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Abstract

Current open-domain question answering sys-
tems often follow a Retriever-Reader architec-
ture, where the retriever first retrieves rele-
vant passages and the reader then reads the
retrieved passages to form an answer. In
this paper, we propose a simple and effec-
tive passage reranking method, named Reader-
guIDEd Reranker (RIDER), which does not in-
volve training and reranks the retrieved pas-
sages solely based on the top predictions of the
reader before reranking. We show that RIDER,
despite its simplicity, achieves 10 to 20 abso-
lute gains in top-1 retrieval accuracy and 1 to
4 Exact Match (EM) gains without refining the
retriever or reader. In addition, RIDER, with-
out any training, outperforms state-of-the-art
transformer-based supervised rerankers. Re-
markably, RIDER achieves 48.3 EM on the
Natural Questions dataset and 66.4 EM on the
TriviaQA dataset when only 1,024 tokens (7.8
passages on average) are used as the reader in-
put after passage reranking.1

1 Introduction

Current open-domain question answering
(OpenQA) systems often follow a Retriever-
Reader (R2) architecture, where the retriever first
retrieves relevant passages and the reader then
reads the retrieved passages to form an answer.
Since the retriever retrieves passages from a
large candidate pool (e.g., millions of Wikipedia
passages), it often fails to rank the most relevant
passages at the very top. One line of work (Mao
et al., 2020; Karpukhin et al., 2020) aims to
improve the retriever and shows that significantly
better QA performance can be achieved when the
retrieval results are improved.

∗Work was done during internship at Microsoft Azure AI.
1Our code is available at https://github.com/

morningmoni/GAR.

An alternative solution is to rerank the initial re-
trieval results via a reranker, which is widely used
in information retrieval (Nogueira and Cho, 2019;
Qiao et al., 2019) and explored in early OpenQA
systems (Wang et al., 2018a; Lee et al., 2018).
However, current state-of-the-art OpenQA systems
(Karpukhin et al., 2020; Izacard and Grave, 2020b)
do not distinguish the order of the retrieved pas-
sages and instead equally consider a large number
of retrieved passages (e.g., 100), which could be
computationally prohibitive as the model size of the
readers becomes larger (Izacard and Grave, 2020b).

We argue that a Retriever-Reranker-Reader (R3)
architecture is beneficial in terms of both model
effectiveness and efficiency: passage reranking im-
proves the retrieval accuracy of the retriever at top
positions and allows the reader to achieve compara-
ble performance with fewer passages as the input.
However, one bottleneck of R3 is that the reranker,
previously based on BiLSTM (Wang et al., 2018a;
Lee et al., 2018) and nowadays typically BERT-
based cross-encoder (Nogueira and Cho, 2019;
Qiao et al., 2019), is often costly to train and its
slow inference delays the whole pipeline as well.

Can we achieve better performance without the
bother of training an expensive reranker or refining
the retriever (reader)? In this paper, we propose
a simple and effective passage reranking method,
named Reader-guIDEd Reranker (RIDER), which
does not require any training and reranks the re-
trieved passages solely based on their lexical over-
lap with the top predicted answers of the reader
before reranking. Intuitively, the top predictions of
the reader are closely related to the ground-truth an-
swer and even if the predicted answers are partially
correct or incorrect, they may still provide useful
signals suggesting which passages may contain the
correct answer (Mao et al., 2020).

We conduct experiments on the Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and Triv-

https://github.com/morningmoni/GAR
https://github.com/morningmoni/GAR
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iaQA (Trivia) (Joshi et al., 2017) datasets. We
demonstrate that R3 with RIDER, without any addi-
tional training, achieves 10 to 20 absolute gains
in top-1 retrieval accuracy, and 1 to 4 gains in
Exact Match (EM) compared to the R2 architec-
ture. RIDER also outperforms two state-of-the-
art transformer-based supervised reranking mod-
els that require expensive training and inference.
Notably, using only 1,024 tokens (7.8 passages
on average) as the input of a generative reader,
RIDER achieves EM=47.5/63.5 on NQ/Trivia when
the predictions of the same generative reader
(EM=45.3/62.2 in R2) are used for reranking, and
EM=48.3/66.4 on NQ/Trivia when the predictions
of an extractive reader (EM=43.8/62.7 in R2) are
used for reranking.
Contributions. (1) We propose Reader-guIDEd
Reranker (RIDER), a simple and effective passage
reranking method for OpenQA, which reranks the
retriever results by the reader predictions without
additional training and can be easily applied to ex-
isting R2 systems for performance improvements.
(2) We demonstrate that the passages reranked
by RIDER achieve significantly better retrieval ac-
curacy and consequently lead to better QA per-
formance without refining the retriever or reader.
(3) Notably, RIDER achieves comparable or better
performance than state-of-the-art methods on two
benchmark datasets when only 1,024 tokens are
used as the reader input after passage reranking.

2 Method

2.1 Task Formulation

We assume that an OpenQA system with an R2
architecture is available. We denote the initially
retrieved passages of the retriever as R. We denote
the top-N predictions of the reader on the top-k
passages of R (denoted as R[:k]) as A[:N ]. The
goal of RIDER is to rerank R to R′ using A[:N ]

such that the retrieval accuracy is improved and
better end-to-end QA results are achieved when
R′[:k] is used as the reader input instead of R[:k].

2.2 Passage Reranking

Given an initially retrieved passage list R and top-
N predictions of the reader A[:N ], RIDER forms a
reranked passage list R′ as follows. RIDER scans
R from the beginning of the list and appends to
R′ every passage p ∈ R if p contains any reader
prediction a ∈ A[:N ] after string normalization (re-
moving articles and punctuation) and tokenization.

Then, the remaining passages are appended to R′

according to their original order.
Intuitively, if the reader prediction is perfect, the

retrieval accuracy after reranking is guaranteed to
be optimal. Specifically, if the reader prediction is
correct, it is guaranteed that the retrieval accuracy
after reranking is better, since RIDER moves all
passages containing the correct answer to the top
(or at least the same if those passages are all at the
top before reranking). If the reader prediction is
wrong, RIDER could still be better if the predicted
answer co-occurs with the correct answer, the same,
or worse if the predicted answer is misleading. In
practice, if the reader performs reasonably well,
RIDER is also likely to rerank passages well. Over-
all, we observe quantitatively that RIDER leads to
consistent gains in terms of both retrieval accuracy
and QA performance without refining the retriever
(reader) or even any training itself despite the noise
in reader predictions.

2.3 Passage Reading

We consider a scenario where the number of pas-
sages that can be used for QA is limited (some-
times deliberately) due to reasons such as insuffi-
cient computational resources, the limit of model
input length, or requirement for faster responses.
We use a generative reader initialized by BART-
large (Lewis et al., 2019), which concatenates the
question and top-10 retrieved passages, trims them
to 1,024 tokens (7.8 passages are left on average)
as the input, and learns to generate the answer in
a seq2seq manner (Mao et al., 2020; Min et al.,
2020). We further add a simple shuffle strategy
during reader training, which randomly shuffles the
top retrieved passages before concatenation. In this
way, the reader appears to be more robust to the
reranked passages during inference and achieves
better performance after reranking.

3 Experiment Setup

Datasets. We conduct experiments on the open-
domain version of two widely used QA bench-
marks – Natural Questions (NQ) (Kwiatkowski
et al., 2019) and TriviaQA (Trivia) (Joshi et al.,
2017), whose statistics are listed in Table 2.
Evaluation Metrics. Following prior studies (Mao
et al., 2020; Karpukhin et al., 2020), we use top-
k retrieval accuracy to evaluate the retriever and
Exact Match (EM) to evaluate the reader. Top-k
retrieval accuracy is the proportion of questions for
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Data Input NQ Trivia
Top-1 Top-5 Top-10 Top-20 Top-100 Top-1 Top-5 Top-10 Top-20 Top-100

R 46.8 70.7 77.0 81.5 88.9 53.2 73.1 77.0 80.4 85.7
R′ by G (N=1) 58.6 71.4 76.9 81.6 88.9 68.8 74.8 77.5 80.4 85.7
R′ by G (N=10) 56.4 72.2 77.3 81.6 88.9 66.9 75.3 77.9 80.8 85.7

R′ by E (N=1) 60.4 72.1 77.3 81.7 88.9 71.9 77.5 79.8 81.8 85.7
R′ by E (N=5) 53.5 75.2 80.0 83.2 88.9 63.2 77.9 80.7 82.8 85.7
R′ by E (N=10) 50.3 74.3 80.0 84.2 88.9 59.8 77.1 80.5 82.9 85.7

Table 1: Top-k retrieval accuracy on the test sets before and after reranking. G and E denote generative and
extractive readers, respectively, whose top predictions are used for reranking.

Dataset Train / Val / Test Q-len A-len #-A

NQ 79,168 / 8,757 / 3,610 12.5 5.2 1.2
Trivia 78,785 / 8,837 / 11,313 20.2 5.5 13.7

Table 2: Dataset statistics that show the number of
samples, the average question (answer) length, and the
average number of answers for each question.

which the top-k retrieved passages contain at least
one answer span. It is an upper bound of how many
questions are answerable by an extractive reader.
Exact Match (EM) is the proportion of the predicted
answer spans being exactly the same as one of the
ground-truth answers, after string normalization
such as article and punctuation removal.

Source of R. Following Mao et al. (2020), we
take the top 100 retrieved passages of GAR (Mao
et al., 2020) on Trivia and its combination with
DPR (Karpukhin et al., 2020) on NQ as the initial
retrieval results R for reranking.

Source of A[:N ]. To obtain the top-N predicted an-
swers, we first take the predictions of the generative
reader (G) in Sec. 2.3, which is trained on the pas-
sages without reranking and used for final passage
reading in R3. It represents an apple-to-apple com-
parison to R2 without any additional information
but higher-quality input. We also experiment with
an extractive reader (E) that has access to all re-
trieved passages, where the goal is to study whether
we can rerank passages via other signals and further
improve G such that it outperforms both G and E
when they are in R2. We use the extractive reader
in Mao et al. (2020) with BERT-base (Devlin et al.,
2019) representation and span voting.

For the generative reader, we either take its top-1
prediction with greedy decoding or sample 10 an-
swers with decoding parameters as follows. We
set sampling temperature to 5/2 and the top proba-
bility in nucleus sampling to 0.5/0.5 on NQ/Trivia,

respectively. Note that there are duplicate samples
and on average N̄ = 6. We set the max input length
to 1,024 and max output length to 10. For the ex-
tractive reader, the top predictions are the text spans
with the highest scores and we set N = 1, 5, 10.

4 Experiment Results

4.1 Quality of Reranking Signals
We first analyze the EM of the top-N reader pre-
dictions A[:N ]. We consider a question correctly
answered as long as one of the top-N predictions
matches the ground-truth answer. The standard
EM is a special case with N = 1. As listed in Ta-
ble 3, the reader EM can be improved by up to 24.0
on NQ and 15.8 on Trivia if we consider the top-
10 predictions instead of only the first prediction,
suggesting that there is significant potential if we
use multiple predicted answers for reranking. That
said, using more reader predictions also introduces
more noise, i.e., incorrect answers, which could be
misleading at times.

Dataset Top-1 Top-3 Top-5 Top-10

NQ 43.8 (45.3) 57.4 62.6 67.8 (54.2)
Trivia 62.7 (62.2) 72.6 75.5 78.5 (67.7)

Table 3: EM of top-N predictions of the reader. Re-
sults are mostly on reader E. Only top-1 and top-10
EM are shown (in the brackets) for reader G, as its 10
predictions are sampled without particular order.

4.2 RIDER for Passage Retrieval
We list the top-k retrieval accuracy before and after
passage reranking in Table 1. RIDER significantly
improves the retrieval accuracy at top positions
(especially top-1) without refining the retriever. In
particular, we observe that when taking more reader
predictions (i.e., larger N), the top-k retriever ac-
curacy tends to improve more at a larger k and
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less at a smaller k. For example, an improvement
of about 3 points is achieved for top-5 and top-10
accuracy when increasing N from 1 to 5 on NQ
for reader E, but the top-1 retrieval accuracy also
drops significantly (although still better than with-
out reranking), which again suggests that there is a
trade-off between answer coverage and noise. Note
that the top-100 retrieval accuracy is unchanged af-
ter reranking since we rerank the top-100 passages.

4.3 RIDER for Passage Reading

Comparison w. the state-of-the-art. We show
the QA performance comparison between RIDER

and state-of-the-art methods in Table 4. We observe
that RIDER improves GAR (or GAR+DPR) on both
datasets by a large margin, despite that they use the
same generative reader and no further model train-
ing is conducted. Such results indicate that RIDER

provides higher-quality input for the reader and
better performance can be achieved with the same
input length. Moreover, the results of RIDER are
better than most of the existing methods that take
more passages as input, except for FID-large (Izac-
ard and Grave, 2020b) that reads 100 passages and
also has more model parameters.

Method NQ Trivia

E
xt

ra
ct

iv
e

Hard EM (Min et al., 2019a) 28.1 50.9
Path Retriever (Asai et al., 2019) 32.6 -
ORQA (Lee et al., 2019) 33.3 45.0
Graph Retriever (Min et al., 2019b) 34.5 56.0
REALM (Guu et al., 2020) 40.4 -
DPR (Karpukhin et al., 2020) 41.5 57.9
BM25 (Mao et al., 2020) 37.7 60.1
GAR 41.8 62.7
GAR+DPR 43.8 -

G
en

er
at

iv
e

GPT-3 (Brown et al., 2020) 29.9 -
T5 (Roberts et al., 2020) 36.6 60.5
SpanSeqGen (Min et al., 2020) 42.2 -
RAG (Lewis et al., 2020) 44.5 56.1
FID-base (Izacard and Grave, 2020b) 48.2 65.0
FID-large (Izacard and Grave, 2020b) 51.4 67.6
BM25 (Mao et al., 2020) 35.3 58.6

GAR (Mao et al., 2020) 38.1 62.2
RIDER (GAR) - 66.4

GAR+DPR (Mao et al., 2020) 45.3 -
RIDER (GAR+DPR) 48.3 -

Table 4: End-to-end QA comparison of state-of-the-
art methods. RIDER results in up to 4.2 EM gains.

Ablation Study. A detailed analysis of RIDER

with different reranking signals is shown in Table 5.
By reranking based on the prediction of the genera-
tive reader G (with input R[:k]), RIDER generally

Data Input NQ Trivia

R 45.3 62.2
R′1 by G (N=1) (45.3+1.1) 46.4 (62.2+0.7) 62.9
R′2 by G (N=10) (45.3+2.1) 47.4 (62.2+0.9) 63.1
R′′ by R′1 (46.4+1.1) 47.5 (62.9+0.6) 63.5

R′ by E (N=1) (43.8+3.2) 47.0 (62.7+3.4) 66.1
R′ by E (N=5) (43.8+4.5) 48.3 (62.7+2.5) 65.2
R′′ by best R′ (48.3+0) 48.3 (66.1+0.3) 66.4

Table 5: Comparison of RIDER in EM when differ-
ent reranking signals are used. The numbers in the
brackets represent the performance of the reader used
for reranking and relative gains.

Method Top-1 Top-5 Top-10 Top-20

R 46.8 70.7 77.0 81.5
R′ by BERT reranker 51.4 67.6 75.7 82.4
R′ by BART reranker 55.2 73.5 78.5 82.2
R′ by G (N=10) 56.4 72.2 77.3 81.6
R′ by E (N=5) 53.5 75.2 80.0 83.2

Table 6: Comparison with supervised rerankers in
top-k retrieval accuracy on NQ. RIDER outperforms
expensive transformer-based models without training.

achieves 1 to 2 gains in EM, which shows that
RIDER can improve end-to-end QA performance
without any additional information. By iterative
reranking (R′′) using the reader predictions after
first reranking, the performance of RIDER is further
improved. Conducting more than two iterations of
reranking does not appear to bring additional gains.

RIDER achieves even better performance when
using the predictions of the extractive reader E
(with input R) for reranking, which is consistent
with the results on retrieval. It is also encourag-
ing to see that RIDER significantly outperforms E,
which is more computationally expensive and has
access to much more passages.

4.4 Comparison w. Supervised Reranking

Finally, we compare RIDER with two state-of-the-
art supervised reranking models. The first reranker
is a BERT-base cross-encoder (Nogueira and Cho,
2019), which is popularly used for passage rerank-
ing in information retrieval. The cross-encoder
concatenates the query and passage, and makes a
binary relevance decision for each query-passage
pair. The second one generates relevance labels as
target tokens in a seq2seq manner (Nogueira et al.,
2020). We use BART-large as the base model and
“YES/NO” as the target tokens.

As listed in Table 6, RIDER, without any train-
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ing, outperforms the two transformer-based super-
vised rerankers on retrieval accuracy. Also, for
QA performance, the best EM we obtain using
the supervised rerankers is merely 46.3 on NQ.
Such results further demonstrate the effectiveness
of RIDER, which has the advantage of utilizing in-
formation from multiple passages (when the reader
makes predictions), while the other rerankers con-
sider query-passage pairs independently.

4.5 Runtime Efficiency

The reranking step of RIDER only involves string
processing, which can be easily paralleled and re-
duced to within seconds. We use Nvidia V100
GPUs for reader training and inference. The train-
ing of the generative reader takes 8 to 10 hours with
1 GPU, while it takes 12 to 16 hours with 8 GPUs
for the DPR reader (Karpukhin et al., 2020). Due
to fewer input passages, the inference of the gener-
ative reader is also very efficient – it takes around
3.5/11 min to generate answers on the NQ/Trivia
test set with 1 GPU. In comparison, the DPR reader
takes about 14/40 min with 8 GPUs.

5 Related Work

Reranking for OpenQA. Reranking has been
widely used in information retrieval to refine the ini-
tial retrieval results. Early effort on passage rerank-
ing for OpenQA uses supervised (Lee et al., 2018)
or reinforcement learning (Wang et al., 2018a)
based on BiLSTM. More recently, BERT-based
rerankers that treat the query and passage as a
sentence pair (i.e., cross-encoders) achieve supe-
rior performance (Nogueira and Cho, 2019; Qiao
et al., 2019). However, the training of cross-
encoders is rather costly. Moreover, the represen-
tations of cross-encoders cannot be pre-computed
and matched via Maximum Inner Product Search
(MIPS) as in bi-encoders (Karpukhin et al., 2020)
but measured online between the query and each
passage, which results in slower inference as well.

Another line of work (Das et al., 2018; Qi et al.,
2020) reranks the passages by updating the query
and often involves a complicated learning process
such as R2 interactions. Alternatively, some prior
studies (Wang et al., 2018b; Iyer et al., 2020) di-
rectly rerank the top predicted answers instead of
the passages using either simple heuristics or addi-
tional training. In contrast, RIDER utilizes down-
stream signals (i.e., the predictions of a reader) to
rerank the passages without any training.

Reader Distillation. Recent studies (Izacard and
Grave, 2020a; Yang and Seo, 2020) show that dis-
tillation from the preference of the reader can im-
prove the retriever performance, where the reader
preference is measured by the attention scores of
the reader over different passages and the retriever
is refined by learning to approximate the scores.
RIDER, to some extent, can also be seen as one
way to distill the reader. However, RIDER is much
simpler in that no further training is involved for
either the retriever or reader, and explicit reader
predictions instead of latent attention scores are
leveraged to improve the retriever results directly.

6 Conclusion

In this work, we propose RIDER, a simple and
effective passage reranking method for OpenQA,
which does not involve additional training or com-
putationally expensive inference, and outperforms
state-of-the-art supervised rerankers that involve
both. RIDER can be easily integrated into existing
R2 systems for performance improvements. With-
out fine-tuning the retriever or reader, RIDER im-
proves the retrieval accuracy and the QA results
on two benchmark datasets significantly. Notably,
RIDER achieves comparable or better performance
than state-of-the-art methods with less reader input
and allows for more efficient OpenQA systems. For
future work, we will explore other simple and effec-
tive reranking strategies with no (minimal) training
or external supervision.
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