
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3273–3283
August 1–6, 2021. ©2021 Association for Computational Linguistics

3273

DoT: An efficient Double Transformer for NLP tasks with tables

Syrine Krichene1, Thomas Müller2∗, Julian Martin Eisenschlos1
Google Research, Zürich1

{syrinekrichene,eisenjulian}@google.com
Symanto Research, Valencia, Spain2

thomas.mueller@symanto.com

Abstract

Transformer-based approaches have been suc-
cessfully used to obtain state-of-the-art accu-
racy on natural language processing (NLP)
tasks with semi-structured tables. These
model architectures are typically deep, result-
ing in slow training and inference, especially
for long inputs. To improve efficiency while
maintaining a high accuracy, we propose a
new architecture, DoT , a double transformer
model, that decomposes the problem into two
sub-tasks: A shallow pruning transformer that
selects the top-K tokens, followed by a deep
task-specific transformer that takes as input
those K tokens. Additionally, we modify the
task-specific attention to incorporate the prun-
ing scores. The two transformers are jointly
trained by optimizing the task-specific loss.
We run experiments on three benchmarks,
including entailment and question-answering.
We show that for a small drop of accuracy,
DoT improves training and inference time by
at least 50%. We also show that the prun-
ing transformer effectively selects relevant to-
kens enabling the end-to-end model to main-
tain similar accuracy as slower baseline mod-
els. Finally, we analyse the pruning and give
some insight into its impact on the task model.

1 Introduction

Recently, transfer learning with large-scale pre-
trained language models has been successfully used
to solve many NLP tasks (Devlin et al., 2019; Rad-
ford et al., 2019; Liu et al., 2019). In particular,
transformer models have been used to solve tasks
that include semi-structured table knowledge, such
as table question answering (Herzig et al., 2020)
and entailment (Wenhu et al., 2019; Eisenschlos
et al., 2020) – a binary classification task to support
or refute a sentence based on the table’s content.

While transformer models lead to significant
improvements in accuracy, they suffer from high

∗Work done at Google Research.

computation and memory cost, especially for large
inputs. The total computational complexity per
layer for self-attention is O(n2d) (Vaswani et al.,
2017), where n is the input sequence length, and
d is the embedding dimension. Using longer se-
quence lengths translates into increased training
and inference time.

Improving the computational efficiency of trans-
former models has recently become an active re-
search topic. To the best of our knowledge, the only
technique that was applied to NLP tasks with semi-
structured tables is heuristic pruning. Eisenschlos
et al. (2020) show on the TABFACT data set (Wenhu
et al., 2019) that using heuristic pruning accelerates
the training time while achieving a similar accu-
racy. This raises the question of whether a better
pruning strategy can be learned.

We propose to use DoT , a double transformer
model (Figure 1): A first transformer – which we
call pruning transformer – selects k tokens given
a query and a table and a task-specific transformer
solves the task based on these tokens. Decompos-
ing the problem into two simpler tasks imposes
additional structure that makes training more ef-
ficient: The first model is shallow, allowing the
use of long input sequences at moderate cost, and
the second model is deeper and uses the shortened
input that solves the task. The combined model
achieves a better efficiency-accuracy trade-off.

The pruning transformer is based on the TAPAS
QA model (Herzig et al., 2020). TAPAS answers
questions by selecting tokens from a given table.
This problem is quite similar to the pruning task.
The second transformer is a task-specific model
adapted for each task to solve: We use another
TAPAS QA model for QA and a classification
model (Eisenschlos et al., 2020) for entailment.
In Section 2, we explain how we jointly learn both
models by incorporating the pruning scores into
the attention mechanism.
DoT achieves a better trade-off between effi-

3274

Query

[CLS] T1 TN [SEP]...

E[CLS] E1 EN E[SEP]
...

Table
Wins ... Player
3 ... Greg Norman
2 ... Billy Mayfair
2 ... Corey Pavin
...

CELL1,1 CELL1,2
...

ECELL ECELL
...

CELL1,M

ECELL

CELL2,1 CELL2,2
...

ECELL ECELL
...

CELL2,M

ECELL

Selected Tokens

[CLS] T1 TN [SEP] CELL1,1 CELL2,1
... ...

Task-speciǁc Output

E[CLS] E1 EN E[SEP] ECELL ECELL
... ... ECELL

CELL2,M

ECELL ... ECELL ECELL ... ECELLECELL ECELL

Who is the player with most wins?

Pruning
transformer

Task-specific
transformer

Figure 1: Pruning with a double transformerDoT . The
pruning model selects the k most relevant tokens and
passes them to the task model. The pruning model is
small, allowing the use of long input sequences.

ciency and accuracy on three datasets. We show
that the pruning transformer selects relevant to-
kens, resulting in higher accuracy for longer in-
put sequences. We study the meaning of rele-
vant tokens and show that the selection is deeply
linked to solving the main task by studying the
answer token scores. We open source the code in
http://github.com/google-research/tapas.

2 The DoT Model

As show in Figure 1, the double transformer DoT
is composed of two transformers: the pruning
transformer selects the most relevant k tokens fol-
lowed by a task-specific model that operates on the
selected tokens to solve the task. The two trans-
formers are learned jointly. DoT loss is detailed
in Appendix A.2. We explore learning the pruning
model using an additional loss in Appendix C.2.

Let q be the query (or statement) and T the table.
The transformer takes as input the embedding E =
[E[CLS];Eq;E[SEP];ET], composed of the query
and table embeddings. The pruning transformer
computes the probability P (t|q, T) of the token t
being relevant to solve the example. We derive the
pruning score st = log(P (t|q, T)) and keep the
top-k tokens. The pruning scores are then passed
to the task transformer as shown in Figure 2.

To enable the joint learning, we change the at-
tention scores of the task model. For a normal
transformer (Vaswani et al., 2017), given the input
embedding Et at position t, for each layer and at-
tention head, the self-attention output is given by a
linear combination of the value vector projections
using the attention matrix.

Each row of the attention matrix is obtained by
a softmax on the attention scores z<t,t′> given by

MatMul

MatMul

Scale

St Et WQ Et WK Et WV

Pruning scores
from the first
transformer

Scaled dot product attention from
the second transformer

Sum

SoftMax

Figure 2: Scaled dot product attention of the task
model. We change the attention architecture (Vaswani
et al., 2017) – the dashed bloc – by adding the pruning
scores – the solid bloc. The pruning scores affect the
task model’s attention in all layers. This enables back
propagation for both models based on a single loss.

z<t,t′> =
EtW>Q (Et′W

>
K)>

√
dk

(1)

where WQ and WK represent the query and key
projections for that layer and head. In our task
model we add a negative bias term and replace this
equation with

z<t,t′>|st = z<t,t′> + st (2)

Thus, the attention scores provide a notion of token
relevance – detailed in Appendix A.1 – and enable
end-to-end learning of both models, letting DoT
define the top-K tokens.

Unlike previous soft-masking methods (Bast-
ings et al., 2019; De Cao et al., 2020), ours co-
incides exactly with removing the input token t
when P (t|q, T) → 0. We prove this formally in
Appendix A.3.

We explore two different pruning strategies: to-
ken selection defined as discussed above and col-
umn selection where we average all token scores
in each column.

3 Experimental Setup

We compare our approach against models using
heuristic pruning.
Cell concatenation (CC) The TAPAS model uses
a default heuristic to limit the input tokens. The ob-
jective of the algorithm is to fit an equal number of
tokens for each cell. This is done by first selecting
the first token from each cell, then the second and
so on until the desired limit is reached.
Heuristic exact match (HEM) (Eisenschlos
et al., 2020). This method scores the columns based
on their similarity to the question, where similarity
is defined by token overlap.

http://github.com/google-research/tapas

3275

We introduce a notation to clarify the setup:

DoT (1sttype
top-k−−−→ 2ndtype). The type correspond to

the model size: small (s), medium (m) or large
(l) as defined in Turc et al. (2019). For exam-
ple, CC 1024−−−→ DoT (s

256−−→ l) denotes a CC pre-
processing to select 1024 tokens passed to theDoT
model: one small pruning model that selects 256
tokens and feeds them into a large task model.

Baselines and DoT (hyper-parameters in Ap-
pendix B.1) are initialized from models pre-trained
with a MASK-LM task, the intermediate pre-
training data (Eisenschlos et al., 2020) and follow-
ing Herzig et al. (2020) on SQA (Iyyer et al., 2017).
The DoT transformers’ complexity – detailed in
Appendix B.3 – is similar to a normal transformer
where only some constants are changed.

We evaluate DoT on three datasets.
WIKISQL (Zhong et al., 2017) is a corpus of
80, 654 questions with SQL queries, related to
24, 241 Wikipedia tables. Here we train and test in
the weakly-supervised setting where the answer to
the question is the result of the SQL applied to the
table. The metric we use is denotation accuracy.
WIKITQ (Pasupat and Liang, 2015) consists of
22, 033 question-answer pairs on 2, 108 Wikipedia
tables. The questions are complex and often require
comparisons, superlatives or aggregation. The met-
ric we use is the denotation accuracy as computed
by the official evaluation script.
TABFACT (Wenhu et al., 2019) contains 118K
statements about 16K Wikipedia tables, labeled as
either entailed or refuted. The dataset requires both
linguistic reasoning and symbolic reasoning with
operations such as comparison, filtering or count-
ing. We use the classification accuracy as metric.

In all our experiments we report results for DoT
using token selection for WIKISQL and TABFACT

and a column selection for WIKITQ.

4 Results

The baseline TAPAS model outperforms the previ-
ous state-of-the-art on all datasets (Table 1): +2.1

for WIKISQL (CC 1024−−−→ TAPAS(l)), +1.07 for
TABFACT (HEM 512−−→ TAPAS(l)), and +1.3 for
WIKITQ (HEM 1024−−−→ TAPAS(l)).

Efficiency accuracy trade-off Table 1 reports
the accuracy test results along with the average
number of processed examples per secondNPE/s
computed at training time. Using HEM as
pre-processing step improves DoT models com-

pared to CC for both WIKISQL and TABFACT.
DoT (m) and DoT (s) reach better efficiency accu-
racy trade-off for WIKISQL: with a small drop of
accuracy by 0.4% (respectively 0.7%), they are 3.5
(respectively 4.6) times faster than the best base-
line. For TABFACT dataset, DoT is compared to
a faster baseline than the one used for WIKISQL
as it takes only 512 input tokens instead of 1024.
DoT (s) still achieves a good trade-off: with a de-
crease of 0.4% of accuracy it is 1.5 times faster.
Unlike the previous datasets, WIKITQ is a harder
task to solve and requires passing more data. By re-
stricting DoT (m) to select only 256 tokens we de-
crease the accuracy by a bigger drop 3.9% to be 3.5
times faster compared to HEM 1024−−−→ TAPAS(l).

Small task models The previous results, raise
the question of whether a smaller task model can
reach a similar accuracy. To answer this ques-
tion, we compare 1024−−−→ DoT (s

256−−→ l) to 1024−−−→
TAPAS(s) and 256−−→ TAPAS(l) in Table 2. DoT
outperforms the smaller models showing the im-
portance of using both transformers.

5 Analysis

Accuracy for long input sequences To study
the long inputs, we bucketize the datasets per exam-
ple input length. We compare DoT (m 256−−→ l) to
different CC .−→ TAPAS(l) models in Table 3. For
the bucket> 1024 theDoT model outperforms the
256 and 512 length baselines for all tasks. This in-
dicates that the pruning model extracts two times
more relevant tokens than the heuristic CC.

For the bucket [512, 1024], we expect all mod-
els to reach a higher accuracy, as we expect lower
loss of context than for the bucket > 1024 when
applying CC. The results shows that DoT gives
a similar accuracy to 512−−→ TAPAS for WIKISQL
and TABFACT– in the margin error – and a slightly
lower accuracy for WIKITQ: The pruning trans-
former selects only 256 top-K tokens compared
to 512−−→ TAPAS that selects twice more. Thus, the
task-specific transformer has access to less tokens,
therefore to possibly less context that can lead to
an accuracy drop. This drop is small compared to
256−−→ TAPAS baseline drop. DoT still outperforms
256−−→ TAPAS for all datasets.

Pruning relevant tokens We inspect the prun-
ing transformer on the WIKISQL and WIKITQ
datasets, where the set of answer tokens is given.

3276

Dataset WIKISQL TABFACT WIKITQ
Model test accuracy Best NPE/s test accuracy Best NPE/s test accuracy Best NPE/s
state-of-the-art 83.9 81.0 51.8± 0.6 52.3

CC
256−−→ TAPAS(l) 76.4± 0.3 77.15 1870 75.1± 0.3 76.13 1900 44.8± 0.5 45.47 1900

CC
512−−→ TAPAS(l) 83.6± 0.1 83.65 800 81.3± 0.2 81.60 870 52.2± 0.5 52.74 810

CC
1024−−−→ TAPAS(l) 86.0± 0.3 86.6 270 81.6± 0.1 81.64 300 53.9± 0.2 54.30 270

CC
1024−−−→ DoT (s

256−−→ l) 74.2± 3.6 84.27 1250 81.0± 0.1 81.17 1300 48.1± 2.4 49.47 1250

CC
1024−−−→ DoT (m

256−−→ l) 83.6± 0.5 84.67 950 79.0± 0.5 81.28 930 50.1± 0.5 50.14 950

HEM
256−−→ TAPAS(l) 77.4± 0.3 77.97 1870 75.5± 0.2 75.80 1900 47.3± 0.1 47.70 1900

HEM
512−−→ TAPAS(l) 83.8± 0.4 84.75 800 82.0± 0.3 82.07 870 52.7± 0.4 53.61 810

HEM
1024−−−→ TAPAS(l) 85.9± 0.0 85.94 270 80.6± 0.0 80.6 300 54.0± 0.9 54.93 270

HEM
1024−−−→ DoT (s

256−−→ l) 85.3± 0.4 85.76 1250 81.6± 0.3 81.74 1300 40.9± 0.2 41.23 1250

HEM
1024−−−→ DoT (m

256−−→ l) 85.5± 0.2 85.82 950 81.8± 0.0 81.94 930 40.1± 2.4 49.13 950

Table 1: Efficiency accuracy trade-off. We run DoT with token pruning for WIKISQL and TABFACT and column
pruning for WIKITQ. The state-of-the-art (detailed in Appendix B.2) corresponds to the models of Min et al.
(2019) for WIKISQL, Eisenschlos et al. (2020) for TABFACT and Yin et al. (2020) for WIKITQ. For each
dataset, the state-of-the-art, the best baseline model on accuracy, and the DoT models that reach the best accuracy
efficiency trade-off are highlighted.

Dataset WIKISQL TABFACT WIKITQ
Model test accuracy NPE/s test accuracy NPE/s test accuracy NPE/s

CC
1024−−−→ DoT (m

256−−→ l) 83.6± 0.5 950 79.0± 0.9 930 50.1± 0.5 950

CC
256−−→ TAPAS(l) 76.4± 0.3 1870 75.1± 0.3 1900 44.8± 0.5 1900

CC
1024−−−→ TAPAS(m) 81.6± 0.2 2050 75.1± 0.2 2300 42.9± 0.3 2020

Table 2: Comparing DoT to smaller models similar to
each of its two transformers.

Bucket Model WIKISQL TABFACT WIKITQ

> 1024 CC
512−−→ TAPAS(l) 24.3± 0.1 56.8± 2.2 18.8± 0.9

CC
256−−→ TAPAS(l) 5.8± 0.2 9.9± 1.5 6.9± 0.0

CC
1024−−−→ DoT (m

256−−→ l) 40.1± 4.9 69.1± 2.5 23.8± 0.5

[512, 1024] CC
512−−→ TAPAS(l) 73.6± 0.1 73.0± 0.3 42.7± 0.6

CC
256−−→ TAPAS(l) 40.9± 0.3 43.9± 0.4 18.6± 0.1

CC
1024−−−→ DoT (m

256−−→ l) 72.9± 1.8 74.7± 0.7 39.1± 0.6

Table 3: The denotation accuracy for test, computed
over bucketized datasets per sequence length. The prun-
ing transformer prunes efficiently –two times better:
DoT (

256−−→ l) reaches accuracy close and higher than
using CC 512−−→ heuristic with TAPAS(l).

We compute the difference between the answer to-
ken scores and the average scores of the top-K
tokens, and report the distribution in Figure 3. The
pruning transformer tends to attribute high scores
to the answer tokens, suggesting that it learns to
answer the downstream question – a positive differ-
ence – especially for WIKISQL. The difference is
lower for WIKITQ as it is a harder task: The set of
answer tokens is larger, especially for aggregation,
making their scores closer to the average.

Pruning transformer depth We study the prun-
ing transformer complexity impact on the efficiency
accuracy trade-off. Figure 4 compares the results
of medium, small and mini models – complexity
in Appendix B.3. For all datasets the mini model
drops drastically the accuracy. The pruning trans-
former must be deep enough to learn the top-K

Figure 3: Distribution of the answer token scores mi-
nus the average scores of the top-K tokens. The differ-
ence is larger when the pruning transformer attributes a
higher score to the answer tokens.

tokens and attribute token scores that can be used
by the task-specific transformer. For both WIK-
ISQL and TABFACT the small model reaches a
better accuracy efficiency trade-off: Using a small
instead of medium – 4 hidden layers instead of 8 –
drops the accuracy by less than 0.4% – in the mar-
gin error – while accelerating the model times 1.3.
In other words there is no gain of using a more com-
plex model to select the top-K tokens especially
when we restrict K to 256.

Restricting K can lead to a drop in the accu-
racy. Even by increasing the pruning complexity,
DoT cannot recover the full drop. This is the case
of WIKITQ. This dataset is more complex, it re-
quires more reasoning including operation to run
over multiple cells in one column. Thus selecting
the top 256 tokens is a harder task compared to
previous detests. We reduce the task complexity by
using column selection instead of token selection.
For this dataset using medium pruning transformer,
DoT (m) reaches a better accuracy efficiency trade-
off: 2 points higher in accuracy compared to using
a small transformer.

Effects of HEM and CC on DoT Table 1 and
Figure 4 compare the effect of using HEM and

3277

Figure 4: DoT models efficiency accuracy trade-off. TheDoT models are displayed according to their accuracy in
function of the average number of processed examples par second. The models are faster being closer to the right
side of the figures and have higher accuracy being closer to the top. This figure compares the efficiency accuracy
trade-off of using different pruning transformers – medium, small and mini – and study the impact of HEM and
CC on DoT . We use token selection for both WIKISQL and TABFACT and column selection for WIKITQ.

CC onDoT models. As both heuristics are applied
in the pre-processing step, using HEM or CC
along with a similar DoT model, doesn’t change
the average number of processed examples per sec-
ond NPE/s computed over the training step. For
both WIKISQL and TABFACT we use a token
based selection to select the top-K tokens. Com-
bining the token based strategy with HEM , out-
performs on accuracy the token pruning DoT com-
bined with CC. For WIKITQ, the top-K pruning
is a column based selection. Unlike the token se-
lection the column pruning combined with HEM
gives a lower accuracy.

6 Related work

Efficient Transformers Improving the computa-
tional efficiency of transformer models, especially
for serving, is an active research topic. Proposed
approaches fall into four categories. The first is to
use knowledge distillation, either during the pre-
training phase (Sanh et al., 2019), or for build-
ing task-specific models (Sun et al., 2019), or for
both (Jiao et al., 2020). The second category is
to use quantization-aware training during the fine-
tuning phase of BERT models, such as (Zafrir
et al., 2019). The third category is to modify the
transformer architecture to improve the dependence
on the sequence length (Choromanski et al., 2020;
Wang et al., 2020). The fourth category is to use
pruning strategies such as McCarley (2019), who
studied structured pruning to reduce the number of
parameters in each transformer layer, and Fan et al.
(2020) who used structured dropout to reduce trans-
former depth at inference time. Our method most
closely resembles the last category, but we focus
our efforts on shrinking the sequence length of the
input instead of model weights. Eisenschlos et al.
(2020) explore heuristic methods based on lexical

overlap and apply it to tasks involving tabular data,
as we do, but our algorithm is learned end-to-end
and more general in nature.

Interpretable NLP Another related line of work
attempts to interpret neural networks by searching
for rationales (Lei et al., 2016), which are a subset
of words in the input text that serve as a justification
for the prediction. Lei et al. (2016) learn the ratio-
nale as a latent discrete variable inside a computa-
tion graph with the REINFORCE method (Williams,
1992). Bastings et al. (2019) propose instead us-
ing stochastic computation nodes and continuous
relaxations (Maddison et al., 2017), based on re-
parametrization (Diederik and Max, 2014) to ap-
proximate the discrete choice of a rationale from
an input text, before using it as input for a classifier.
Partially masked tokens are then replaced at the
input embedding layer by some linear interpolation.
We rely on a soft attention mask instead as a way to
partially reduce the information coming from some
tokens during training. To the best of our knowl-
edge these methods have not been investigated in
the context of semi-structured data such as tables
or evaluated with a focus on efficiency.

7 Conclusion

We introduced double transformer (DoT) where
an additional small model prunes the input of a
larger second model. This accelerates the training
and inference time at a low drop in accuracy. As
future work we will explore hierarchical pruning
and adapt DoT to other semi-structured NLP tasks.

Acknowledgments

We thank Yasemin Altun, William Cohen, Slav
Petrov and the anonymous reviewers for their con-
structive feedback, comments and suggestions.

3278

References

Rishabh Agarwal, Chen Liang, Dale Schuurmans, and
Mohammad Norouzi. 2019. Learning to generalize
from sparse and underspecified rewards. In Proceed-
ings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 130–140. PMLR.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.
Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2963–2977, Florence, Italy. Associa-
tion for Computational Linguistics.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamás Sar-
lós, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, David Belanger, Lucy Colwell, and
Adrian Weller. 2020. Rethinking attention with per-
formers. CoRR, abs/2009.14794.

Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke
Zettlemoyer, and Eduard Hovy. 2019. Iterative
search for weakly supervised semantic parsing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
2669–2680, Minneapolis, Minnesota. Association
for Computational Linguistics.

Nicola De Cao, Michael Sejr Schlichtkrull, Wilker
Aziz, and Ivan Titov. 2020. How do decisions
emerge across layers in neural models? interpreta-
tion with differentiable masking. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 3243–
3255, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

P. Kingma Diederik and Welling Max. 2014. Auto-
encoding variational bayes. In International Con-
ference on Learning Representations, ICLR 2014,
Banff, Canada.

Julian Eisenschlos, Syrine Krichene, and Thomas
Müller. 2020. Understanding tables with interme-
diate pre-training. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
281–296, Online. Association for Computational
Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on
Learning Representations ICLR 2020, Virtual Con-
ference, Formerly Addis Ababa ETHIOPIA.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333, Online. Association for
Computational Linguistics.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1821–1831, Vancouver, Canada. Association
for Computational Linguistics.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117, Austin,
Texas. Association for Computational Linguistics.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc V Le, and Ni Lao. 2018. Memory augmented
policy optimization for program synthesis and se-
mantic parsing. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, Conference Track Pro-
ceedings.

J. S. McCarley. 2019. Pruning a bert-based question
answering model. CoRR, abs/1910.06360.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019. A discrete hard EM ap-
proach for weakly supervised question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

http://proceedings.mlr.press/v97/agarwal19e.html
http://proceedings.mlr.press/v97/agarwal19e.html
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1284
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
https://doi.org/10.18653/v1/N19-1273
https://doi.org/10.18653/v1/N19-1273
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://openreview.net/pdf?id=SylO2yStDr
https://openreview.net/pdf?id=SylO2yStDr
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/D16-1011
https://proceedings.neurips.cc/paper/2018/file/f4e369c0a468d3aeeda0593ba90b5e55-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f4e369c0a468d3aeeda0593ba90b5e55-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f4e369c0a468d3aeeda0593ba90b5e55-Paper.pdf
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://arxiv.org/pdf/1611.00712.pdf
https://arxiv.org/pdf/1611.00712.pdf
http://arxiv.org/abs/1910.06360
http://arxiv.org/abs/1910.06360
https://doi.org/10.18653/v1/D19-1284
https://doi.org/10.18653/v1/D19-1284

3279

9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2851–
2864, Hong Kong, China. Association for Computa-
tional Linguistics.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1470–1480, Beijing, China. Association for Compu-
tational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. The
5th Workshop on Energy Efficient Machine Learning
and Cognitive Computing (EMC2) Co-located with
NeurIPS 2019, Vancouver, Canada.

Qi Shi, Yu Zhang, Qingyu Yin, and Ting Liu. 2020.
Learn to combine linguistic and symbolic informa-
tion for table-based fact verification. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5335–5346, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332, Hong Kong, China. Association for
Computational Linguistics.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Bailin Wang, Ivan Titov, and Mirella Lapata. 2019.
Learning semantic parsers from denotations with la-
tent structured alignments and abstract programs. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3774–
3785, Hong Kong, China. Association for Computa-
tional Linguistics.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-attention
with linear complexity. CoRR, abs/2006.04768.

Chen Wenhu, Wang Hongmin, Chen Jianshu, Zhang
Yunkai, Wang Hong, Li Shiyang, Zhou Xiyou, and
Yang Wang William. 2019. Tabfact: A large-scale
dataset for table-based fact verification. In Inter-
national Conference on Learning Representations
ICLR 2019, New Orleans.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3–4):229–256.

Xiaoyu Yang, Feng Nie, Yufei Feng, Quan Liu, Zhi-
gang Chen, and Xiaodan Zhu. 2020. Program en-
hanced fact verification with verbalization and graph
attention network. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7810–7825, Online. As-
sociation for Computational Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8413–
8426, Online. Association for Computational Lin-
guistics.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. The
5th Workshop on Energy Efficient Machine Learning
and Cognitive Computing (EMC2) Co-located with
NeurIPS 2019, Vancouver, Canada.

Hongzhi Zhang, Yingyao Wang, Sirui Wang, Xuezhi
Cao, Fuzheng Zhang, and Zhongyuan Wang. 2020.
Table fact verification with structure-aware trans-
former. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1624–1629, Online. Associa-
tion for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Wanjun Zhong, Duyu Tang, Zhangyin Feng, Nan
Duan, Ming Zhou, Ming Gong, Linjun Shou, Daxin
Jiang, Jiahai Wang, and Jian Yin. 2020. Logical-
FactChecker: Leveraging logical operations for fact
checking with graph module network. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 6053–6065,
Online. Association for Computational Linguistics.

https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-31.pdf
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-31.pdf
https://doi.org/10.18653/v1/2020.coling-main.466
https://doi.org/10.18653/v1/2020.coling-main.466
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.18653/v1/D19-1391
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2006.04768
https://openreview.net/pdf?id=rkeJRhNYDH
https://openreview.net/pdf?id=rkeJRhNYDH
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.18653/v1/2020.emnlp-main.628
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-31.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.126
https://doi.org/10.18653/v1/2020.emnlp-main.126
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539
https://doi.org/10.18653/v1/2020.acl-main.539

3280

Appendix

A DoT model

A.1 Attention scores defines the meaning of
relevant tokens.

We study, the updates of the pruning scores accord-
ing to the attention scores needs. We note the set
of relevant tokens R. The output probability given
by the pruning transformer is in (0, 1) making st
in (−∞, 0). Lets suppose that the token t is not
needed to answer the question, then the attention
scores are decreased z<i,t,t′>|st → ~−∞ for all the
tokens t′ ∈ R for all the layers i. The model up-
dates both parts of z<i,t,t′> making st converging
to −∞, then limst→−∞ z

<i,t,t′>|st = ~−∞. Thus,
the meaning of relevant token is defined by the
attention scores updates: The pruning scores de-
creases for non relevant tokens and increase for
relevant ones.

A.2 DoT loss

The DoT loss is similar to TAPAS model loss
– noted as JSA = Jaggr + βJscalar in (Herzig
et al., 2020) – computed over the task-specific
transformer where the attention scores are modified.
More precisely, we modify only the scalar loss of
the task specific model Jscalar. We incorporate the
pruning scores S = {st∀t ∈ Ttopk=256}, and we
note Jscalar|S . The DoT loss is then compute only
over the top-K tokens: JDoT = Jaggr+βJscalar|S .

For TABFACT dataset, Eisenschlos et al. (2020)
modified the TAPAS loss – used for QA tasks – to
adapt it to the entailment task: Aggregation is not
used, instead, one hidden layer is added as output
of the [CLS] token to compute the probability of
Entailment. We use a similar loss for TABFACT

where the attention scores are modified.

A.3 Feed-forward pass: Safe use of shorter
inputs for the task-specific transformer

The top-K selection enables the use of shorter in-
puts for the task-specific. We prove that using input
length equal to K is equivalent to using input length
higher than K, without any loss of context. Note
that the pruning scores are the same for both in-
puts, where the top-K are scored non-zero and we
impose the other tokens to be scored zero.

Theorem A.1. Given a transformer and a set of
tokens as input I . Let t be one of the input tokens
t ∈ I . If the transformer verifies the following
conditions, that holds for all layers i.

1. ∀t′ ∈ I that attends to t, , z<i,t,t′> = ~−∞.

2. For t attends to any t′ ∈ I , z<i,t′,t> = ~−∞.

Then applying this transformer on I is equivalent
to applying it on I − {t}

Proof. We look at the different use cases.
∀i layers, any token t′ ∈ I−{t} attending to any

token t′′ ∈ I − {t}: the soft-max scores a<i,t′,t′′>

have the same formula using I or I − {t} as input.
Lets fix t′ = t. The token t attending to any

token t′′ ∈ I: The first condition 1 gives ∀t′′
that attends to t, z<i,t,t′′> = ~−∞. That follows
exp(z<i,t,t′′>) = ~0 then a<i,t,t′′> = ~0.

Similarly, if t′ = t. Any token t′′ ∈ I at-
tending to t: The second condition 2 gives ∀t′
that attends to t, z<i,t,t′′> = ~−∞. That follows
exp(z<i,t′,t>) = ~0 then a<i,t′,t> = ~0.

Remark. Given a transformer and a set of tokens
as input I . Let t be one of the input tokens t ∈ I
with t is not selected by the pruning transformer
scored zero – not the first-k tokens. Using DoT ,
st = −∞. That follows z<i,t,t′> = ~−∞.

The case t′ = t, for any token t′′ ∈ I attending to
t we have: ∀i 6= 0, the inputEt =

∑
t′′∈I a

<i,t,t′′>.
As z<i,t,t′> = ~−∞, Et = ~0, Et zero out all the
variables making exp(z<i,t′,t>) a constant and
a<i,t′,t> independent of t′. This is equivalent to
∀i 6= 0, t doesn’t attend to any t′ ∈ I .

Only for the first layer i = 0, we add an approxi-
mation to drop the attention (t attending to t′ ∈ I).
We consider the impact of t on the full attention is
small as we stuck multiple layers. We experimented
with a task-specific model with a big input length
> k and compare it to a task-specific model with
input length = k. The two models gives similar
accuracy. In our experiment we report only the
results for the model with input length = k.

This makes the attention scores similar to the
ones computed over t /∈ I .

B Experiments

In all the experiment we report the median accuracy
and the error margin computed over 3 runs. We
estimate the error margin as half the inter quartile
range, that is half the difference between the 25th

and 75th percentiles.

B.1 Models hyper-parameters
We do not perform hyper-parameters search for
DoT models we use the same as TAPAS baselines.

3281

Dataset lr ρ hidden dropout attention dropout num steps
WIKISQL 6e−5 0.14 0.1 0.1 50, 000
TABFACT 2e−5 0.05 0.07 0.0 80, 000
WIKITQ 1.9e−5 0.19 0.1 0.1 50, 000

Table 4: Hyper-parameters used per dataset. Reports
the learning rate (lr), the warmup ratio (ρ), the hid-
den dropout, the attention dropout and the number of
training steps (num steps) used for each dataset. These
hyper-parameters are the same for all the baselines and
DoT models.

For WIKISQL and WIKITQ we use the same
hyper-parameters as the one used by (Herzig et al.,
2020) and for TABFACT the one used by (Eisensch-
los et al., 2020). Baselines and DoT are initialized
from models pre-trained with a MASK-LM task
and on SQA(Iyyer et al., 2017) following Herzig
et al. (2020).

We report the models hyper parameters used
for TAPAS baselines and DoT in Table 4. The
hyper-parameters are fixed independently of the
pre-processing step or the input size: For all the
pre-processing input lengths – {256, 512, 1024}–,
for both CC and HEM we use the same hyper-
parameters. Additionally, we use an Adam opti-
mizer with weight decay for all the baselines and
DoT models –the same configuration as BERT.

B.2 state-of-the-art

We report state-of-the-art for the three datasets in
Table 5.

B.3 Models complexity

In all our experiments we use different transformer
sizes called large, medium, small and mini. These
models correspond to the BERT open sourced
model sizes described in Turc et al. (2019). We
report all models complexity in Table 6. The se-
quence length changes the total number of used
parameters. The formula to count the number of
parameters is given by Table 7. The number of used
parameters equals to V ×H+(2+3L)I×H+I+
(256 ∗ 4+ 17+9L)H +(1+2L×H)×Hi. The
number of parameters of each model is reported in
Table 8

The number of parameters is not proportional
to the computational time as multiple operations
involves multiplying tensors of shapes [I,H] ×
[H,H].

C Analysis

We report additional results for the analysis.

Model test accuracy

(Agarwal et al., 2019) MeRL 74.8± 0.2
(Liang et al., 2018) MAPO (ensemble of 10) 74.9
(Wang et al., 2019) 79.3

CC
512−−→ TAPAS(l)(Herzig et al., 2020) 83.6

(Min et al., 2019) 83.9

(a) state-of-the-art WIKISQL
Model test accuracy

(Zhong et al., 2020) LFC (LPA) 71.6
(Zhong et al., 2020) LFC (Seq2Action) 71.7
(Shi et al., 2020) HeterTFV 72.3
(Zhang et al., 2020) SAT 73.2
(Yang et al., 2020) ProgVGAT 74.4

CC
512−−→ TAPAS(l) (Eisenschlos et al., 2020) 81.0

(b) state-of-the-art TABFACT
Model test accuracy

(Agarwal et al., 2019) MeRL 44.1± 0.2
(Dasigi et al., 2019) Iterative Search (best) 44.3
(Wang et al., 2019) 44.5
(Liang et al., 2018) MAPO (ensembled-10) 46.3
(Agarwal et al., 2019) MeRL ensemble of 10 models 46.9

CC
512−−→ TAPAS(l)(Herzig et al., 2020) 48.8

(Yin et al., 2020) MAPO + TABERT (l)(K = 3) 51.8± 0.6

(c) state-of-the-art WIKITQ

Table 5: state-of-the-art accuracy on test set.

Model #L H #Hs Hi

large 24 1024 16 4096
medium 8 512 8 2048
small 4 512 8 2048
mini 4 256 4 1024

Table 6: Models complexity with #L is the number of
layers, #Hs the number of heads, H the embedding
size and Hi the intermediate size.

Num layers ×Module Tensor Shape
1×Embedding embeddings.word_embeddings [V,H]

embeddings.position_embeddings [I,H]
embeddings.token_type_embeddings [3, H]

+[2, H]
+[10, H]
+4[256, H]

embeddings.LayerNorm [H]
+[I]

L×Transformer encoder.layer.0.attention.self.query.kernel [I,H]
encoder.layer.0.attention.self.query.bias [H]
encoder.layer.0.attention.self.key.kernel [I,H]
encoder.layer.0.attention.self.key.bias [H]
encoder.layer.0.attention.self.value.kernel [I,H]
encoder.layer.0.attention.self.value.bias [H]
encoder.layer.0.attention.output.dense.kernel [H,H]
encoder.layer.0.attention.output.dense.bias [H]
encoder.layer.0.attention.output.LayerNorm [H]

+[H]
encoder.layer.0.intermediate.dense.kernel [H,Hi]
encoder.layer.0.intermediate.dense.bias [Hi]
encoder.layer.0.output.dense.kernel [Hi,H]
encoder.layer.0.output.dense.bias [H]
encoder.layer.0.output.LayerNorm [H]

+[H]

1× Pooler pooler.dense.kernel [I,H]
pooler.dense.bias [H]

Table 7: Parameters counts. Let H be the hidden em-
bedding size, L the number of layers, Hi the interme-
diate size, V = 30522 the vocabulary size and I the
input size. We report the used parameters based on ten-
sors shape for TAPAS models.

3282

Model Parameters count
CC

256−−→ CC
512−−→ CC

1024−−−→
TAPAS(mini) 11.1M 12.0M 13.8M
TAPAS(s) 26.4M 28.2M 31.9M
TAPAS(m) 36.3M 39.7M 46.6M
TAPAS(l) 253.2M 272.6M 311.4M

DoT (mini
256−−→ l) 264.3M 265.3M 267.1M

DoT (s
256−−→ l) 279.6M 281.5M 285.1M

DoT (m
256−−→ l) 289.6M 293M 299.8M

Table 8: The parameters count for the different models.
M refers to millions. The number of parameters is the
same using HEM or CC. The column based DoT
models have the same number of parameters than the
token based DoT models.

Bucket Model WIKISQL TABFACT WIKITQ

> 1024 CC
1024−−−→ TAPAS(l) 54.7± 1.0 74.1± 1.5 30.7± 0.9

CC
512−−→ TAPAS(l) 24.3± 0.1 56.8± 2.2 18.8± 0.9

CC
256−−→ TAPAS(l) 5.8± 0.2 9.9± 1.5 6.9± 0.0

CC
1024−−−→ DoT (m

256−−→ l) 40.1± 4.9 69.1± 2.5 23.8± 0.5

[512, 1024] CC
1024−−−→ TAPAS(l) 86.1± 0.5 78.0± 0.4 48.2± 0.1

CC
512−−→ TAPAS(l) 73.6± 0.1 73.0± 0.3 42.7± 0.6

CC
256−−→ TAPAS(l) 40.9± 0.3 43.9± 0.4 18.6± 0.1

CC
1024−−−→ DoT (m

256−−→ l) 72.9± 1.8 74.7± 0.7 39.1± 0.6

[256, 512] CC
1024−−−→ TAPAS(l) 87.0± 0.0 80.3± 0.2 56.1± 0.4

CC
512−−→ TAPAS(l) 88.2± 0.1 81.1± 0.2 56.5± 1.1

CC
256−−→ TAPAS(l) 78.5± 0.7 71.4± 0.3 50.2± 0.8

CC
1024−−−→ DoT (m

256−−→ l) 86.4± 0.7 78.4± 0.5 53.1± 0.5

< 256 CC
1024−−−→ TAPAS(l) 87.7± 0.0 82.2± 0.1 58.7± 0.2

CC
512−−→ TAPAS(l) 88.2± 0.3 83.2± 0.0 60.2± 1.0

CC
256−−→ TAPAS(l) 88.4± 1.1 82.1± 0.2 59.1± 0.7

CC
1024−−−→ DoT (m

256−−→ l) 87.8± 0.2 79.9± 0.5 57.3± 0.6

Table 9: The denotation accuracy for test, computed
over bucketized datasets per sequence length.

C.1 Pruning transformer enables reaching
high accuracy for long input sequences

To study the model accuracy on different input
sequence lengths, we bucketize the datasets. Ta-
ble 9 reports the accuracy results computed over
the test set for all buckets. We use DoT (m 256−−→ l)
model for the three datasets, a token based prun-
ing for both WIKISQL and TABFACT and a col-
umn based pruning for WIKISQL. For a length
> 1024, the DoT model outperforms the 256 and
512 length baselines for all tasks. For the bucket
[512, 1024], DoT model gives close results to 512
length baseline. This indicates that the pruning
model extracts twice more relevant tokens than the
heuristic CC. For smaller input lengths the base-
line models outperform DoT . One cause could be
the hyper-parameters tuning as we do not tune the
hyper parameters for DoT .

C.2 Choice of joint learning: Is it better to
impose the meaning of relevant tokens?

According to the analysis done in Section 5, the
pruning model –jointly learned– is selecting the
tokens to solve the main task. This raises a ques-
tion of whether adding a pruning loss similar
to the task-specific loss can improve the end-to-
end accuracy. We not Jpruning−scalar the prun-
ing loss and Jtask−specific−scalar the task-specific
loss. Both are similar to Jscalar defined by (Herzig
et al., 2020) where the attention scores are not
affected by the pruning scores. We additionally
not Jtask−specific−scalar|S the task specific loss af-
fected by the set of pruning scores S.

We compare the joint learning model J-DoT (.)
– defined in Appendix A.2 – to a model learned
using an additional pruning loss P -DoT (.) =
Jaggr+β(Jtask−specific−scalar+Jpruning−scalar),
and another using both PJ-DoT (.) = Jaggr +
β(Jtask−specific−scalar|S + Jpruning−scalar). Ta-
ble 10 shows that for both WIKISQL and WIK-
ITQ joint learning achieves higher accuracy for
similar efficiency. For TABFACT the median is in
the margin error but the best model using the joint
learning outperforms the other learning strategies.

D All models results

We report all DoT results in Table 11. C −DoT
indicates the column based selection: For each to-
ken from one column, the pruning score attributes
a column score instead of a token score. The col-
umn score is computed as an average of its tokens’
scores.

3283

Dataset WIKISQL TABFACT WIKITQ
Model test accuracy Best NPE/s test accuracy Best NPE/s test accuracy Best NPE/s

CC
1024−−−→ P -DoT (m 256−−→ l) 80.4± 0.6 82.11 950 79.7± 0.5 80.20 930 43.5± 0.6 44.54 950

CC
1024−−−→ PJ-DoT (m 256−−→ l) 82.9± 0.6 83.21 950 78.0± 0.3 78.41 930 46.4± 0.8 48.43 950

CC
1024−−−→ J -DoT (m

256−−→ l) 83.6± 0.5 84.67 950 79.0± 0.5 81.28 930 50.1± 0.5 50.14 950

Table 10: Test denotation accuracy using different DoT training losses. We compare a joint learning J-DoT
model – that enables the back propagation of the pruning transformer by modifying the attention scores – to two
differentDoT models where we modify the learning strategy. P -DoT disables the buck-propagation to the pruning
transformer through the attention scores, instead it uses an additional pruning loss similar to the task-specific loss.
The second strategy, JP -DoT is a hybrid method where the joint learning is used along with an additional pruning
loss. J-DoT achieves higher accuracy for similar efficiency, for both WIKISQL and WIKITQ. For TABFACT the
median is in the margin error but the best model using the joint learning outperforms the other learning strategies.

Dataset WIKISQL TABFACT WIKITQ
Model test accuracy Best NPE/s test accuracy Best NPE/s test accuracy Best NPE/s
state-of-the-art 83.9 − − 81.0 − − 51.8± 0.6 52.3 −

CC
1024−−−→ TAPAS(s) 74.6± 0.1 74.69 3900 73.3± 0.1 73.40 4400 36.0± 0.4 36.92 3800

CC
1024−−−→ TAPAS(m) 81.6± 0.2 81.55 2050 75.1± 0.2 75.75 2300 42.9± 0.3 43.67 2020

CC
256−−→ TAPAS(l) 76.4± 0.3 77.15 1870 75.1± 0.3 76.13 1900 44.8± 0.5 45.47 1900

CC
512−−→ TAPAS(l) 83.6± 0.1 83.65 800 81.3± 0.2 81.60 870 52.2± 0.5 52.74 810

CC
1024−−−→ TAPAS(l) 86.0± 0.3 86.6 270 81.6± 0.1 81.64 300 53.9± 0.2 54.30 270

HEM
256−−→ TAPAS(l) 77.4± 0.3 77.97 1870 75.5± 0.2 75.80 1900 47.3± 0.1 47.70 1900

HEM
512−−→ TAPAS(l) 83.8± 0.4 84.75 800 82.0± 0.3 82.07 870 52.7± 0.4 53.61 810

HEM
1024−−−→ TAPAS(l) 85.9± 0.0 85.94 270 80.6± 0.0 80.6 300 54.0± 0.9 54.93 270

CC
1024−−−→ DoT (mini

256−−→ l) 72.8± 0.8 73.01 1600 77.2± 0.5 77.72 1670 37.4± 0.9 39.48 1600

CC
1024−−−→ DoT (s

256−−→ l) 74.2± 3.6 84.27 1250 81.0± 0.1 81.17 1300 40.8± 0.4 42.15 1250

CC
1024−−−→ DoT (m

256−−→ l) 83.6± 0.5 84.67 950 79.0± 0.5 81.28 930 42.4± 0.5 43.44 950

HEM
1024−−−→ DoT (mini

256−−→ l) 73.4± 0.1 73.70 1600 77.6± 0.2 78.19 1670 39.2± 0.3 39.8 1600

HEM
1024−−−→ DoT (s

256−−→ l) 85.3± 0.4 85.76 1250 81.6± 0.3 81.74 1300 42.1± 0.7 42.15 1250

HEM
1024−−−→ DoT (m

256−−→ l) 85.5± 0.2 85.82 950 81.8± 0.0 81.94 930 48.2± 1.8 48.46 950

CC
1024−−−→ C −DoT (mini 256−−→ l) 72.0± 1.1 74.06 1560 77.3± 4.8 77.61 1600 41.0± 0.4 42.13 1560

CC
1024−−−→ C −DoT (s 256−−→ l) 74.3± 0.1 74.49 1250 77.2± 4.9 78.04 1300 48.1± 2.4 49.47 1250

CC
1024−−−→ C −DoT (m 256−−→ l) 73.9± 0.2 7454 950 78.3± 0.7 80.12 930 50.1± 0.5 50.14 950

HEM
1024−−−→ C −DoT (mini 256−−→ l) 72.0± 1.1 74.06 1560 78.1± 4.8 78.13 1600 41.5± 0.1 41.99 1560

HEM
1024−−−→ C −DoT (s 256−−→ l) 74.5± 0.8 74.72 1250 58.5± 0.3 59.19 1300 40.9± 0.2 41.23 1250

HEM
1024−−−→ C −DoT (m 256−−→ l) 74.3± 2.1 74.56 950 77.3± 0.1 77.71 930 40.1± 2.4 49.13 950

Table 11: Summary of all the experiments’ results on the accuracy efficiency trade-off. The state-of-the-art (de-
tailed in Appendix B.2) correspond to the values of (Min et al., 2019) for WIKISQL, (Eisenschlos et al., 2020)
for TABFACT and (Yin et al., 2020) for WIKITQ. For each dataset, the state-of-the-art, the best baseline model on
accuracy, and the DoT models that reach the best accuracy efficiency trade-off are highlighted.

