness and fairness.

2 Mitigating Bias through Certified
Robustness Methods

In the following, we first define the notions of fair-
ness considered in this paper. Then, we discuss
certified robustness methods, and how they can be
applied to reduce bias in models.

2.1 Fairness Notions

We focus on measuring two notions of fairness in
this paper – equalized odds and equality of oppor-
tunity, as they are commonly used in quantifying

bias in NLP applications. We describe the metrics
associated with these notions in Section 3. We give
application examples of these notions on toxicity
and occupation classification for English texts.

Equalized Odds A model achieves Equalized
Odds (Hardt et al., 2016) with respect to a pro-
tected attribute A and outcome Y if P (Ȳ = 1|A =
0, Y = y) = P (Ȳ = 1|A = 1, Y = y), for
y ∈ {0, 1}. Protected attributes are traits or char-
acteristics that cannot be discriminated against by
law1. Intuitively, this means that the model should
have equal true positive and false positive rates
across groups. For toxicity classification, equalized
odds implies that a model should be able to ef-
fectively detect toxicity on comments that include
identifiers across all protected attribute cohorts,
while not silencing any one cohort. Prior studies
demonstrate that models disproportionately predict
sentences associated with LGBTQ individuals as
toxic, which may further silence discussion around
LGBTQ issues and the voices of LGBTQ people
(Oliva et al., 2020).

Equality of Opportunity A model achieves
Equality of Opportunity (Hardt et al., 2016) with
respect to a protected attribute A and outcome Y
if P (Ȳ = 1|A = 0, Y = 1) = P (Ȳ = 1|A =
1, Y = 1). This is a relaxation of Equalized Odds
to the positive outcome, in which the model must
have equal true positive rates across groups. For
occupation classification, equality of opportunity
implies that a model is able to correctly classify bi-
ographies of people from all groups, thus enabling
equity in positive outcomes such as appropriate and
useful matches in job recommendation sites.

Due to bias in the training data, off-the-
shelf models often contain biases and disparities
in model performance against underrepresented
groups. Various bias mitigation approaches have
been proposed to ensure the fairness in model pre-
dictions. We include a diverse array of bias mitiga-
tion methods, spanning embedding debiasing, in-
training, and post-processing, as baselines. These
consist of instance weighting (Zhang et al., 2020),
HardDebias word embeddings (Bolukbasi et al.,
2016a), and adversarial debiasing (Zhang et al.,
2018). See more discussion in Sec. 3.

1https://www.eeoc.gov/
employers/small-business/
3-who-protected-employment-discrimination

https://www.eeoc.gov/employers/small-business/3-who-protected-employment-discrimination
https://www.eeoc.gov/employers/small-business/3-who-protected-employment-discrimination
https://www.eeoc.gov/employers/small-business/3-who-protected-employment-discrimination
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2.2 Certified Robustness for Bias Mitigation

Designed for a different purpose, certified robust-
ness methods present ways to train models that sat-
isfy guarantees of word substitution robustness. By
adapting certified robustness methods to fairness
applications, we aim to make models invariant to
spurious protected attribute information present in
inputs, and thus improve in equality of opportunity
and equalized odds.

Formally, a model f is certifiably robust if, for
any example sentence x, and sentences x′ that
consist of x modified with word substitutions,
f(x) = f(x′) = y. In the robustness context, word
substitution consists of swapping a word with its
synonyms (usually defined using retrofitted word
embeddings). For example, if x = “The waiter
talked to the customer about their problems,” x′

may consist of the sentences “The waitress talked
to the customer about their qualms.” In the context
of fairness, we consider ’waiter’ and ’waitress’ or
gender pronouns to carry the same meaning in the
context of toxicity and occupation classification,
and to have the same label.

In this paper, we use two recently developed cer-
tified robustness methods, Interval Bound Propaga-
tion (IBP) (Jia et al., 2019) and SAFER (Ye et al.,
2020). Given a set of perturbations for each word,
these two models ensures that word substitution
do not affect model predictions. In particular, for
each word, and a polytope spanned by the potential
substitutions for that word in the embedding space,
these methods ensure that swapping the word with
any point in the polytope will not change the model
predictions. To accomplish this, IBP minimizes the
upper bound of the set of losses over perturbation
sets, and SAFER uses a model-agnostic random-
ized smoothing technique.

Both IBP and SAFER encourage models to be
robust to spurious word substitutions, which in-
clude tokens that contain protected attribute infor-
mation. The perturbations included in the original
paper from Alzantot et al. (2018) are based on a
GloVe embedding that has been modified such that
synonyms are close together. While the perturba-
tion set does not include explicit gender and sexual
orientation swaps (‘boy’ is not included in the per-
turbation set for ’girl’, while ’girls’, and ’women’
are), we posit that certified robustness methods can
still be applied to bias mitigation by improving
robustness in examples that contain identifiers of
underrepresented groups. Doing so will decrease

model performance disparity in underrepresented
group cohorts, and thus fulfill fairness notions.

IBP (Jia et al., 2019) IBP computes bounds on
the model loss based on bounds on the input. The
robustness goal of the IBP method is to minimize
maxF (x, θ). Here, F (x, θ) denotes the set of
losses of a model over Bperturb, where Bperturb is
the set of perturbations for an example sentence x.
Formally, F (x, θ) = (f(x̄, θ)|x̄ ∈ Bperturb). The
full loss for IBP is (1−λ)f(x, θ) +λµfinal(x, θ),
where µfinal is the upper bound on the loss f(x, θ)
and λ ∈ [0, 1].

SAFER (Ye et al., 2020) Unlike IBP, SAFER
does not require any changes to the model training.
Instead, it employs a randomized smoothing mech-
anism in which an input is perturbed before being
fed to the model during the training time. Specif-
ically, SAFER creates random word substitutions
using a perturbation set derived from a synonym
network. Ye et al. (2020) determine certified ro-
bustness of a model on an example by certifying
that, given an example z, model score s(z), and
yB = argmaxc∈Y,c 6=y s(z), the model score of the
gold label y is higher than the model score of the
highest scoring non-gold label yB by a constant.

3 Empirical Study on the Connection
between Fairness and Robustness

To better understand the connection between fair-
ness and certified robustness in the context of text
classification, we empirically analyze models aug-
mented with various combinations of robustness
and fairness methods, as enumerated below.

1. Classifier (Baseline): The base text classi-
fication models. We consider two types of
classification models that widely used in the
literature, CNN (Kim, 2014) and BERT (De-
vlin et al., 2019b).

2. Classifier + Fairness: Text classifiers trained
with bias mitigation techniques (see Sec. 2).

3. Classifier + Robustness: Text classifiers
trained with robustness methods (see Sec. 2).

4. Classifier + Robustness + Gender Word
Perturbations: To ensure that the model be-
comes robust against gender substitutions, we
add definitional gender pairs (e.g., swapping
he with she) (Bolukbasi et al., 2016b) in the
permutation set of IBP and SAFER.

5. Classifier + Robustness + Fairness: Text
classifier trained with both fairness and ro-
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bustness objectives.
We aim to answer the following research ques-

tions based on the aforementioned configurations.
(1) What is the effect of robustness methods on mit-
igating bias (compare configuration 3 with 1 and
2)? (2) What is the effect of adding gender word
substitutions to the robustness perturbation sets
(compare configurations 3 and 4)? (3) What is the
effect of integrating bias mitigation and robustness
methods (compare configuration 5 with 1 and 3)?.

In particular, to answer the last question, we
consider combining popular bias mitigation ap-
proaches with IBP as follows.
• Debiased Word Embeddings + IBP: We re-

place the GloVe embeddings in the baseline
CNN model with the HardDebias embeddings
obtained from (Bolukbasi et al., 2016b), while
keeping the rest of the IBP training methodol-
ogy the same.
• Instance weighting + IBP: We add the in-

stance weights to each sample in the loss com-
putation during IBP training.
• Adversarial Training + IBP: We perform

multitask training, alternating between opti-
mizing for robustness loss and adversarial de-
biasing loss. We initialized our adversarial
training with the IBP-trained model.

Datasets We use the following two text classifica-
tion datasets to validate our hypothesis on different
data distributions.
• Jigsaw Toxicity2 is a dataset for toxicity clas-

sification that consists of 1,804,874 training
examples, which we split into train and val-
idation sets of size 1,443,900 and 360,974
respectively. We take 97,320 examples from
the public leaderboard as the test set.
• Bias in Bios (De-Arteaga et al., 2019) 3 is a

dataset for occupation classification derived
from Common Crawl corpus. It consists of
178,619 train and 91,917 test examples.

Evaluation Metrics We evaluate models on
three dimensions: (1) raw task performance, (2)
model fairness, and (3) model robustness. For the
raw task performance, we follow prior work in us-
ing accuracy and area under the ROC curve (AUC)
to evaluate the performance of a model on the Bias

2The data is available at https://www.kaggle.com/c/jigsaw-
unintended-bias-in-toxicity-classification

3The data is available at
https://github.com/microsoft/biosbias

in Bios dataset and the Jigsaw Toxicity dataset re-
spectively. To measure the robustness of a model,
we follow Jia et al. (2019) and Ye et al. (2020) to
use the certified robustness accuracy (CRA). For
fairness, we follow the discussion in Section 2.1
to evaluate a model based on equalized odds and
equal opportunity.

For fairness, we measure two metrics - i.e, True
Positive Equality Difference (TPED) and False Pos-
itive Equality Difference (FPED). The FPED and
TPED is calculated as:∑

z∈Z
|fz − foverall|,

where f is FPR or TPR depending on whether we
are computing FPED or TPED, and Z refers to
the set of all classes in a protected group. Note
that TPED and FPED metrics do not take into ac-
count how well the model does - for example, a
model that achieves a true positive rate of 0.0 for
all groups will still have a TPED of 0.

For Bias in Bios dataset, we chose equality of
opportunity to measure fairness, since it is impor-
tant to ensure job candidates are matched with job
recommendations that are relevant to them. Since
equality of opportunity necessitates equality in true
positive rates across cohorts, we use TPED as the
fairness evaluation metric for Bias in Bios. For Jig-
saw Toxicity, we define fairness by equalized odds,
since it is important for toxicity classifiers to be
able to detect toxicity in content containing identi-
fiers across all groups, while not silencing any one.
The combination of FPED with TPED aligns with
the Equalized Odds definition of fairness (Borkan
et al., 2019), thus we define a score EOdds as FPED
+ TPED for ease of analysis. Equalized odds is sat-
isfied when FPED = 0 and TPED = 0, and thus
when EOdds = 0.

For the scope of this paper and the limitations
of the dataset, we study binary gender for Bias in
Bios, and both gender (male, female, transgender,
and non-binary) and sexual orientation (homosex-
ual/straight, heterosexual, gay, lesbian, bisexual)
for Jigsaw Toxicity classification. While we ac-
knowledge that there are a multitude of important
attributes, we constrain the scope of this study to
the attributes present in text classification datasets.

Experiment Details All the experiments were
conducted on p3dn.24xlarge and p3.2xlarge AWS
compute nodes.4 The IBP runs took 48 hours for

4https://aws.amazon.com/ec2/instance-types/
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Model Raw task (↑) Fairness (↓) Robustness (↑)

AUC EOdds FPED TPED CRA

Baseline 0.957 0.508 0.197 0.311 0.270

IBP 0.913 0.184 0.005 0.179 0.934
IBPgender 0.947 0.237 0.062 0.175 0.912

Instance weighting 0.955 0.505 0.196 0.309 0.214
HardDebias 0.951 0.525 0.221 0.304 0.404
Adversarial Training 0.955 0.491 0.198 0.293 0.644

IBP + Instance weighting 0.889 0.165 0.002 0.163 0.942
IBP + HardDebias 0.923 0.459 0.169 0.290 0.890
IBP + Adversarial Training 0.920 0.473 0.192 0.281 0.901

Table 1: Certified robustness and bias mitigation methods with CNN on Jigsaw dataset. The best performance for
each column is boldfaced. Results show that the certified robustness method (IBP) improves both robustness and
fairness with performance drops on the raw task accuracy.

Model Raw task (↑) Fairness (↓) Robustness (↑)

AUC TPED CRA

Baseline 0.787 0.131 0.115

IBP 0.743 0.127 0.702
IBPgender 0.749 0.104 0.711

Instance weighting 0.755 0.118 0.095
HardDebias 0.767 0.106 0.070
Adversarial Training 0.773 0.114 0.180

IBP + Instance weighting 0.732 0.113 0.719
IBP + HardDebias 0.735 0.101 0.715
IBP + Adversarial Training 0.725 0.112 0.693

Table 2: Experiment results on CNN models on the Bias in Bios dataset. We see that our best performing model
consists of initiating IBP training with HardDebias embeddings.

Jigsaw Toxicity and 34 hours for Bias in Bios,
while SAFER took 53 hours with evaluation for
Jigsaw Toxicity and 37 hours for Bias in Bios.

For the experiments with CNN, we follow Jia
et al. (2019) to configure the IBP schedule and
CNN models. In particular, we used a CNN model
with a hidden size of 100 and kernel size of 3 with
the GloVe embedding (Pennington et al., 2014) as
inputs. For IBP, we linearly increased the weight
on the certified robustness objective from 0 to 0.8
for 40 epochs, before training for 20 epochs on the
full certified robustness objective.

For the experiments with BERT, we fol-
low Ye et al. (2020) to configure the BERT
model and SAFER experiment. We use
bert-base-uncased, and take the top-100
words that are closest in cosine similarity for each
token as the token’s perturbation set. We describe
the remaining hyper-parameter details (learning
rate, epochs, dropout probability) in the the ap-
pendix, which we obtained after a hyper-parameter
search on the development set.

4 Results

The results for Jigsaw Toxicity and Bias in Bios
are in Tables 1, 2, 3 and 4.

Effect of certified robustness methods for miti-
gating bias We observe that adding IBP during
training achieves better performance on fairness
over othe bias mitigation approaches across Jig-
saw Toxicity and Bias in Bios. In Jigsaw Toxicity,
EOdds improves from 0.508 to 0.184, and in Bias
in Bios, TPED improves from 0.131 to 0.127. Sim-
ilarly, training models with SAFER results in an
improvement in performance in all fairness metrics,
with an improvement in EOdds from 0.553 to 0.286
in Jigsaw Toxicity and an improvement in TPED
from 0.148 to 0.134 in Bias in Bios.

Effect of adding gender word substitutions to
the robustness perturbation sets While adding
gender word substitutions further improves fair-
ness in Bias in Bios, it results in worse fairness
scores in Jigsaw Toxicity than plain certified robust-
ness methods. In Bias in Bios, IBPgender results
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Model Raw task (↑) Fairness (↓) Robustness (↑)

AUC EOdds FPED TPED CRA

Baseline 0.914 0.553 0.290 0.263 0.950
SAFER 0.918 0.286 0.144 0.142 0.967
SAFERgender 0.968 0.347 0.176 0.171 0.917

Table 3: Model performance on BERT (Baseline) and SAFER on the Jigsaw dataset. Similar to the observation
with IBP, SAFER improves both the fairness and robustness metrics.

Model Raw task (↑) Fairness (↓) Robustness (↑)

AUC TPED CRA

Baseline 0.796 0.148 0.164
SAFER 0.744 0.134 0.726
SAFERgender 0.761 0.097 0.733

Table 4: Model performance on BERT (baseline) with SAFER on the Bias in Bios dataset.

in a lower TPED than all fairness only baselines.
This trend holds in SAFER, where SAFERgender
achieves lower TPED than SAFER. In Jigsaw Tox-
icity, adding gender words to the perturbation set
degrades performance in equalized odds for both
IBP and SAFER. This may be because the list of
gender word substitutions do not include words
relating to sexual orientation and non-binary gen-
der, and thus may only improve fairness amongst
examples containing male and female identifiers.

Effect of integrating bias mitigation methods
with certified robustness methods Training
model with both IBP and bias mitigation meth-
ods improves fairness metrics over fairness-only
baselines in both datasets. In Bias in Bios, the
model that comes closest to fulfilling equality of
opportunity is the one trained with both IBP and
HardDebias, which achieves a TPED of 0.101.
In Jigsaw Toxicity, we see a similar trend, with im-
provements in EOdds after adding IBP training to
instance weighting, HardDebias, and adversarial
training. The model trained with both IBP and in-
stance weighting achieves a EOdds score of 0.165,
which is the lowest among all approaches

We also note that for Jigsaw Toxicity, instance
weighting mitigates bias more effectively than
HardDebias and adversarial training (both in iso-
lation and in combination with robustness meth-
ods). This is not the case for Bias in Bios, where
HardDebias and adversarial training is more ef-
fective than instance weighting in mitigating bias.
This may be due to the fact that instance weight-
ing mitigates bias explicitly for a wider array of
sexual orientations and gender demographics than
the other two methods. The original HardDebias

method only projects away the gender direction
from embeddings. For adversarial debiasing, we
train the adversary with the subset of the training
set that is annotated for the presence of protected
attribute groups, which is highly skewed towards
male and female. Thus, HardDebias and adver-
sarial training may mitigate bias for binary gender,
but fall short in mitigating bias for non-binary gen-
der and sexual orientations. Conversely, instance
weighting, which mitigates bias for a wider array
of demographics, does not mitigate bias on gender
in Bias in Bios as well as the other methods.

Additional Observations Outside of the effects
of robustness on fairness, we observe differing ef-
fects of the methods on certified robustness and
raw accuracy. As expected, IBP and SAFER im-
proves performance on certified robustness on both
datasets. However, we also observe degradataions
in raw task accuracy in experiments with robust-
ness methods. Combining robustness with bias
mitigation methods results in a degradataion of raw
task performance over fairness-only baselines. Ad-
ditionally, fairness-only training results in differing
effects on certified robustness accuracy. Adversar-
ial debiasing improves certified accuracy in both
datasets, while HardDebias embedding-initiated
training results in an increase in certified robust-
ness in Jigsaw Toxicity, but a decrease in Bias in
Bios. This difference in findings may be due to
the shorter length of examples in Jigsaw Toxicity,
which has a median length of 34, compared with
the median length of 72 in Bias in Bios, which in
turn determines the number of possible perturba-
tions used to calculate certified accuracy and the
difficulty in achieving high CRA.
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Figure 1: Frequency of gender token features as extracted by LIME for baseline and IBP trained models for Jigsaw
Toxicity and Bias in Bios. We see a decrease in number and frequency of gender tokens in the list of top-5 (for
Jigsaw Toxicity) and top-50 (for Bias in Bios) most important features.

5 Analysis

In this section, we study how robustness training
affects the features our models use for classifica-
tion. We posit that robustness training encourages
models to focus more on predictive attributes than
on protected attributes. To gain insight into this,
we use LIME (Ribeiro et al., 2016) on the baseline,
IBP, and SAFER trained models and extract token
features importance as assigned by the model. We
run LIME on the subset E of examples that are
misclassified by our baseline model as toxic that
are correctly classified by the IBP model. We take
the top k features for each of the examples (where
k = 5 for Jigsaw and k = 50 for Bias in Bios) over
E, and then count the number of gender tokens that
appear in that list. For Jigsaw Toxicity, the number
of examples that we run LIME on is 488 for CNN
experiments and 182 for BERT experiments. For
Bias in Bios, we run LIME over a random subset
of 500 examples from E for both CNN and BERT
experiments.

For Jigsaw Toxicity, we see from Figure 1 that
LIME extracts less gender tokens in the top-5 fea-
tures of the IBP-trained and SAFER-trained model
compared to the baseline model. Notably, there are
37 gender tokens that appear in the CNN model,
while only 23 in the IBP-trained model. Simi-
larly, 69 gender tokens appear in the baseline BERT
model while only 37 appear in the SAFER-trained
one. For Bias in Bios, we see a similar trend from
Figure 1. The number of important gender token
features decreases from 626 to 500 after IBP train-
ing, and from 626 to 429 after SAFER.

In addition, we compute the gradient with the
output with respect to the input on several exam-
ples from Jigsaw Toxicity, which is shown in Table
5. We observe that the baseline model focuses on
tokens related to protected groups, while the IBP
model takes into account all parts of the sentence.

6 Related Work

Much work has been done in studying fairness in
various NLP models (Mehrabi et al., 2019; Sun
et al., 2019; Blodgett et al., 2020). In toxicity clas-
sification, Adragna et al. (2020) and (Zhang et al.,
2020) study the fairness in predicting toxic inter-
net contents in which the contents contain demo-
graphic identity-terms (e.g., “gay”, “black”). In
occupation classification, De-Arteaga et al. (2019)
and Romanov et al. (2019) study the impact of
including explicit gender indicators such as a per-
son’s names or a pronoun in online biographies.

Some notable bias mitigation methods, which we
also use in this paper, include instance weighting
(Zhang et al., 2020), embedding debiasing (Boluk-
basi et al., 2016a; Wang et al., 2020), and adver-
sarial debiasing (Zhang et al., 2018). In particular,
Bolukbasi et al. (2016a) proposed to reduce rep-
resentational harm existent in word embeddings.
Zhang et al. (2020) proposed instance weighting, a
method to debias text classification models for bias
against examples containing demographic identity-
terms by weighting the instances in the loss func-
tion, and that is optimized for demographic pairty.
Zhang et al. (2018) presents an adversarial train-
ing approach to achieve various notions of fairness
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Model Saliency Map
Example 1

Baseline

IBP

Example 2

Baseline

IBP

Table 5: Gradient saliency examples on Jigsaw Toxicity. Highlights show larger value of the output gradient with
respect to the token embedding. The baseline CNN model focuses on some tokens related to protected groups (e.g.,
woman), while IBP encourages the model to take into account other parts of the sentence, resulting in less bias.

that is achieved by training an adversary to identify
information on protected groups and training the
model to minimize the adversary loss. These ap-
proaches are designed for reducing specific types
of bias exhibited in data.

On the robustness front, it has been shown that
models are susceptible to adversarial word substi-
tution attacks (Ebrahimi et al., 2018; Jia and Liang,
2017). Parallel to the development of methods de-
veloped to reduce word substitution robustness in
the NLP domain (e.g., (Miyato et al., 2017; Huang
et al., 2019; Zhou et al., 2021)), many studies has
been done in the computer vision domain to ensure
that models are robust to image noising (Kannan
et al., 2018; Szegedy et al., 2014).

In the intersection of area between fairness and
robustness of model training, there is limited prior
work in the NLP area. Nanda et al. (2020) investi-
gate and define robustness bias, a notion of fairness
in which a model must be impervious to pertur-
bations to the same degree for all subgroups, and
investigate robustness bias in the computer vision
domain. Adragna et al. (2020) examine the use of
invariant risk minimization in improving the fair-
ness on out-of-distribution data for toxicity classifi-
cation. Their robustness approach is inspired from
domain generalization and it allows to learn mod-
els that have invariant performance across different
label distributions. This differs from the word sub-
stitution notions of robustness that our methods
are optimized for. Chang et al. (2020) shows that

achieving equalized odds is incongruent with ad-
versarial robustness on the COMPAS (J. Larson
and Angwin, 2017) and the Adult dataset (Dua and
Graf, 2017), which is outside the NLP domain. The
closest work to ours is in counterfactual logit pair-
ing (Garg et al., 2019), which encourages a model
to be robust to protected attributes for counterfac-
tual fairness. However, logit pairing does have the
certified characteristic of the robustness methods
we use in this study.

7 Conclusion

We present a study that investigates the effect of
optimizing for word substitution robustness on fair-
ness. We find that, in both CNN and BERT mod-
els, adding robustness methods such as IBP and
SAFER to the training process improves fairness
metrics over adding bias mitigation methods alone.
Given these promising results, we encourage future
explorations in using robustness methods to not
only improve fairness metrics, but to also optimize
for both fairness and robustness, two important
aspects of creating trustworthy NLP.

Future work may include studying the effects
of robustness and fairness in attributes other than
gender and sexual orientation, extending our study
to other word substitution based robustness meth-
ods, and exploring more sophisticated methods to
combine robustness and bias mitigation methods
during training. We also intend on extending the
study to investigating the impact of privacy pre-
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serving training methods on both, robustness and
fairness.

Broader Impact

We limit the scope of this paper to gender and
sexual orientation in this initial effort, and future
work must be done on mitigating bias in other pro-
tected attribute dimensions such as race, ethnicity,
neurodiversity, etc. Additionally, this work draws
importance to the need to extend fairness methods
to groups beyond binary gender. In our IBPgender
experiments, we only consider swapping binary
gender pairs from prior literature to provide an
anchor for our analysis. We see from our results
that methods that mitigate for binary gender such
as HardDebias and IBPgender do not reduce harm
for all gender or sexual orientation, especially for
non-binary gender and non-heterosexual sexual ori-
entation groups. We will extend the study in the
future by developing fairness methods that directly
mitigate for non-heterosexual sexual orientations
and non-binary genders pairs using sociology liter-
ature.

The language used in this paper is English. We
recognize that the presented methods rely on the
availability and quality of the set of words associ-
ated to a fairness task. Scaling to languages beyond
English–such as gendered languages like Spanish–
need more careful analysis. Another limitation of
this method is that word substitution may lead to
non-sensible sentences and inappropriate grammar
especially in complex fairness domains where it is
difficult to find word-to-word mapping (e.g., map-
ping names of religious artifacts like Christmas tree
or Diwali lights, etc are not trivial).

Our experiments and results show that pursuing
fairness can help in improving robustness and vice
versa. With these findings, we hope to inspire re-
searchers to investigate novel approaches that focus
on jointly achieving robust and fair models. We
also hope that this work will lead to more investi-
gations around achieving multiple objectives such
as privacy, robustness and fairness together in the
NLP research community.
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A Appendices

Appendix A. Hyperparameter Settings We per-
form hyperparameter search on the dev set using
random search with 12 trials, with initial learn-
ing rate range between 1 ∗ 10−2 to 1 ∗ 10−7, a
dropout probability range of 0.1 to 0.5, and number
of epochs between 10 and 60.The final hyperparam-
eter settings are shown in Table 6. We choose our
hyperparameters based on the one that minimizes
FPED + TPED + (1 - CRA) + (1 - tp), where tp
refers to task performance.

Additionally, for adversarial debiasing, we tune
the adversary loss weight from α = 0.1 to α = 3,
and choose α = 1 for the weight. We pretrain our
classifier and adversary for 2 epochs each.
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Experiment Learning
Rate

Dropout
Prob

Number of
epochs

GloVe + CNN (Jig-
saw)

1e-2 0.5 20

GloVe + CNN (Bias
in Bios)

1e-3 0.1 15

BERT + SAFER
(Jigsaw)

5e-6 0.1 20

BERT + SAFER
(Bias in Bios)

1e-5 0.1 15

Table 6: Hyperparameter settings for our experiments. We use the same hyperparameters across our fairness and
robustness experiments.


