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Abstract

Sequences are typically decoded in a left-
to-right fashion, requiring as many decoding
steps as there are tokens in the sequence.
Recently, several works have proposed non-
autoregressive decoders that are sub-linear, al-
lowing to decode a sequence using fewer de-
coding steps than the length of the sequence,
and thus substantially speed up inference. In
contrast, non-autoregressive decoding of trees
is less well-analysed, even though trees are
used in important applications like seman-
tic parsing and code generation. In this
work, we present a novel general-purpose par-
tially autoregressive tree decoder that uses tree-
based insertion operations to generate trees in
sub-linear time. We evaluate our approach
on semantic parsing and compare it against
strong baselines, including an insertion-based
sequence decoder. The results demonstrate
that the partially autoregressive tree decoder
reaches competitive accuracies while clearly
reducing the number of decoding steps.

1 Introduction

Sequence generation is usually based on a left-to-
right autoregressive decoder that decomposes the
probability of the entire sequence y conditioned
on x (x can be empty) as the product p(y|x) =∏N
i=0 p(yi|y<i, x). At each decoding step, the de-

coder model predicts the next token yi based on
the previously generated outputs y<i and the in-
put x. This approach to decoding sequences is
linear in sequence length: the number of decoding
steps necessary to produce the sequence is equal
to the length of the sequence. However, recently,
several works have proposed non-autoregressive
decoders that are sub-linear. This allows to decode
a sequence using fewer decoding steps than the
length of the sequence and can thus greatly speed
up inference, especially for longer sequences (Stern
et al., 2019; Ma et al., 2019; Ghazvininejad et al.,

2019; Gu et al., 2017; Kasai et al., 2020). In par-
ticular, the Insertion Transformer of Stern et al.
(2019) uses insertion operations to iteratively ex-
pand the sequence, achieving a best-case number
of O(log2N) decoding steps.

In this work, we extend insertion-based decoding
of sequences to insertion-based decoding of trees.
Insertion-based sequence decoder can also be ap-
plied to decoding trees (Zhu et al., 2020). However,
this requires linearizing trees into sequences, and
requires the explicit decoding of subtree termina-
tion tokens (e.g. closing parentheses “)”). This
results in larger structures, which for the Inser-
tion Transformer increases the minimum necessary
number of decoding steps and increases the com-
putational requirements per step. In contrast, the
insertion-based tree decoder that we propose here
does not need to explicitly decode structure tokens.
Moreover, it can achieve a best-case complexity
below O(log2N)1 in terms of the number of de-
coding steps and guarantees that all intermediate
outputs are valid trees. To the best of our knowl-
edge, no existing research focuses on insertion-
based non-autoregressive decoding of trees so far.

We evaluate the proposed decoder for semantic
parsing on the OVERNIGHT (Wang et al., 2015)
dataset. Semantic parsing is the task of converting
natural language expressions into a formal repre-
sentation of its meaning. An important application
of semantic parsing is question answering from
structured data sources. In such use cases, the in-
put to the semantic parser is a natural language
question and the expected output is a query, which
can be written in a query language (e.g. SQL or
SPARQL). Since these queries can often be repre-
sented as trees (e.g. abstract syntax tree), semantic
parsing is a particularly interesting task for the eval-
uation of the presented decoding approach.

1The exact best possible speed-up heavily depends on the
data.
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To summarize, the contributions of this work
are:

• a transformer-based decoding algorithm that
uses insertion operations specifically tailored
for decoding trees,

• a novel transformer architecture that uses
novel tree-based relative positions,

• and an evaluation of the proposed algorithm
and model on the well-known OVERNIGHT

dataset, and a comparison against a strong
non-autoregressive baseline.

2 Insertion Transformer

Below, we give a very brief overview of the Inser-
tion Transformer, which we use here as a baseline.
Due to space constraints, we refer interested read-
ers to the work of Stern et al. (2019) for a more
elaborate description of their model and training
procedure.

Decoding approach. Rather than decoding au-
toregressively left-to-right (LTR), the insertion
transformer decodes sequences by using insertion
operations. For example, consider the sequence “A
B C D E F G”. LTR decoding would require at least
seven decoding steps, producing some left-aligned
subsequence at every step (e.g. “A B C D” at the
fourth step). In contrast, decoding using insertions
allows to decode the same sequence using just three
steps. Starting from the initial empty state “ ”, we
first decode (1) “D”, then (2) “B D F” and finally
(3) “A B C D E F G”, where the bold faced tokens
are the ones inserted in each step, respectively.

Model. The model we use in our experiments
uses BERT (Devlin et al., 2019) as the encoder and
a standard transformer (Vaswani et al., 2017) with
learned absolute position vectors as the decoder.
In contrast to the vanilla transformer decoder how-
ever, the causal attention mask is not used. After
encoding a subsequence using the transformer, the
output layer concatenates the representations of
two neighbouring tokens to build a representation
for the insertion slot between the tokens. We nor-
malize the probabilities per slot.

Training. Given training data consisting of pairs
of input and output sequences (x, y), at every
epoch, the training algorithm samples a subse-
quence ŷ for every output sequence y. First, a
length for the subsequence is drawn from a uni-
form distribution on [0, |y|]. Then, a subsequence
ŷ of the given length is randomly drawn from y.

For example, for the sequence “A B C D E F G”
and a randomly drawn length of 3, a sampled sub-
sequence of length 3 could be “B D E”.

The Insertion Transformer is then trained by op-
timizing a loss of the following form:

−
∑
l

jl∑
i=il

wi,l log p(yi, l|x, ŷ) , (1)

where il and jl are the beginning and end positions
of the subsequence to be decoded in slot l. Two
variants of this loss function are proposed that dif-
fer in the strategy of assigning the weights wi,l to
the different tokens and which are referred to as
uniform and binary, respectively. In the uniform
case, for a given l the weights wi,l, i = il, . . . , jl
are equal and sum up to one. In the binary case,
a larger weight is assigned to tokens closer to the
center of slot l:

wi,l =
e−dl(i)/τ∑jl

i′=il
e−dl(i′)/τ

, (2)

where dl(i) is the distance between token i and the
center of the span to be decoded in slot l, and τ is
the temperature.

3 Tree-based Insertion Transformer

In this section, we propose a novel transformer-
based method for non-autoregressive decoding of
trees. The proposed method consists of (1) a novel
transformer architecture, and (2) a novel insertion-
based decoding procedure.

3.1 Decoding

The proposed decoding algorithm is similar to the
one proposed by Stern et al. (2019) in that it uses in-
sertion operations to expand the decoded structure.
However, instead of using the implicitly defined
insertion slots between two neighbouring tokens in
a sequence, here, insertion slots are used that are
placed between neighbouring nodes in the graph
representing the tree.

As an example, consider the tree (A B C)2, shown
in Fig. 1a. For sequence-based insertion decoding,
we would take the linearization (· A · B ·C · ), where
four insertion slots are explicitly denoted by “·”.
The linearized representation clearly has some dis-
advantages. For example, performing some inser-
tions at some slots can destroy the tree structure,

2Trees are given in a Lisp-like notation in this work.
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(a) Simple tree

A

D C

B

(b) Inserting D at the ances-
tral slot of B.

A

D

CB

(c) Inserting D at the descen-
dant slot of A.

A

B D C

(d) Inserting D at sibling slot
between B and C.

Figure 1: Examples of insertions at different insertion slots.

e.g. inserting “)” between B and C yields (A B)
C), which is not a valid tree. Also, as mentioned
before,

In this work, we propose a tree-based insertion
decoding algorithm that defines insertion slots on
edges between siblings, as well as on edges be-
tween parents and children. Following this ap-
proach, the example tree can be described by the
following linearization with explicit insertion slots:

(∧ A ∨ | – ∧ B ∨ – ∧ C ∨ – ) ,

where we use three types of insertion slots: (1) an-
cestor insertion slots denoted by ∧, (2) descendant
insertion slots denoted by ∨, and (3) sibling inser-
tion slots denoted by –, as described in more detail
in the following. Note that the parentheses and the
pipe symbol “|” are ignored by the model (when
relative positioning is used) and is used mostly
for notational and programming convenience. The
pipe symbol separates the root portion of the “slot-
ted” subtree string.

Ancestor insertion: If node D is used for the
ancestor insertion slot ∧ of B, which corresponds
to the red slot in

(∧ A ∨ | – ∧ B ∨ – ∧ C ∨ – ) ,

we obtain the tree (A (D B) C) (see Fig. 1b). In
other words, D replaces B and the entire subtree
B is attached as a child of D.

Descendant insertion: If node D is used with a
descendant insertion slot∨ of A, which corresponds
to the red slot in

(∧ A ∨ | – ∧ B ∨ – ∧ C ∨ – ) ,

then the child subtrees of A are moved to node
D and the entire subtree D (that now contains the
children of A) is attached to A to yield the tree (A
(D B C)), which is depicted in Fig. 1c.

Sibling insertion: If node D is used with a sib-
ling insertion slot “–” between B and C, which
corresponds to the red slot in

(∧ A ∨ | – ∧ B ∨ – ∧ C ∨ – ) ,

then D is inserted as a child of A between B and
C to yield the tree (A B D C) (see Fig. 1d).

These insertion actions can be used to decode
any tree starting from a tree containing only a
root node (ROOT). Note that every decoding step
is guaranteed to yield a valid tree, unlike in the
sequence-based insertion decoder.

3.1.1 Decoder operation
In every step, the decoder takes the previous inter-
mediate tree yt−1 (where y0 = (ROOT)) and applies
one or more insertion operations to expand the tree
to the next intermediate tree yt. To predict which
insertion operations to execute at every available
slot, the model described in the following sections
encodes the entire input tree yt−1. The prediction
is then based on this encoding. This procedure is
similar to the approach used by Stern et al. (2019).
While more efficient methods that re-use compu-
tations are possible, we leave an investigation of
those for future work. The decoding process is ter-
minated when all slots predict a slot closing actions
indicating that no more nodes should be inserted,
and thus yt = yt−1.

3.2 Model

We propose a novel architecture that takes ad-
vantage of the fact that the intermediate struc-
tures generated in all steps of the decoding algo-
rithm are trees. While the encoder stays the same
(i.e. BERT), the decoder of our model relies on a
transformer-based tagger with tree-based relative
positions and a special attention mask. The tree-
based relative positions allow us to ignore structure
tokens.
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Figure 2: An example of a tree.

3.2.1 Computing Relative Positions in Trees

The proposed architecture uses tree-based relative
positioning instead of absolute positional embed-
dings. The relative position is described by the
movements in the tree that the path from node u
to node v defines. For example, in the tree (A (B
(C D E) K (F (G H I J)))) depicted in Fig. 2, the
relative position of node D to node I is given by
“1↑ 2→ 2↓”. This describes the following move-
ment in the tree: starting in D go up one hop to
reach parentC (1↑), then move right among the sib-
lings two hops to reach F (2→), and finally move
down two hops to reach I (2↓). The scheme is
insensitive to the order of children, e.g., the rela-
tive position from B to K is “1↓”, the same as for
(B, C) and (B, F ). To distinguish these cases, we
propose to instead use special relative position re-
lations “child X” and “child X of” between parent
and child nodes (where X denotes the position of
the child among all children of its parent, e.g., X
is 1 for node K). While this should improve lo-
cal modeling of parent-child relations, it still does
not add sufficient information to other paths, e.g.,
the relative positions for (D, H) and (D, J) are
identical to that for (D, I)3.

3.2.2 Using Relative Positions in the Model

With eij denoting the unnormalized attention
scores, xi the vector corresponding to element i
in the input sequence and aKij and aVij the key (K)
and value (V) vector representations of the relative
position between the input elements at position i
and position j, the following equations describe
how the relative position vectors are used in the

3We leave the investigation of better relative position en-
coding for trees for future work since it is non-trivial to retain
constant time complexity of the transformer and have a fully
expressive position encoding.

attention mechanism:

eij =
(
xiW

Q(xjW
K)T + xiW

Q(aKij )
T
)
/
√
dz

zi =
∑n

j=1 αij(xjW
V ) + αija

V
ij .

This approach to incorporate relative positions is
similar to that of Shaw et al. (2018) but differs in
the computation of aKij ’s and aVij’s. A naive imple-
mentation would create an independent position
embedding for every possible combination of the
elements of a movement pattern. For an efficient
implementation that is both faster and has fewer
parameters, we separately consider the three parts
of a movement pattern, embed them separately and
add their embeddings:

aKij = aK,↑ij EK,↑+aK,↔ij EK,↔+aK,↓ij EK,↓ , (3)

where aK,↓ij , aK,↑ij , and aK,↔ij are one-hot vectors
representing the components of the movement pat-
tern, and EK,↓, EK,↑, and EK,↔ are their corre-
sponding embedding lookup matrices.

In case the relative position is not a movement
pattern, as is the case for parent-child relations, we
simply look up a single embedding vector. We also
use relative positions from insertion slot positions
to some of the node positions: (1) ancestor (∧) and
descendant (∨) slots use the “ancestors” and “de-
scendant” relations, respectively, and (2) the sibling
slots (–) use the “left sibling” and “right sibling”
as well as a “parent” relation. Since insertion slot
positions are not attended to (they are not used as
keys in attention), we do not need relative positions
to slot positions.

3.2.3 Attention Mask
We use a custom attention mask pattern that pre-
vents real query tokens from attending to structural
tokens and insertion slots. Since we do insertion-
based decoding, we don’t use a causal attention
mask. However, since structural information is
already described by the relative positions (see
above), we do not need to process the structure-
describing tokens, such as parentheses. Thus, these
tokens are masked both as keys and as queries and
do not participate in the decoding process at all. Ad-
ditionally, we use a special mask for the insertion
slots (defined above) such that (1) other tokens can
not attend to the slot tokens and (2) the slot tokens
can only attend to their immediate neighbours.

3.3 Decoder Training
The decoder learns to imitate optimal trajectories
(Section 3.3.1). Let a tree y be the target output
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for the current input x. For training the decoder,
a sampling function (described in Section 3.3.2)
is applied to select a partial tree4 y′ from y. A su-
pervision function (see Section 3.3.3) is then used
that determines the output distribution for every
slot, which serves as target in the training of the
insertion model. This procedure is detailed in the
following.

3.3.1 Optimal Trajectories
The insertion operations described earlier in Sec-
tion 3.1 can be used to describe a set of actions that
transform one partial tree into another. Given an
output tree y and the initial tree y0 that contains
a single root node, i.e., y0 = (ROOT ), a trajec-
tory from y0 to y can be defined as a sequence
of in total T partial trees (states) y0, . . . , yT and
corresponding actions a0, . . . aT , such that, when
the actions are applied in succession on y0, they
produce y = yT . Each step thus corresponds to
the application of an action at to the current par-
tial tree yt resulting in a new partial tree yt+1, i.e.
yt+1 = step(at, yt). Each action at is a set of
atomic actions that insert a node at one of the inser-
tion slots, which can be either ancestor, descendant,
or sibling insertion slots. The atomic actions are
described as tuples (k,w), where k is the slot in yt
where a node with labelw will be inserted when the
action is executed. Note that the type of insertion
is characterized by the type of insertion slot.

While many trajectories exists that successfully
reach y from y0, we are interested in optimal tra-
jectories, which are trajectories that minimize the
number of decoding steps T that need to be per-
formed.

Computing Optimal Trajectories: To practi-
cally compute trajectories where we try to mini-
mize the number of steps taken, we rely on the fact
that first decoding the most central nodes of a slot’s
subgraphs enables greater parallelization. For a
given tree yt at decoding step t that is a partial tree
of the original tree y, we (1) align yt and y and
determine which nodes are allowed to be inserted
in every slot in yt and (2) compute which of these
nodes is the best in order to minimize the number
of decoding steps.

4Note that what we refer to as a partial tree is not the same
as a subtree. A subtree retains all the descendants starting
from a certain parent node. In contrast, we refer with partial
tree to any tree consisting of nodes that can also be found in
the original tree, and which can be extended to the full tree y
by means of the defined insertion operations.

A

D I

Figure 3: A partial tree of the tree in Fig. 2.

Computing allowed insertions: Given a partial
tree yt (e.g. Fig. 3) aligned with the original tree
y (e.g. Fig. 2), we first compute the set of allowed
insertions Ck for every slot k.

For an ancestor insertion slot (∧) in yt asso-
ciated with some node n, Ck corresponds to the
nodes from y on the path from n up to the low-
est used ancestor of n. The lowest used ancestor
lua(n) of a node n from the partial tree yt is the
lowest5 node in the original tree y that is an ances-
tor of n as well as any other node from yt. That is,
for node I in the example tree in Fig. 2, the lowest
used ancestor of node I is the node B: lua(I) = B
and the set of allowed nodes for I’s ancestor slot is
{F,G}.

For a descendant insertion slot (∨), the set of
allowed nodes Ck is the set of all descendants of n
in y , if n doesn’t have children in the partial tree
yt. Otherwise, it’s the set of all of its children in yt
that are also an ancestor for all the children of n in
the partial tree yt.

Finally, for a sibling insertion slot (–), to find
the set of allowed nodes, we first find the lowest
common ancestor in the original tree y of the slot’s
left node l and right node r. The lowest common
ancestor lca(n, n′) of two nodes n and n′ in a tree
is the lowest node that is an ancestor of both n
and n′. We first determine the set C of children of
lca(l, r) that are between the children of lca(l, r)
and that are also the ancestors of nodes l or r. The
set of allowed nodes Ck for this slot is then the
set C as well as all their descendants in y. In the
example, the sibling insertion slot between D and
I should accept only the node K since lca(D, I) is
B and K is the only node between C and F , which
are the ancestors of D and I , respectively, that are
also children of lca(D, I). 6

Computing best insertions: Now, for each in-
sertion slot k in yt, we are given the set Ck of
nodes allowed to be inserted. The node n ∈ Ck

5Lowest and highest refer to tree depth, i.e., the root node
is the highest node in the tree.

6Note that inserting E between D and I will lead to a tree
from which we can’t recover the original tree since D, E and
I now assume the same parent and there is no action defined
to separate them under different parents.
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Figure 4: The tree from Fig. 2 and the nodes and edges
covered by the partial tree from Fig. 3. Nodes with the
same labels in Figures 2 and 3 are aligned.

to be inserted in slot k in order to minimize the
number of decoding steps is the most central node
in Ck.

The centrality of a node is computed over the
subgraph Gk of the original tree y that contains
the nodes in Ck, as well as their descendants that
are not separated by the partial tree. The closeness
centrality is used:

HGk
(n) =

1∑
n′∈Gk

d(n, n′)
, (4)

where d(n, n′) is the distance between nodes n
and n′ in the original tree, which is the minimum
number of steps necessary to reach n from n′.

The node picked to be inserted into some slot k
is then the one with highest centrality for the slot.

Computing best actions: The best action for a
certain partial tree yt of y then consists of the in-
sertions that are the best for every of its insertion
slots. If Ck is empty for some insertion slot, a
dummy insertion operation is used that does not
insert anything.

3.3.2 Partial Tree Sampling
Rather than sampling all possible partial trees,
which would be equivalent to the method described
by Stern et al. (2019), we use a different method
that samples only from the most optimal trajec-
tory. The partial trees that are used for training are
only those that occur on one of the optimal trajec-
tories. For efficiency reasons, we precompute a
certain number (5 in our experiments) of trajecto-
ries, where we randomly sample when ties occur
in the centrality measure, and reuse these trajecto-
ries throughout training.7 Sampling more than one
trajectory could reduce the exposure bias.

7Note that only one of the partial trees yt of some example
is used in a single epoch.

3.3.3 Supervising Partial Trees
To produce the target distribution for a slot k, we
take the nodes n ∈ Ck computed as valid inser-
tions, as well as their centralities. Then, we rank
the nodes in Ck by centrality scores, where the
most central node is the highest-ranked one, receiv-
ing rank value 0. Ties in centrality are broken by
favouring nodes that are lower in the tree y and fur-
ther ties are broken alphabetically (based on node
label). The target distribution for a slot k is then
computed using a softmax:

pk(n) =
e−rankk(n)/τ∑

n′∈Ck
e−rankk(n′)/τ

, (5)

where τ is a temperature hyperparameter. pk(n) is
zero if n is not in Ck and rankk(n) is rank value
given to node n.

For each slot k the model outputs a predictive dis-
tribution πk(n). Given the target distributions for
all slots the training loss is the sum of the Kullback-
Leibler (KL) divergences between the target and
predictive distributions for all slots:

−
∑
k

∑
n∈G

pk(n) log
πk(n)

pk(n)
, (6)

where G denotes the set of all possible node labels.

4 Experiments8

We run experiments on the OVERNIGHT (Wang
et al., 2015) dataset and report the results in Ta-
bles 1 and 2. A description of the dataset and its
statistics are provided in Appendix A.

Evaluation: The metric reported is logical form
accuracy, which we compute by (1) taking the pre-
dictions of the models, (2) balancing parentheses
on the left and on the right and (3) computing
whether the trees are the same.9

Data preprocessing: We notice that many exam-
ples in the Overnight dataset contain nested filters.
This fact was ignored during training and evalua-
tion of some models in previous work (Damonte

8The code is provided at https://github.com/
lukovnikov/parseq/tree/crforen/parseq/
scripts_insert

9The trees are considered the same if every node’s children
occur in both trees in the same order, if the node’s children
should be ordered (for example argmax expressions) and if
every node’s children occur in both trees in any order for nodes
of which the children should not be ordered (for example
SW:concat and a collection of filter conditions).

https://github.com/lukovnikov/parseq/tree/crforen/parseq/scripts_insert
https://github.com/lukovnikov/parseq/tree/crforen/parseq/scripts_insert
https://github.com/lukovnikov/parseq/tree/crforen/parseq/scripts_insert
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et al., 2019; Xu et al., 2020). During evaluation, an
example was considered wrong if the filters were
decoded in a different nesting order. For this rea-
son, we use slightly simplified logical forms for
the Overnight dataset that remove nesting between
filters (see also Appendix B). Evaluation with these
logical forms better reflects the true meaning of the
queries. See Appendix C for an example.

For the sequence-based decoder, we found that
it is necessary to use numbered tokens to to suc-
cessfully train the model. We simply replace every
token “X” by a token “Xd”, where d specifies how
many tokens “X” have been observed before and
including the current token “X”. For example, this
would transform “(A (B C) (B D))” into “(1 A1 (2
B1 C 1 )1 (3 B2 D1 )2 )3”. This ensures that every
token in the sequence is unique. We use numbered
tokens in all the experiments, both for the sequence-
based as well as the tree-based decoders. We leave
a deeper investigation of the effect of numbering
tokens for future work.

Baselines: We considered the following models
as baselines in our experiments: (1) BERT with a
transformer decoder (BERT+Transformer), (2) a
re-implemented insertion transformer (Seq-Insert)
in both binary and uniform supervision settings
(BERT is used for encoding the input), and (3)
BERT with a regular tree-based decoder similar
to the one proposed by Dong and Lapata (2016)
(BERT+TreeGRU; see also Appendix E). Note that
both (1) and (3) are essentially left-to-right de-
coders and can’t decode in parallel. Even though
they are not directly comparable, we also include
the results reported by Chen et al. (2018a). Rather
than decoding logical forms (i.e. Lisp-style expres-
sions), they decode an intermediate representation
called a query graph using special graph generation
actions (e.g. add variable node, add edge). More-
over, the evaluation is based on execution accuracy
instead of logical form accuracy (Xu et al., 2020)

Training details: We train all models using
Adam (Kingma and Ba, 2014), varying the initial
learning rate within {0.0001, 0.00005, 0.00001}
and experimenting with dropout rates out of
{0.0, 0.1, 0.2, 0.4}. We also experimented with val-
ues from {1.0, 0.1} for the temperature τ . The val-
idation set for each domain was constructed by tak-
ing a random 20% subset of the training examples.
This validation set was used for early stopping. We
randomly searched the hyperparameter space and

took the best performing parameters based on its
validation performance on the publications domain.
These hyperparameters10 were used for training the
models on the other domains. We train each model
three times on every domain independently (with
the same seed values shared over domains and set-
tings) and also report the average over the domains.
For all our experiments, we use a 12-layer BERT
model from Huggingface (Wolf et al., 2020) as the
encoder and use a transformer with 6 layers, 12
heads, and 768 dimension for the decoder.

4.1 Results

Table 1 shows the results on all domains of the
Overnight dataset. Table 2 shows the results on four
Overnight domains, and indicates the accuracy and
speed-up measured in terms of the number of de-
coding steps compared to the BERT+Transformer
left-to-right baseline.

Baseline equivalence: First, we establish that
the results of our left-to-right baseline are on par
with previous reported numbers in similar settings.
This is shown in the middle part of Table 1, where
our “BERT+Transformer” beats Xu et al. (2020)’s
BERT+LSTM baseline by a small margin.

Sequence-based insertion baseline results: In
the bottom part of Table 1, we report numbers for
the slightly simplified logical forms. The perfor-
mance of the parallel sequence insertion decoder
with binary supervision is on par with that of our
left-to-right baseline. The uniform variant per-
forms slightly worse. Concerning the speed-up
obtained, Table 2 shows that the binary supervi-
sion is (more than×2) more effective than uniform
supervision. However, even the binary supervised
version lags behind the theoretically best possible
speed-up (“Seq-Insert Th.B.”).

Tree-based insertion results: The tree-based in-
sertion decoding procedure described in Section 3.1
enables a decoding complexity that is lower than
the theoretically best O(log2(N)) of the sequence-
based insertion decoder. However, the theoretically
best possible speed-up for tree insertion decoding
heavily depends on the tree structure. We report
this number (“Tree-Insert Th.B.”) for the different
domains in Table 2. The theoretically best possi-
ble speedup of the tree-based insertion decoder is

10dropout rate=0.2, learning rate=0.00005, τ=0.1, batch
size=10/30/50, cosine learning rate scheduler with 20 epoch
warm-up, 200 epochs
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cal. blo. hou. res. pub. rec. soc. bas. avg (± std)

Seq2Action (Chen et al., 2018b) 81.5 61.4 74.1 80.7 80.7 82.9 82.1 88.2 79.0

Shift-Reduce (Damonte et al., 2019) 43.5 25.1 29.6 37.3 32.9 58.3 51.2 69.6 43.4
BERT+LSTM (Xu et al., 2020) 58.3 42.6 48.7 55.4 64.6 68.5 70.4 84.1 61.6
BERT+Transformer 61.3 45.4 50.8 58.7 63.4 76.4 69.9 85.4 63.9

BERT+Transformer 80.0 53.9 70.9 83.4 70.4 83.3 73.8 84.0 75.0 ± 1.3

BERT+TreeGRU 77.4 49.7 67.9 82.6 73.3 81.2 73.0 84.4 73.7 ± 1.5

Seq-Insert (Binary) 78.2 50.9 67.5 81.0 72.5 81.2 70.9 84.1 73.3 ± 1.6

Seq-Insert (Uniform) 79.0 47.8 68.3 80.5 70.0 82.3 70.0 83.7 72.7 ± 1.6

Tree-Insert 77.4 51.9 71.8 81.1 72.9 82.9 73.2 84.4 74.4 ± 1.3

Table 1: Results on the test set of the different domains of the Overnight dataset. Top part: denotation accuracy.
Middle part: logical form accuracy on original trees. Bottom part: logical form accuracy on simplified trees. In the
last column, we report the average accuracy over the domains as well as the average (over domains) of standard
deviations of accuracies for every domain over different seeds.

slightly higher than that of the sequence-based in-
sertion decoder: an average of 0.48 decoding steps
can be gained, which corresponds to a potential
reduction of decoding steps of ×1.08 on average.
However, one needs to investigate how close an
actual tree-based insertion decoder can get to the
theoretically best number in practice.

The bottom part of Table 2 reports the results
for the tree-based insertion decoder. Our insertion-
based tree decoder achieves competitive accuracy
to both the left-to-right baseline as well as the se-
quence insertion decoder, while requiring fewer
decoding steps than the strong sequence insertion
baseline: an average of 0.7 decoding steps is
gained, which corresponds to an average of a×1.11
reduction in the number of decoding steps.

Ablation study: In Table 3, we assess the ef-
fects of some design choices and hyperparameters.
Decreasing the number of trajectories used during
training from 5 to 1 results in a significant decrease
in accuracy. The chosen temperature τ also affects
training. When τ is set to a high value, the target
distribution becomes more uniform, which allows
the model to use insertions that are not covered
by the trained trajectories making it more likely to
fail due to exposure bias, which is reflected in the
poor result for τ = 10. Using absolute instead of
relative position information leads only to a slight
decrease in accuracy. Note that using just absolute
positioning requires to process the structure tokens
because the structure information contained in rela-
tive positions is not being used. The child relations
(§3.2.2) appear to not have any significant effect.

5 Discussion

To obtain an efficient decoder other considerations
next to the number of decoding steps must be taken
into account. The actual execution speed and com-
putational load also heavily depend on (1) the size
of processed data and (2) efficiency of implementa-
tion. In the proposed tree decoder, the effective size
of model inputs is smaller than for the sequence
insertion decoder since it does not need parenthe-
ses. Thus, when implemented efficiently, it requires
less computation and less memory, which is attrac-
tive given the quadratic memory complexity of the
transformer’s attention.

Another point worth noting is that the best possi-
ble speed-up of the proposed insertion-based tree
decoder heavily depends on the data. However,
considering that the proposed model has between
two and three insertion slots per token, and the se-
quence insertion decoder only one, our method can
expand trees much faster.

A limitation of the proposed insertion-based
tree decoder is that it, like the Insertion Trans-
former, is unable to recover from mistakes made
during decoding. In contrast, the Levenshtein trans-
former (Gu et al., 2019b) also defines deletion oper-
ations and can thus recover from erroneous predic-
tions. Extending the insertion-based tree decoder
to also delete part of the trees is an interesting di-
rection for future work. While we simply sample
from a number of optimal trajectories, a more gen-
eral decoder that allows for deletion would have
to be trained using dynamic oracles (Goldberg and
Nivre, 2012; Ross et al., 2011; Vlachos and Clark,
2014) or reinforcement learning. This is likely to
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calendar restaurants publications recipes average
Acc. # Steps Acc. # Steps Acc. # Steps Acc. # Steps Acc. # St.

BERT+Transf. 80.0 40.4 (×1.0) 83.4 37.8 (×1.0) 70.4 40.9 (×1.0) 83.3 36.6 (×1.0) 79.3 38.9
BERT+TreeGRU 77.4 41.2 (×1.0) 82.6 38.1 (×1.0) 73.3 41.3 (×1.0) 81.2 36.7 (×1.0) 78.6 39.3

Seq-Insert Th.B. – 6.7 (×6.0) – 6.6 (×5.7) – 6.7 (×6.1) – 6.5 (×5.6) – 6.6
Seq-Insert (Bin.) 78.2 7.2 (×5.6) 81.0 6.9 (×5.5) 72.5 7.3 (×5.6) 81.2 6.9 (×5.3) 78.2 7.1
Seq-Insert (Uni.) 79.0 18.3 (×2.2) 80.5 16.9 (×2.2) 70.0 17.6 (×2.3) 82.3 16.8 (×2.2) 77.9 17.4

Tree-Insert Th.B. – 6.2 (×6.5) – 6.1 (×6.2) – 6.3 (×6.5) – 6.0 (×6.1) – 6.2
Tree-Insert 77.4 6.4 (×6.4) 81.1 6.2 (×6.2) 72.9 6.6 (×6.3) 82.9 6.2 (×5.8) 78.6 6.4

Table 2: Logical form accuracy on simplified logical forms and number of decoding steps used on the test set of
the different domains of the Overnight dataset. “Bin” stands for binary supervision, “Uni.” for uniform.

Ablation publications calendar recipes

τ = 1. 69.8 (-3.1) 74.0 (-3.4) 82.3 (-0.6)
τ = 10. 24.4 (-48.5) 20.0 (-57.4) 28.9 (-54.0)
# traj. = 1 67.3 (-5.6) 71.6 (-5.8) 66.5 (-16.4)
abs. pos 71.0 (-1.9) 77.0 (-0.4) 79.3 (-3.6)
no child. rel. 72.5 (-0.4) 78.8 (+1.4) 81.9 (-1.0)

Table 3: Results of an ablation study on the PUBLICA-
TIONS domain.

decrease the exposure bias as the model is exposed
to many different trajectories.

6 Related Work

To the best of our knowledge, to this date, only two
other works have investigated non-autoregressive
methods for trees and semantic parsing. The work
of Rubin and Berant (2020) proposes a bottom-
up tree decoder, however, their decoder is limited
to being linear in depth and thus less paralleliz-
able for deeper and narrower trees. In contrast,
the Insertion Transformer can be sub-linear both
in depth and breadth. Zhu et al. (2020) apply the
Insertion Transformer to semantic parsing, albeit
on SNIPS (Coucke et al., 2018), ATIS (Price, 1990)
and TOP (Gupta et al., 2018) datasets and focuses
on cross-lingual performance.

Only a few transformer architectures specialized
for trees have been proposed to date. The work of
Shiv and Quirk (2019) proposes a new positional
encoding to improve tree representation using trans-
formers. The work of Anonymous (2020), similarly
to ours, investigates relative positioning for trans-
formers operating on trees. Other architectures
to encode trees exist as well, such as the TreeL-
STM (Tai et al., 2015), however, a transformer-
based model enjoys greater parallelism and direct
modeling of long-range dependencies.

Several methods have recently been proposed for

non-autoregressive decoding and insertion-based
decoding. Stern et al. (2019), Gu et al. (2019a) and
Gu et al. (2019b) experiment with insertion-based
decoding where Gu et al. (2019b) also support dele-
tion operations. Ma et al. (2019), on the other
hand, develop a non-autoregressive sequence gen-
eration model using normalizing flows (Rezende
and Mohamed, 2015). Some other examples of non-
autoregressive decoding for NMT are (Ghazvinine-
jad et al., 2019; Gu et al., 2017; Kasai et al., 2020).

Various works have recently explored the use of
neural networks for semantic parsing. Dong and
Lapata (2016) explore both sequence-based as well
as tree-structured decoding. Alvarez-Melis and
Jaakkola (2017) propose an improved tree decoder
that uses additional classifiers to perform structure
prediction rather than using structure tokens. Chen
et al. (2018c) propose a binary tree generator for
code translation.

7 Conclusion

In this work, we presented a novel neural net-
work based method for non-autoregressive decod-
ing of trees. We define insertion operations used
in the step-wise decoding process that guarantee
that intermediate structures are trees. This results
in a reduction of the number of decoding steps
and allows to exploit tree structure. Experiments
on semantic parsing show competitive accuracy
and a significantly decreased number of decoding
steps, compared to strong autoregressive and non-
autoregressive baselines.

Acknowledgments

We thank the reviewers for their helpful comments
and suggestions. We also thank Prof. Dr. Jens
Lehmann, Priyansh Trivedi, and Gaurav Mahesh-
wari for their comments and help with this work.



3210

References
David Alvarez-Melis and Tommi S Jaakkola. 2017.

Tree-structured decoding with doubly-recurrent neu-
ral networks. In ICLR.

Anonymous. 2020. A structural transformer with rela-
tive positions in trees for code-to-sequence tasks.

Bo Chen, Le Sun, and Xianpei Han. 2018a. Sequence-
to-action: End-to-end semantic graph generation for
semantic parsing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 766–
777, Melbourne, Australia. Association for Compu-
tational Linguistics.

Bo Chen, Le Sun, and Xianpei Han. 2018b. Sequence-
to-action: End-to-end semantic graph generation for
semantic parsing. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 766–777.

Xinyun Chen, Chang Liu, and Dawn Song. 2018c.
Tree-to-tree neural networks for program translation.
In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages
2552–2562.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
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A Dataset Description and Statistics

The OVERNIGHT dataset consists of pairs of natu-
ral language questions and corresponding formal
language queries from 8 distinct domains, such as
“publications” and “restaurants”. The dataset was
generated as follows: (1) first, a grammar was de-
fined, which consists of a general part applicable
for any domain, and a domain-specific part that
specifies a seed lexicon mapping between predi-
cates and NL. Then, (2) a number of examples was
generated, which at this point consist of (i) a canon-
ical utterance and (ii) a formal query. Finally, (3)
the canonical utterances are paraphrased by Ama-
zon Mechanical Turk workers to generate more
natural examples. See Appendix C for an example
question-query pair from the data set.

See Table 4 for dataset statistics.

Domain #Train #Test
Avg. Avg. Avg.
tree tree seq.
size depth length

cal. 669 168 17.5 5.7 39.1
blo. 1596 399 18.8 5.8 42.1
hou. 752 189 17.3 5.6 38.8
res. 1325 332 16.3 5.4 37.1
pub. 640 161 18.3 5.8 41.1
rec. 864 216 16.1 5.7 36.3
soc. 3535 884 25.3 8.7 57.3
bas. 1561 391 19.8 8.2 45.1

Table 4: Statistics for the OVERNIGHT dataset after
simplification.

B Preprocessing

This simplified version is obtained by (1) merging
the “call” node with the function of the call (e.g.
replacing ( call SW:someFunction ... ) with (call-
SW:someFunction ... )) and (2) merging nested
filters into a multi-conditional expression where
the order of conditions doesn’t matter. Note that
these simplifications are easily reversible. Dur-
ing training, we sort the different parts of a multi-
conditional filter expression alphabetically and dur-
ing evaluation, we consider the different conditions
as unordered and accept them in any decoded or-
der. We use this simplified version for all further
experiments.

C An example from the Overnight
dataset

An actual example from the “publications” domain
from the OVERNIGHT dataset is the following.

The natural language question is:
“find an article published in 2004”.

The formal query corresponding to this question
is (after preprocessing):

Listing 1: Example query

( c a l l S W l i s t V a l u e
( f i l t e r

( c a l l S W g e t P r o p e r t y
( c a l l S W s i n g l e t o n

( en . a r t i c l e ) )
( s t r i n g

( ! t y p e ) ) )
( c o n d i t i o n

( s t r i n g
( p u b l i c a t i o n d a t e ) )

( s t r i n g
(= ) )

( d a t e
(2004 )
( −1 )
( −1 ) ) ) ) )

D An example of insertion-based
decoding for a real example.

Consider the example in Appendix C. This exam-
ple can be decoded in 5 steps using tree-based in-
sertion actions as elaborated in the following. Note
that multiple insertion action sequences would
work with the same number of steps.

Listing 2: Example query

1. ( f i l t e r )

Listing 3: Example query

2. ( c a l l S W l i s t V a l u e
( f i l t e r

( s t r i n g ) ) )

Listing 4: Example query

3. ( c a l l S W l i s t V a l u e
( f i l t e r

( c a l l S W s i n g l e t o n )
( c o n d i t i o n

( s t r i n g )
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( s t r i n g
(= ) )

( d a t e ) ) ) )

Listing 5: Example query

4. ( c a l l S W l i s t V a l u e
( f i l t e r

( c a l l S W g e t P r o p e r t y
( c a l l S W s i n g l e t o n

( en . a r t i c l e ) )
( s t r i n g ) )

( c o n d i t i o n
( s t r i n g

( p u b l i c a t i o n d a t e ) )
( s t r i n g

(= ) )
( d a t e

( −1 ) ) ) ) )

5. Same as original tree in Appendix C.

E TreeGRU

We implement the tree-based left-to-right
baseline decoder similarly to Dong and La-
pata (2016). However, in our implementation,
we use depth-first instead of breadth-first de-
coding. We achieve similar conditioning in
the different decoding steps by manipulating
which of the previous states are used as the
previous sibling state and the parent state. If
the previously decoded token was an opening
parenthesis “(”, then the parent state corre-
spond to the state of the GRU after producing
the opening parenthesis (this is the previous
state), the previous sibling state is set equal to
the parent state. Following Dong and Lapata
(2016), we use the parent state explicitly as
part of the GRU input in every step. When
a closing parenthesis “)” is decoded, the par-
ent of the previous parent state is used as the
parent state, the state accumulated from the
closed subtree is discarded, and the previous
parent state becomes the previous sibling state.
Thus, we make sure that similarly to Dong and
Lapata (2016)’s breadth-first decoding, the dif-
ferent branches aren’t directly conditioned on
each other through decoder states.


