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Abstract

Improving the robustness of neural machine
translation models on variations of input sen-
tences is an active area of research. In this
paper, we propose a simple data augmenta-
tion approach by sampling virtual sentences
from the vicinity distributions in higher-level
representations, constructed either from indi-
vidual training samples via adversarial learn-
ing or pairs of training samples through mixup.
By simplifying and extending previous work
that operates at the token level, our method
can construct virtual training samples in a
broader space and achieve improved transla-
tion accuracy compared to the previous state-
of-the-art. In addition, we present a simple
variation of the mixup strategy to better utilize
the pseudo training samples created from back-
translation, obtaining further improvement in
performance.

1 Introduction

In recent years, neural machine translation (NMT)
models (Sutskever et al., 2014; Bahdanau et al.,
2014; Vaswani et al., 2017) have dramatically im-
proved the quality of machine translation, espe-
cially with the introduction of the seminal Trans-
former architecture (Vaswani et al., 2017) that has
become the de facto modeling choice. NMT train-
ing aims to learn a parameterized function that
models the prediction of the translation in a tar-
get language given a source language sentence
from labeled training data, which is often limited
in volume especially for low-resource domains or
languages. Similar to other fields in deep learn-
ing, model robustness is an area of concern for
NMT as a minor change in the input sentence may
result in a different or incorrect translation. In
practice this can happen with spelling or gram-
mar errors (Provilkov et al., 2019), speech recog-
nition errors (Ruiz et al., 2019; Di Gangi et al.,

2019), or even a sentence of the same meaning
but with a slightly different use of words or ex-
pressions. Some studies (Belinkov and Bisk, 2017)
have shown that the performance of NMT models
can drop significantly when small perturbations are
added to input sentences.

This problem can be attributed to overfitting as it
is difficult to reliably model the translation distribu-
tion for the part of input space that has little or no
training samples. There have been several attempts
to address this problem by filling the space via data
augmentation. One direction is to create new train-
ing samples by adding perturbations at the token
level (Wang et al., 2018; Belinkov and Bisk, 2017;
Sperber et al., 2017; Ebrahimi et al., 2018; Li et al.,
2019; Cheng et al., 2018, 2019, 2020; Levy et al.,
2019), through either token insertion, deletion, and
substitution operations or introducing noises to to-
ken embedding vectors. Among these approaches,
Cheng et al. (2019) demonstrated the effectiveness
of incorporating adversarial training samples that
are natural sentences, with their semantic relevance
to the original sentence safeguarded by language
modeling. Cheng et al. (2020) achieved further
improvement by creating more diverse but virtual
sentences by mixing up actual training samples or
synthesized adversarial samples via interpolation
of word embeddings, but again at the token level.

Inspired by the success of manifold mixup in
computer vision (Verma et al., 2019) and the re-
cent evidence of separable manifolds in deep lan-
guage representations (Mamou et al., 2020), we
propose to simplify and extend previous work on
adversarial learning and mixup augmentation to
operate in high-level hidden representations, and
as such we name the method manifold adversarial
augmentation. Specifically, we create adversar-
ial representations on a randomly selected hidden
layer to attack the NMT model by adding pertur-
bations based on gradients at a random scale to
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some randomly selected positions. Because the ad-
versarial representations diverge slightly from the
original representation but in many different ways,
they can be viewed as many diverse sentences that
are different in expression but have similar mean-
ings. We also create virtual samples by mixing
up the hidden representations of two randomly se-
lected samples at a randomly selected hidden layer.
Similarly, the mixup presentations can be viewed
as many diverse sentences that fill the semantic
space between the two original samples, which can
help obtain smoother decision boundaries in the
data space that is less populated. We further ex-
tend the mixup strategy to back-translation, another
effective data augmentation method for machine
translation, creating virtual samples to bridge the
gap between pseudo samples and gold samples.

Experiments on the LDC Chinese-English and
IWSLT English-French benchmark tasks demon-
strate that our method can significantly improve
the vanilla Transformer model by more than 4 and
3 BLEU respectively, averaged over multiple data
sets for each task. Compared to the recent state-of-
the-art AdvAug method in (Cheng et al., 2020), our
method achieves an average improvement of 0.39
and 1.10 BLEU respectively. Further improvement
can be achieved with the use of back-translation
data.

2 Method

As our manifold adversarial augmentation method
is closely related to the AdvAug method (Cheng
et al., 2020), we start by highlighting, and also
depicting in Figure 1, their similarities and differ-
ences.

AdvAug uses both adversarial learning and
mixup augmentation at the token level. The adver-
sarial samples are obtained by randomly replacing
a small subset of input words (on either source or
target side) with words adjacent in the direction of
the gradient that can also fit in context based on lan-
guage modeling. The generated adversaries tend to
be natural sentences, however, the variation is lim-
ited as it cannot deal with word insertion, deletion,
reordering, and more general variations in language
expression. Their mixup operation creates virtual
samples by interpolating the word embedding vec-
tors of two randomly selected training samples or
adversarial samples. While it can generate more
training samples, it is hard to interpret the virtual
samples as representions of natural sentences, lim-
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Figure 1: Comparison of the AdvAug method and our
manifold adversarial augmentation method.

iting its potential in dealing with natural texts.
In contrast, our method operates on higher-level

hidden representions for both adversarial learn-
ing and mixup augmentation, relying on multiple
neural layers to extract semantic meanings, which
makes it easier to perform arithmetic operations
on semantics. Although we do not explicitly con-
struct adversarial samples that are natural texts, we
conjecture that our method has the potential of cov-
ering more variations that can occur naturally. We
next describe the details of our approach.

2.1 Adversarial Learning
Let x be the input sequence to our model, which
could be either a source language sentence or a
target language text representing the translation
history. We use h(j) and z(k) to denote the hidden
representations at the j-th encoder layer and the
history portion of the k-th decoder layer, respec-
tively. Enc>j denotes the function composed of the
encoder layers higher than j, and Dec>k the func-
tion composed of the decoder layers higher than k
plus the output layer, which computes the gener-
ation distribution of output words1. We generate
perturbation δh(j) to the encoder representations
h(j) as follows:

δh(j) = γ ∗ η ∗ g(j)

where g(j) is the gradient with respect to the
NMT training loss Lnmt back-propagated at h(j),
γ is a hyper-parameter controlling the maxi-
mum amount of perturbation, and η = [ηi ∼
Beta(αadv, βadv); 0 < i ≤ |x|] is a random vari-
able providing more fine-gained control of the per-
turbation. By setting αadv < 1 and βadv < 1, ηi

1Instead of performing manifold adversarial augmentation
on a predetermined hidden layer, we choose to randomly select
j ∈ [0,Ksrc] and k ∈ [0,Ktgt] among a range of encoder
and decoder layers, allowing more variations. Appendix A.2
examines the effect of different Ksrc and Ktgt values on
model performance.
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can concentrate close to 0 or 1 and act like a gate
independently controlling whether to add perturba-
tion at a specific position, mimicking the random
selection of positions for word replacement in Ad-
vAug. Similarly, we generate perturbation δz(k) to
z(k) on the decoder side. The manifold adversarial
learning loss Lmadv is computed by:

h̃ = Enc>j(h
(j) + δh(j))

Lmadv = E[KL(Dec>k(h̃, z(k) + δz(k)),ω)]

Here ω represents the prediction distribution of
NMT model on the original training sample, and
we base the adversarial loss on KL-divergence in-
stead of MLE, following the VAT work in (Miyato
et al., 2018).

2.2 Mixup Augmentation

Verma et al. (2019) investigated manifold mixup
augmentation as a way to leverage semantic inter-
polations at hidden representations as additional
training signals for the image classification task.
They demonstrated that it results in neural models
with smoother decision boundaries at multiple lay-
ers, avoiding being overly confident in the space
with little or no training samples, and can improve
model performance and robustness. Inspired by
this work, we attempt to extend the mixup aug-
mentation method in AdvAug (Cheng et al., 2020)
from word embeddings to hidden representations at
higher layers for NMT training. Specifically, given
two training samples, we first compute their hidden
representations h(j) and h′(j) at the j-th encoder
layer, hidden representations z(k) and z′(k) at the
history portion of the k-th decoder layer, and their
output distributions ω and ω′. We then construct
the hidden representations and the output distribu-
tion of the virtual mixup sample as follows:

h̃(j) = mλ(h
(j),h′(j))

z̃(k) = mλ(z
(k), z′(k))

ω̃ = mλ(ω,ω
′)

where mλ(x,y) = λx + (1 − λ)y denotes the
interpolation of two vectors, with an interpolation
weight λ ∼ Beta(αmixup, βmixup) randomly sam-
pled from a Beta distribution for each pair of train-
ing samples. The manifold mixup augmentation
loss Lmmixup is computed by:

Lmmixup = E[KL(Dec>k(Enc>j(h̃(j)), z̃(k)), ω̃)]

Finally, our manifold adversarial augmentation
method optimizes on the combination of original
NMT training loss, adversarial learning loss, and
the mixup augmentation loss:

L = Lnmt + Lmadv + Lmmixup

2.3 Extention to Back-Translation
Back translation is an effective data augmentation
method for machine translation. However, it is well
known that pseudo training samples created from
back translation have different characteristics from
the gold training samples, due to factors such as
domain mismatch and translation errors. To bridge
this gap, we extend the manifold mixup augmenta-
tion strategy to create virtual training samples that
are interpolated between a pseudo training sample
and a gold training sample, again at hidden rep-
resentations. We can adjust the parameters of the
distribution Beta(αbt, βbt) for generating the inter-
polation weight, biasing it toward the gold training
sample to alleviate the aforementioned problems
with back translation. Let h̃(j)

bt , z̃(k)bt , and ω̃bt be
interpolation results, we define an additional train-
ing loss:

Lm,btmixup = E[KL(Dec>k(Enc>j(h̃
(j)
bt ), z̃

(k)
bt ), ω̃bt)]

3 Experiments

3.1 Setup
We conduct experiments on two language pairs:
Chinese-English and English-French. For the
Chinese-English translation task, we use the LDC
corpus with 1.2M sentence pairs for training,
NIST06 for validation, and NIST02, NIST03,
NIST04, NIST05, NIST08 as the test sets. For the
English-French translation task, we use the IWSLT
2016 corpus with 230k sentence pairs for training,
test2012 for validation, and test2013 and test2014
as the test sets. All models are based on the Trans-
former architecture. Details of the data processing,
model configuration, and training settings can be
found in the appendix.

We compare with the following methods:

• The vanilla Transformer model (Vaswani
et al., 2017).

• The virtual adversarial regularization method
in (Sano et al., 2019), which adds a proportion
of normalized gradient to the source and target
word embeddings for adversarial training.
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Chinese-English English-French
METHOD MT06 MT02 MT03 MT04 MT05 MT08 test13 test14

Vaswani et al. (2017) 44.57 45.49 44.55 46.20 44.96 35.11 40.88 37.79
Sano et al. (2019) 45.75 46.37 45.02 46.49 45.88 35.90 41.67 38.72
Cheng et al. (2019) 46.95 47.06 46.48 47.39 46.58 37.38 41.76 39.46
Cheng et al. (2020) 49.26 49.03 47.96 48.86 49.88 39.63 43.03 40.91
Our method 49.43 49.54 50.34 49.46 49.04 39.19 44.58 41.56

Table 1: Comparison of main results with different robust training methods.

Chinese-English English-French
METHOD MT06 MT02 MT03 MT04 MT05 MT08 test13 test14

Lnmt + Lwmixup 48.14 48.75 48.80 48.45 47.69 38.55 43.72 40.37
Lnmt + Lmmixup 48.45 49.55 49.69 49.47 48.95 39.40 44.24 40.46
Lnmt + Lwadv 47.65 48.34 48.40 48.48 47.88 38.59 44.17 40.05
Lnmt + Lmadv 47.90 49.05 48.57 48.88 48.39 38.68 44.35 40.34
Lnmt + Lwmixup + Lwadv 48.18 49.37 49.59 48.90 49.03 39.01 44.52 40.87
Lnmt + Lmmixup + Lmadv 49.43 49.54 50.34 49.46 49.04 39.19 44.58 41.56

Table 2: Ablation study result of different loss functions. Lw
mixup and Lw

adv corresponds to adversarial agumenta-
tion at the word embedding level, compared with augmentation at the hidden representation level for Lm

mixup and
Lm
adv .

• The doubly adversarial inputs method in
(Cheng et al., 2019), which performs adver-
sarial learning with word substitutions in the
source and target text based on language mod-
eling and gradients at word embeddings.

• The AdvAug method in (Cheng et al., 2020),
a state of the art adversarial learning method
for NMT, also described in Section 2.

3.2 Main Results

Table 1 shows that our method is very competitive
in comparison with other methods in the literature,
achieving the overall best results. Compared to
the vanilla Transformer, our method achieves more
than 4 BLEU points of improvement on average on
the Chinese-English task and more than 3 BLEU
points of improvement on the English-French task.
Compared to AdvAug, the previous state of the
art, our method outperforms on 4 out of 6 test sets
on the Chinese-English task, yielding up to 2.38
BLEU points of improvement on MT03 and an
average improvement of 0.39 BLEU points over
the 6 test sets. On the English-French task, our
approach yields 1.55 and 0.65 BLEU points of
improvement on the two test sets respectively.

METHOD test13 test14
Vaswani et al. (2017) 40.88 37.79

+back-translation 43.55 40.20
Our method 44.58 41.56
+back-translation 44.81 41.92
+back-translation, Lm,btmixup 45.46 42.13

Table 3: Back-translation results on the English-French
task.

3.3 Ablation Study
Table 2 presents the ablation study results of dif-
ferent loss functions. In addition to two manifold
adversarial augmentation loss functions described
in Section 2, we also include their counterparts
computed at the word embeddings for compari-
son. First, we always achieve better MT results
with loss functions computed at the hidden rep-
resentions than at the word embeddings, further
validating our motivation that operating at higher
hidden layer is superior. Second, we observe that
adversarial learning and mixup augmentation are
complementary to each other, with the combination
of the two achieving the best performance.

3.4 Results with Back Translation
We conduct back-translation experiments on the
English-French task as it has a smaller training set
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and can potentially benefit more from back transla-
tion. 25M French sentences from newscrawl07-112

are used as additional monolingual data, and are
translated to English using a Transformer model
trained with only the parallel training data. As
shown in Table 3, both the Transformer baseline
and our method can benefit from back-translation,
although our method obtains a smaller improve-
ment compared to the Transformer baseline as it
has a significantly higher BLEU score to start with
(actually higher than the Transformer baseline with
back-translation). With the addition of our spe-
cially designed mixup loss Lm,btmixup that biases to-
ward the gold training samples in mixup augmenta-
tion, our method is able to achieve an extra gain of
0.65 and 0.21 BLEU improvement on the two test
sets.

4 Conclusion

In this paper, we present a simple yet effective man-
ifold adversarial augmentation method for NMT.
By training on virtual samples constructed through
adversarial learning and mixup augmentation at
higher-level hidden representations, our method
can train more robust NMT models with improved
translation performance.
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A Appendix

A.1 Experiment details

For the IWSLT English-French translation task, the
training sets are preprocessed with BPE with 20k
joint operations, and English and French share a vo-
cabulary of 20k sub-words. For the NIST Chinese-
English translation task, the training sets are pre-
processed with BPE with 60k joint operations, and
the vocabulary size is 60k and 30k for Chinese and
English respectively.

We follow the network settings in the original
Transformer work. The total numbers of the pa-
rameters of the model are 64757760 and 83247104
for French-English and Chinese-English transla-
tion tasks. The dropout ratio is 0.3. The model is
optimized with Adam. We use inverse square root
as the learning rate schedule, with the peak learn-
ing rate of 5e-4, warm-up steps of 4000. During
decoding, the beam size is 4 and the length penalty
is 0.6. We search hyper-parameters for producing
adversarial examples according to BLEU 3 on the
validation set. Finally, the maximum number of
layers for manifold data augmentation at source
side Ksrc and target side Ktgt are both set to 3. We
let αadv = 0.5 and βadv = 0.5 on the source side,
and αadv = 0.3 and βadv = 0.7 on the target side.
When mixing training example pairs, the hyper-
parameter αmixup and βmixup are both set to 8 for
the English-French translation task, and set to 0.2
for the Chinese-English translation task. When we
mix parallel sentence with back-translated parallel
sentence, we let αbt = 8 and βbt = 4.

We use 1 V100 GPU for the IWSLT English-
French translation task, and 4 V100 GPU for the
NIST Chinese-English translation task. It takes
about 24 hours and 72 hours for these two tasks
respectively.

Ksrc MT06 Ktgt MT06
1 48.55 1 48.40
2 48.72 2 48.78
3 49.43 3 49.43
4 49.15 4 48.78
5 48.76 5 48.65
6 48.60 6 48.32

Table 4: Effect ofKsrc andKtgt for manifold adversar-
ial augmentation on NIST Chinese-English translation
task

µ1 µ2 test13 test14
0 0 40.88 37.79
0 0.3 42.60 40.22
0 0.7 43.17 40.41
0 1 44.24 40.46

0.3 0 43.58 40.09
0.7 0 43.46 39.94
1 0 44.35 40.34
1 1 44.58 41.56

Table 5: Effect of different weights for losses on the
IWSLT16 English-French translation task

A.2 Effect of Ksrc and Ktgt for manifold
adversarial augmentation

Instead of performing manifold adversarial aug-
mentation on a predetermined hidden layer, we
choose to randomly select j ∈ [0,Ksrc] and k ∈
[0,Ktgt] among a range of encoder and decoder lay-
ers, allowing more variations. We study their effect
on the validation set of the NIST Chinese-English
translation task. We fix Ksrc = 3 (or Ktgt = 3),
when change the value ofKtgt (orKsrc). As shown
in Table 4, large or small Ksrc and Ktgt will make
the model performs worse down to about 1 BLEU.

A.3 Impact of different weights for losses
To further study the impact of different losses,
we set the training loss of our model as L =

Lnmt+µ1L
(m)
adv +µ2L

(m)
mixup, and compare the per-

formance when we set different µ1 and µ2. We
conduct experiments on the IWSLT English-French
translation task. As shown in Table 5, too small µ1
and µ2 will make the model perform worse.

3https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/mteval-
v13a.pl


