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Abstract

Recent studies have suggested that weight
pruning, e.g. using lottery ticket extraction
techniques (Frankle and Carbin, 2018), comes
at the risk of compromising the group fairness
of machine learning models (Paganini, 2020;
Hooker et al., 2020), but to the best of our
knowledge, no one has empirically evaluated
this hypothesis at scale in the context of nat-
ural language processing. We present experi-
ments with two text classification datasets an-
notated with demographic information: the
Trustpilot Corpus (sentiment) and CivilCom-
ments (toxicity). We evaluate the fairness
of lottery ticket extraction through layer-wise
and global weight pruning across three lan-
guages and two tasks. Our results suggest
that there is a small increase in group dispar-
ity, which is most pronounced at high prun-
ing rates and correlates with instability. The
fairness of models trained with distribution-
ally robust optimization objectives is some-
times less sensitive to pruning, but results
are not consistent. The code for our ex-
periments is available at https://github.
com/vpetren/fairness_lottery.

1 Introduction

Heavily pruning deep neural network models is
a way of reducing inference cost for resource-
constrained environments, but does weight-pruning
of deep neural networks increase their unfairness?
Several recent papers suggest this (Paganini, 2020;
Hooker et al., 2020), based on experiments from
face and digit recognition, but does this also hold
for natural language processing (NLP) models?
Systematic biases may easily be exacerbated by
pruning interventions in high-dimensional prob-
lems because of feature swamping effects (Sutton
et al., 2006). Overparameterized deep neural net-
works generalize well, in part because they can
hedge their bets and rely on multitudes of weak

Figure 1: Fairness Sensitivity to Pruning (FSP): the gra-
dient of the linear fit of (the logarithm of) the pruning
ratio to min-max group-level disparity. We use this to
quantify the sensitivity of Rawlsian min-max fairness
to weight pruning across architectures, pruning strate-
gies and datasets.

evidence rather than the most prominent indepen-
dent variables. Sparse models do not have that
luxury and are therefore more sensitive to shifts
(Globerson and Roweis, 2006; Søgaard, 2013).

We introduce a fairness sensitivity to pruning
metric that measures how Rawlsian min-max fair-
ness across demographic groups changes with
weight pruning. We estimate this sensitivity by
taking the gradient of the linear fit of the loga-
rithm of the pruning ratio to min-max group-level
disparity. We show that across four datasets, fair-
ness sensitivity to pruning is similar for layer-wise
and global pruning strategies (Frankle and Carbin,
2018), as well as for text classifiers based on feed-
forward and recurrent neural networks. Subse-
quently, we consider the impact of a popular ro-
bust optimization strategy designed to improve the
fairness of classification models (Hashimoto et al.,
2018; Sagawa et al., 2020b), on the fairness sensi-
tivity of feed-forward networks.

https://github.com/vpetren/fairness_lottery
https://github.com/vpetren/fairness_lottery
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Contributions We are, to the best of our knowl-
edge, the first to study the impact of weight pruning
on fairness in NLP at scale. We introduce a fair-
ness sensitivity to pruning (FSP) metric that mea-
sures how Rawlsian min-max fairness across demo-
graphic groups decreases with weight pruning. We
evaluate FSP across two architectures, two pruning
strategies and two datasets, including multilingual
sentiment classification and English toxicity classi-
fication. Our results suggest that pruning increases
group-level performance disparities, but mostly at
high pruning rates and with some variance across
architectures and pruning strategies. Group-level
disparities seem to be in part a result of the instabil-
ity of weight pruning. We compare FSP between
our baseline empirical risk models and robust mod-
els induced with Distributional Robust Optimiza-
tion (DRO) (Hashimoto et al., 2018; Sagawa et al.,
2020b). Our results show that weight pruning in
combination with DRO can sometimes (8/16 cases
here) be used to induce fairer, sparse classifiers, but
the effect is not significant (p ∼ 0.18) across our
experiments.

2 Related Work

Pruning neural networks The literature on
pruning neural networks is decades old (Mozer and
Smolensky, 1989; Cun et al., 1990; Hassibi and
Stork, 1993), but has recently seen a resurgence
with the all-encompassing success of neural net-
works and the need for small and fast on-device
model inference (Han et al., 2015; Sze et al., 2017;
Frankle and Carbin, 2018; Frankle et al., 2019).
In NLP, specifically, pruning methods have been
applied to recurrent neural networks (Desai et al.,
2019; Yu et al., 2020), as well as transformers (Gor-
don et al., 2020; Brix et al., 2020; Prasanna et al.,
2020; Chen et al., 2020; Sanh et al., 2020).

Fairness in pruned models Measuring fairness
in pruned models is an unexplored area. However,
Paganini (2020) evaluates the fairness, i.e., the dif-
ference between the best- and worst-case groups, of
lottery ticket-style weight pruning for digit recog-
nition problems: Specifically, they retrain mod-
els for a fixed number of iterations using global
unstructured pruning. In addition, they present a
meta-regression study suggesting that underrepre-
sented and more complex classes are most severely
affected by pruning procedures. See Hooker et al.
(2020) for related work and similar results in face

recognition.1

Improving fairness Fairness of overparameter-
ized models can be improved by distributionally
robust optimization (DRO) (Hashimoto et al., 2018;
Levy et al., 2020), or to some extent by simpler
post-hoc correction methods such as classifier re-
training or group-specific classification thresholds
(Menon et al., 2021). DRO minimizes the worst-
case expected loss over an uncertainty set of distri-
butions. The uncertainty set represents the distri-
butions we want our model to perform well on. In
Sagawa et al. (2020a), the uncertainty set is all pos-
sible mixtures of a known set of groups, a variant
referred to as Group DRO. Sagawa et al. (2020b)
find that subsampling the majority groups can be a
way for overparameterized models to achieve both
low minority test error as well as low average test
error.

3 Pruning methodology

We extract winning lottery tickets from our network
according to the iterative procedure outlined in
Frankle and Carbin (2018): Given a model f(x; θ)
with initial network parameters θ0 and mask m0,
for each pruning iteration i, we start by initializ-
ing a model f(x; θ) with initial parameter θ0 and
train it for N epochs, resulting in f(x; θN ). After
training, we prune a fixed fraction p ∈ [0, 1] from
the remaining parameters in θN to obtain the mask
mi. The pruned weights are chosen using the L1

norm, meaning the neurons with the lowest magni-
tude are masked out. Pruning can either be done
w.r.t. individual layers or all of them combined,
also referred to as layer-wise and global pruning.
mi is then carried over to the subsequent pruning
iteration i + 1 with the model f(x,mi � θ0) and
retrained once again. At iteration i, the fraction of
weights pruned is therefore 1− (1− p)i.

4 Experiments

4.1 Data

Datasets We examine fairness among heav-
ily pruned models using two text classification
datasets: i) The multilingual Trustpilot Corpus

1Bartoldson et al. (2020) arguably present results from
object recognition that show the opposite trend: Generaliza-
tion increases with (layer-wise) pruning. This seems to be
a side effect of overparameterization; interestingly, we see
the opposite trend for feed-forward networks and layer-wise
pruning.
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Figure 2: Macro-averaged performance of our feed-forward networks as a function of pruning ratio. Fairness
Sensitivity to Pruning (FSP) correspond to the gradient of the linear fit to the min-max differences across individual
runs. Results are for CIVILCOMMENTS. The hard line represents the average demographic score over 5 individual
runs and the shaded area represents the standard deviation. See the Appendix for similar plots for the Trustpilot
Corpus.

(Hovy et al., 2015),2 which contains user reviews
from the Trustpilot website of various companies
and services in five different countries (Germany,
Denmark, France, United Kingdom and United
States). The reviews are based on a one to five
star rating scale and some are accompanied by
demographic attributes about the author, such as
gender, age and location. 2) The CivilComments
dataset (Borkan et al., 2019),3 which contains com-
ments annotated for toxicity, for the purpose of
hate speech detection. A subset of the comments
are also annotated for the protected attributes they
address, including gender, race, and religion.

Preprocessing For the Trustpilot Corpus, we di-
vide the data into demographics based on a com-
bination of gender (male/female), age (young/old)
and location (NUTS regions). For age, young is
defined as being 35 or less. We exclude the French
and American parts of the datasets as they do not
have properly annotated NUTS regions. For UK
and Germany, we use NUTS-1 regions, and for
Denmark, where more data is available, we use
NUTS-2 regions. We convert the 5-star ratings
to binary sentiment labels, grouping 4 and 5 stars
as positive, and 1 and 2 as negative. Neutral re-
views (three stars) are discarded.4 Likewise for
CivilComments, we threshold comments with a

2https://bitbucket.org/lowlands/
release/src/master/WWW2015/data/

3https://www.kaggle.com/c/jigsaw-
unintended-bias-in-toxicity-
classification/data

4This binarization scheme is standard; see, e.g., Gupta
et al. (2020) and Desai et al. (2019)

toxicity rating > 0.5 as toxic, and otherwise la-
bel them as a non-toxic. This is similar to the
binarization performed in Koh et al. (2020). Com-
ments can for each demographic sub-attribute con-
tain multiple partial values (e.g. asian = 0.3,
black = 0.4 for the race attribute), so for each
annotated attribute we assign it the sub-attribute
with the largest value. In our experiments we con-
sider demographics based on combinations of the
race and gender attributes. For each language and
dataset we randomly sample 100, 200 or 500 of
each demographic as test sets, based on the the
amount of annotated datapoints in the dataset, and
use a 80-20 split of the remaining data for training
and validation. If a demographic contains less than
the specified number of datapoints, we disregard
it. Due to high class imbalance, the majority class
for our train-val data is downsampled to match the
minority class. Table 1 shows the statistics for the
respective datasets we train and evaluate on.

Dataset Train Val N S

Trustpilot-DK 222229 55557 20 500
Trustpilot-DE 26146 6536 42 100
Trustpilot-UK 127965 31991 50 200
CivilComments 357602 89400 7 100

Table 1: Detailed dataset statistics. N refers to the num-
ber of discrete demographics in the dataset and S is the
size of each demographic test set.

4.2 Models
We consider simple FFNN (Rumelhart et al., 1986)
and LSTM (Hochreiter and Schmidhuber, 1997)

https://bitbucket.org/lowlands/release/src/master/WWW2015/data/
https://bitbucket.org/lowlands/release/src/master/WWW2015/data/
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
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FFNN
Dataset Edim hdim B N

Trustpilot-DK 128 256 15 32
Trustpilot-DE 128 256 15 8
Trustpilot-UK 128 256 15 16
CivilComments 128 256 15 32

LSTM
Dataset Edim hdim B N

Trustpilot-DK 128 256 10 64
Trustpilot-DE 128 256 15 16
Trustpilot-UK 128 256 10 32
CivilComments 128 256 10 64

Table 2: FFNN and LSTM hyperparameters. Edim is
embedding layer size, hdim is hidden layer size, B is
batch size and N is number of epochs. Both the layer-
wise and global pruning structures use the same set of
hyperparameters.

neural networks for text classification.

FFNN The FFNN consists of the following: The
embedding layer, which maps every token id in the
text to a fixed size vector as a bag-of-embeddings
and sums them together, resulting in a single rep-
resentation e ∈ R|Edim|, followed by 3 fully con-
nected layers of size R|Edim×h|, R|h×h| and R|h×2|
respectively. We use the hyperbolic tangent ac-
tivation between layers and each linear layer is
initialized using He initialization (He et al., 2015).

LSTM The LSTM network is a 2-layer bidi-
rectional LSTM (Hochreiter and Schmidhuber,
1997) which encodes our input text, followed by
a fully connected layer for classification. The
weights are initialized using U(−

√
k,
√
k) where

k = 1
hidden size and the final fully connected layer

uses He initialization. See all model hyperparame-
ters used in Table 2.

Both the FFNN and LSTM models are trained
using the Adam optimizer (Kingma and Ba, 2017)
with a learning rate of 1e− 3 and a weight decay
of 1e− 4.

Distributionally Robust Optimization Loss
Additionally, we also train our models with DRO
loss (Levy et al., 2020). We use the implemen-
tation provided by Levy et al. (2020) 5. For our
experiments, a χ2 uncertainty set of size 1 is used.

For all of our experiments, we extract our win-
ning tickets over 20 pruning iterations and use a

5https://github.com/daniellevy/fast-
dro/

Trustpilot CC Avg

da de en en

FFNN lw −0.183 0.281 −0.230 0.497 0.091
gl 0.227 1.375 1.054 0.339 0.749

FFNN-DRO lw −0.044 0.321 0.143 0.089 0.127
gl 0.351 0.875 −0.040 0.368 0.388

LSTM lw 0.221 0.411 0.206 0.823 0.415
gl 1.099 0.198 0.352 0.252 0.475

LSTM-DRO lw 0.263 −0.282 −0.082 1.335 0.309
gl 0.262 −0.609 0.544 0.006 0.051

Table 3: FSP values across architectures, layer-wise
(lw) and global (gl) pruning, and the four datasets. Our
main observation is that FSP values are almost consis-
tently positive, and slightly higher for global pruning.
DRO does not consistently reduce FSP; we highlight
cases where it does.

pruning rate of p = 0.35. We run a total of 5 inde-
pendent runs for each model-dataset combination.

4.3 Measuring group disparity

At each pruning step we measure the group dis-
parity D, from a set of demographics D, between
repeated runs R, by computing the maximum dif-
ference of F1 scores as follows:6

D = max
dm∈D

max
dn 6=m∈D

max
ri∈R

max
rj 6=i∈R

|F1ridm − F1rjdn |

(1)
Intuitively, this corresponds to the difference be-
tween the highest scoring run for the highest scor-
ing demographic and the lowest counterpart. We
compute FSP by taking the gradient of the linear
fit of D over a P pruning steps multiplied by 100.

5 Results

Main experiments Our first set of results eval-
uate FSP across architectures, datasets, and prun-
ing techniques. In 14/16 combinations of FFNN
and LSTM neural networks, the Trustpilot Corpus
and CivilComments, layer-wise and global prun-
ing, we see positive FSP values. In other words,
weight pruning leads to higher group-level perfor-
mance disparities, i.e., less fairness. Comparing
layer-wise and global pruning, we note that group
disparity is generally higher for global pruning. In
Figure 2, we present two plots - for layer-wise and
global pruning of a feed-forward network trained
on CivilComments. The remaining plots are pre-
sented in the Appendix. The FSP values are listed
in Table 3. FFNNs exhibit very high FSP values

6Maximum discrepancy has also been used as a measure
of fairness in Calmon et al. (2017); Alabi et al. (2018). See
Williamson and Menon (2019) for discussion.

https://github.com/daniellevy/fast-dro/
https://github.com/daniellevy/fast-dro/
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Figure 3: FSP for Distributional Robust Optimization

with global pruning, but while global pruning in-
creases unfairness, layer-wise pruning does not.
For LSTMs, the effects of the two pruning strate-
gies are similar: Both lead to moderate increases
in group disparities.7 In a couple of instances we
witnessed model degeneration due to heavy prun-
ing resulting in single-class prediction before 20
pruning iterations. The plots and FSP values ex-
clude these datapoints as they are not relevant for
our analysis.

Distributionally Robust Optimization We
ran comparable experiments using DRO loss
(Hashimoto et al., 2018) to see whether the
adverse effects of weight pruning on min-max
fairness could be reduced by training with a more
robust objective. This seems to hold true in some
instances. We present a single plot for DRO in
Figure 3, for feed-forward networks, layer-wise
pruning on CivilComments; see the Appendix
for more plots. Comparing with Figure 2 (left)
the FSP metric is considerably lower than for
baseline empirical risk minimization (0.089 vs.
0.497) while maintaining equal, or even better,
performance at high pruning rates; but note from
the red numbers in Table 3, that we only see this
type of reduction in FSP in 3/8 cases for FFNNs,
but DRO does reduce the average FSP for global
pruning. In 5/8 cases for the LSTM, however,
DRO does improves fairness, reducing the average
FSP with both layer-wise and global pruning.

7While fairness correlates with stability, the difference
between FFNNs and LSTMs is not explained by stability
differences (see plots in the Appendix), but should probably
be attributed to the general performance differences between
FFNNs and LSTMs, as well as relative overparameterization
in FFNNs (see Footnote 1).

6 Conclusion

In this work, we take a first step in examining group
disparity among heavily pruned models, using lot-
tery ticket extraction, in NLP. We measure group
disparity, using fairness sensitivity to pruning, on
the Trustpilot Corpus, a sentiment classification
dataset covering 3 languages, as well as CivilCom-
ments, a toxicity classification dataset, for both
feed-forward and recurrent neural networks. We
find that models subject to heavy pruning are more
susceptible to higher levels of group disparity, but
that this effect can to some degree be mitigated us-
ing distributionally robust optimization objectives.
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Figure 4: Macro-averaged performance of our feed-forward networks as a function of pruning ratio. The hard line
represents the average demographic score over 5 individual runs and the shaded area represents the standard devi-
ation. Fairness Sensitivity as Pruning (FSP) correspond to the gradient of the linear fit to the min-max differences
across individual runs.
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Figure 5: Macro-averaged performance of our LSTMs as a function of pruning ratio. The hard line represents the
average demographic score over 5 individual runs and the shaded area represents the standard deviation. Fairness
Sensitivity as Pruning (FSP) correspond to the gradient of the linear fit to the min-max differences across individual
runs.
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Figure 6: Macro-averaged performance of our layer-wise and globally pruned feed-forward networks trained with
DRO as a function of pruning ratio. The hard line represents the average demographic score over 5 individual
runs and the shaded area represents the standard deviation. Fairness Sensitivity as Pruning (FSP) correspond to the
gradient of the linear fit to the min-max differences across individual runs.
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Pruning scores: Trustpilot-UK, LSTM, layerwise, DRO

Group Disparity, 
FSP=-0.082
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Figure 7: Macro-averaged performance of our layer-wise and globally pruned LSTM networks trained with DRO
as a function of pruning ratio. The hard line represents the average demographic score over 5 individual runs and
the shaded area represents the standard deviation. Fairness Sensitivity as Pruning (FSP) correspond to the gradient
of the linear fit to the min-max differences across individual runs.


