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Abstract
Conversational Machine Reading (CMR) aims
at answering questions in complicated interac-
tive scenarios. Machine needs to answer ques-
tions through interactions with users based on
given rule document, user scenario and dia-
logue history, and even initiatively asks ques-
tions for clarification if necessary. Namely,
the answer to the task needs a machine in the
response of either Yes, No, Irrelevant or to
raise a follow-up question for further clarifica-
tion. To effectively capture multiple objects
in such a challenging task, graph modeling is
supposed to be adopted, though it is surprising
that this does not happen until this work pro-
poses a dialogue graph modeling framework
by incorporating two complementary graph
models, i.e., explicit discourse graph and im-
plicit discourse graph, which respectively cap-
ture explicit and implicit interactions hidden
in the rule documents. The proposed model
is evaluated on the ShARC benchmark and
achieves new state-of-the-art by first exceed-
ing the milestone accuracy score of 80%. The
source code of our paper is available at https:
//github.com/ozyyshr/DGM

1 Introduction

Training machines to understand documents is the
major goal of machine reading comprehension
(MRC) (Hermann et al., 2015; Hill et al., 2016; Ra-
jpurkar et al., 2016; Nguyen et al., 2016; Joshi et al.,
2017; Rajpurkar et al., 2018; Choi et al., 2018;
Zhang et al., 2018; Reddy et al., 2019; Zhang et al.,
2020c, 2021). Especially, in the recent challeng-
ing conversational machine reading (CMR) task,
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the machine is required to read and interpret the
given rule document and the user scenario, ask
clarification questions, and then make a final deci-
sion (Saeidi et al., 2018). As an example shown
in Figure 1. The user posts the scenario and asks
a question concerning whether the loan meets the
needs. Since the user cannot know the rule doc-
ument, the information he/she provided may not
be sufficient for the machine to decide. Therefore,
a series of follow-up questions are asked by the
machine until it can finally make a conclusion.

Rule Text: 

Initial Question:
User Scenario: 

Decision: Yes No IrrelevantInquire

Decision: Yes No IrrelevantInquire

Follow-up Q1:
Follow-up A1:

Follow-up Q2:

Follow-up A2:

Decision: IrrelevantInquireYes

Final Answer:

Decision: Yes No IrrelevantInquire

Follow-up Q3:

Follow-up A2: 

No

I got my loan last year. It was for 450,000.
Does this loan meet my needs?

                  Eligible applicants may obtain direct loans for up to 
a maximum indebtedness of $300,000, and guaranteed  loans 
for up to a maximum indebtedness of $1,392,000 (amount 
 adjusted annually for inflation).

Do you need a direct loan?

Is your loan less than 1,392,000?

Is your loan for less than 300,000?

Yes.

Yes.

Yes.

No.

Figure 1: An example dialog from ShARC benchmark
dataset (Saeidi et al., 2018). At each turn, the machine
can give a decision regarding the initial question put up
by the user. If the decision is Inquire, the machine will
ask a clarification question to help with decision mak-
ing. The corresponding rule document and the question
are marked in the same color in the figure.

The major challenges for the conversational
machine reading include the rule document in-
terpretation, and reasoning with the background

https://github.com/ozyyshr/DGM
https://github.com/ozyyshr/DGM


3159

knowledge, e.g., the provided rule document, user
scenario and the input question. Existing works
(Zhong and Zettlemoyer, 2019; Lawrence et al.,
2019; Verma et al., 2020; Gao et al., 2020a,b) have
made progress in improving the reasoning ability
by modeling the interactions among rule document,
user scenario and the other elements implicitly. As
for rule document interpretation, most existing ap-
proaches simply split the rule document into sev-
eral rule conditions to be satisfied. In general, they
first track the entailment state of each rule condi-
tion for decision making and then form a certain
under-specified rule span into a follow-up question.

However, the aforementioned cascaded methods
tend to model in a holistic way, i.e. interpreting the
rule document with other elements quite plainly,
which have the following drawbacks. First, very
little attention is paid to the inner dependencies of
rule conditions such as the discourse structure and
discourse relations (Qin et al., 2016, 2017; Bai and
Zhao, 2018). Second, existing methods do not dig
deep enough into mining the interactions between
the rule document and other elements, especially
user scenarios.

As seen, the interactions of elements in CMR
is far more complicated than that of traditional
MRC tasks. Therefore, we proposed a dialogue
graph modeling (DGM) framework consisting of
two complementary graphs to fully capture the
complicated interactions among all the elements.
Firstly, an explicit discourse graph is constructed
by making use of discourse relations of elemen-
tary discourse units (EDUs) generated from rule
documents to tackle explicit element interactions.
User scenario representation is injected as a spe-
cial global vertex, to bridge the interactions and
capture the inherent dependency between the rule
document and the user scenario information. Sec-
ondly, an implicit discourse graph is designed for
digging the latent salient interactions among rule
documents by decoupling and fusing mechanism.
The two dialogue graphs compose the encoder of
our model and feed fusing representations to the
decoder for making decisions.

As to our best knowledge we are the first to ex-
plicitly model the relationships among rules and
user scenario with Graph Convolutional Networks
(GCNs) (Schlichtkrull et al., 2018). Experimental
results show that our proposed model outperforms
the baseline models in terms of official evaluation
metrics and achieves the new state-of-the-art re-

sults on ShARC, the benchmark dataset for CMR
(Saeidi et al., 2018). In addition, our model enjoys
strong interpretability by modeling the process in
an intuitive way.

2 Related Work

Conversational Machine Reading. Compared
with traditional triplet-based MRC tasks that aim
to answer questions by reading given document
(Hermann et al., 2015; Hill et al., 2016; Rajpurkar
et al., 2016; Nguyen et al., 2016; Joshi et al., 2017;
Rajpurkar et al., 2018; Zhang et al., 2020a,b), our
concerned CMR task (Saeidi et al., 2018) is more
challenging as it involves rule documents, scenar-
ios, asking clarification question, and making a fi-
nal decision. The major differences lie in two sides:
1) machines are required to formulate follow-up
questions for clarification before confident enough
to make the decision, 2) machines have to make
a question-related conclusion by interpreting a set
of complex decision rules, instead of simply ex-
tracting the answer from the text. Existing works
(Zhong and Zettlemoyer, 2019; Lawrence et al.,
2019; Verma et al., 2020; Gao et al., 2020a,b) have
made progress in improving the reasoning ability
by modeling the interactions between the rule docu-
ment and other elements. As a widely-used manner,
the existing models commonly extracted the rule
documents into individual rule items, and track
the rule fulfillment for the dialogue states. As in-
dicated in Gao et al. (2020b), improving the rule
document representation remains a key factor to
the overall model performance, because the rule
documents are formed with a series of implicit,
separable, and possibly interrelated rule items that
the conversation should satisfy before making de-
cisions. However, previous work only considered
segmenting the discourse, and neglected the in-
ner discourse structure/relationships between the
EDUs (Gao et al., 2020b). Compared to existing
methods, our method makes the first attempt to ex-
plicitly capture elaborate interactions among all the
document elements, user scenarios and dialogue
history updates.

Graph Modeling in MRC. Inspired by the im-
pressive performance of GCN (Kipf and Welling,
2017; Luo and Zhao, 2020), efforts towards better
performance on MRC utilizing GCNs have sprung
up, such as BAG (Cao et al., 2019), GraphRel (Fu
et al., 2019) and social information reasoning (Li
and Goldwasser, 2019). Unlike the previous works
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who just apply the graph framework mechanically
to turn the entire passage or document into a graph,
the discourse graph we proposed is delicately de-
signed to mine the relationships of multiple ele-
ments in CMR task and to facilitate information
flow over the graph.

3 Model

As illustrated in Figure 2, our model mainly con-
sists of three parts to generate the final answer.

1. Rule document is segmented into rule EDUs,
which is then tagged discourse relationship by a
pre-trained discourse parser.

2. In the encoding phase, taking segmented and
preprocessed rule document and user scenario as in-
put, we build two graphs over the segments (EDUs),
in which the explicit discourse graph captures the
interactions among rules and user scenarios with
the support of tagged discourse relationship, while
the implicit discourse graph mines latent salient
interactions from the raw rule document.

3. For decoding, an interaction layer takes the
combined representation generated by both explicit
and implicit discourse graph of rule EDUs, initial
question, user scenario and dialog history as inputs,
and maps it into an entailment state of each rule
EDU. With these rule fulfillment situation, we can
make a decision among Yes, No, Inquire and Irrel-
evant. Once the decision is made to be Inquire, the
model generates a follow-up question to clarify the
under-specified rule span in the rule document.

The complete training procedure of DGM is
shown in Algorithm 1.

3.1 Preprocessing
EDU Segmentation. We first separate the rule
document into several units each containing exactly
one condition. Here we follow DISCERN (Gao
et al., 2020b) adopting the discourse segmenter (Li
et al., 2018) to break the rule document into EDUs.

Discourse Relation. Unlike EDU segmentation
which only concerns with constituency-based log-
ical structures, discourse relation allows relations
between the non-adjacent EDUs. There are in total
16 discourse relations according to STAC (Asher
et al., 2016), namely, comment, clarification-
question, elaboration, acknowledgement, contin-
uation, explanation, conditional, question-answer,
alternation, question-elaboration, result, back-
ground, narration, correction, parallel and con-
trast. We adopt a pre-trained discourse parser (Shi

Algorithm 1: DGM Algorithm
Input: word embeddings E = {e1, .., en},

dimension of word embeddings d,
token ids of rule document I ,
discourse relation D of rule
document, number of rule EDUs n

Output: Final decision in Yes/No/Irrelevant
or a follow-up question

1 for i in epochs do
2 build explicit discourse graph G(E,D)
3 Gn×d ← GCN(G)
4 build implicit discourse graph by

calculating adjacent matrix Ml, Mc

5 get rule EDU representation Cn×d by
Eq.(6) and (7)

6 combined representation for [RULE]r̃i ←
self-Attn(C +G)i

7 entailment state fi ← LINEAR(r̃i)
8 make the decision z by Eq.(10) based

on r̃i and fi
9 if z is Inquire then

10 generate follow-up question

11 return z or follow-up question

and Huang, 2019)1 to decide the dependencies be-
tween EDUs and the corresponding relation types
with the structured representation of each EDU.

3.2 Encoding Block
Embedding. We select the pre-trained language
model (PrLM) model ELECTRA (Clark et al.,
2020) for encoding. As shown in the figure, the
input of our model includes rule document which
has already be parsed into EDUs with explicit dis-
course relation tagging, user initial question, user
scenario and the dialog history. Instead of insert-
ing a [CLS] token before each rule EDU to get
a sentence-level representation, we use [RULE]
which is proved to enhance performance (Lee et al.,
2020). Note that we also insert [SEP] between
every two adjacent utterances.

Explicit Discourse Graph. We first construct
the explicit discourse graph as a Levi graph (Levi,
1942) which turns the labeled edges into addi-
tional vertices. Suppose G = (V,E,R) is the
graph constructed in the following way: if ut-
terance U1 is the continuation of utterance U2,

1This discourse parser gives a state-of-the-art performance
on STAC so far
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Figure 2: The overall structure for our proposed model. With segmented EDUs and tagged relations, the inputs
including user initial question, user scenario and dialog history are sent for embedding and graph modeling to
make the final decision. If the decision is Inquire, the question generation stage will be activated and use the
under-specified span of rule document to generate a follow-up question.

we add a directed edge e = (U1, U2) with re-
lation R assigned to Continuation. The corre-
sponding Levi graph can be expressed as G =
(VL, EL, RL) where VL = V ∪ R. EL is the
set of edges with format (U1, Continuation) and
(Continuation, U2). As for RL, previous works
such as (Marcheggiani and Titov, 2017; Beck
et al., 2018) designed three types of edges RL =
default, reverse, self to enhance information
flow. Here with our settings, we extend it into six
types: default-in, default-out, reverse-in, reverse-
out, self, global, corresponding to the direction of
the edges towards the relation vertices. An example
of constructing Levi graph is shown in Figure 3. To
construct the discourse structure of other elements,
a global vertex representing user scenario is added
and connected with all the other vertices.

We use a relational graph convolutional network
(Schlichtkrull et al., 2018) to implement explicit
discourse graph as the traditional GCN is not able
to handle multi-relation graphs. For utterance and
scenario vertices, we employ the encoding results
of [RULE] and [CLS] in Section 3.1. For rela-

tion vertices, we look up in the embedding table to
get the initial representation. Given the initial rep-
resentation h0p of every node vp, the feed-forward
or the message-passing process can be written as:

h(l+1)
p = ReLU(

∑
r∈RL

∑
vq∈Nr(vp)

1

cp,r
w(l)
r h

(l)
q ),

(1)
where Nr(vp) denotes the neighbors of node vp
under relation r and cp,r is the number of those
nodes. w(l)

r is the learnable parameters of layer l.
Because the total 16 relations cannot be treated

equally, e.g. relation Contrast is much more impor-
tant than the relation Continuation, we introduce
the gating mechanism (Marcheggiani and Titov,
2017). The basic idea is to calculate a value be-
tween 0 and 1 for information passing control.

g(l)p = Sigmoid(h(l)p Wr,g), (2)

where W (l)
r,g is a learnable parameter under relation

type r of the l-th layer. Finally, the forward process
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EDU0: who may receive a grant?

EDU1: contrary to what you mignt see online
             or in the media 

EDU2: the federal government does not offer 
             grants or “free money” to individuals

EDU3: to start a business

EDU4: or cover personal expense

(a) separated EDUs

EDU0 EDU1

EDU2

EDU3

EDU4
QA-pair

Elaboration

Continuation
Alternation

(b) the original graph

G

QA-pair

Continuation

Alternation

EDU0

EDU1

EDU2

EDU3

EDU4

Elaboration

(c) the Levi graph

Figure 3: Processes turning a sample dialog into Levi graph representing discourse relations.

of gated GCN can be represented as:

h(l+1)
p = ReLU(

∑
r∈RL

∑
vq∈Nr(vp)

g(l)q
1

cp,r
w(l)
r h

(l)
q ),

(3)

Implicit Discourse Graph. Implicit discourse
graph aims at digging the salient latent interactions
inside rule document. Each token i in rule EDU is
represented as a vertex in the graph. We use adja-
cent matrices to express implicit discourse graph.
Two types of matrices Ml and Mc are introduced
standing for local and contextualized information:

Ml[i, j] =

{
0 if Ii = Ij ,
−∞ otherwise.

(4)

Mc[i, j] =

{
0 if Ii 6= Ij ,
−∞ otherwise.

(5)

where Ii is the index of token i in EDU. Thus the
information containing in rule document are de-
coupled in two separate aspects. Using multi-head
self-attention to encode the graph and denote the
length of the whole rule document as s, embedding
dimension as d, we will get the following:

Gi = MHSA(E,Mi), i ∈ {l, c}, (6)

where Gi ∈ Rs×d and E is the embedding result
from PrLM. MHSA denotes the multi-head self-
attention (Vaswani et al., 2017).

After enough interactions inside rule EDUs, we
then fuse the information (Liu et al., 2020) of these
two implicit discourse graphs-like items2 above in

2Taking self-attention weights as edges connecting repre-
sentations (as node), it can be seen as graph as well.

a gated manner by considering both the original and
graph encoding representation of rule document.

Ẽ1 = ReLU(FC([E,Gl, E −Gl, E �Gl])),
Ẽ2 = ReLU(FC([E,Gc, E −Gc, E �Gc])),
g = Sigmoid(FC([Ẽ1, Ẽ2])),

C = g �Gl + (1− g)�Gc,
(7)

where FC is the fully-connected layer and C ∈
Rs×d. We take the calculated result of the original
[RULE] to stand for the updated rule EDUs from
C, denoted as ci.

3.3 Decoding Block

Interaction Layer. We use an interaction layer
to attend to all available information so far to
learn in a systematic way. A self-attention layer
(Vaswani et al., 2017) is adopted here allowing all
the rule EDUs and other elements to attend to each
other. Let [r1, r2, ...;uq;us;h1, h2, ...] denote all
the representations, ri is the combined sentence-
level representation of explicit and implicit dis-
course graph, uq, us and hi stand for the represen-
tation of user question, user scenario and dialog
history respectively. After encoding, the output can
be displayed as [r̃1, r̃2, ...; ũq, ũs; h̃1, h̃2...].

Decision Making. Similar to existing works
(Zhong and Zettlemoyer, 2019; Gao et al., 2020a,b),
we apply an entailment-driven approach for deci-
sion making. A linear transformation tracks the
fulfillment state of each rule EDU among Entail-
ment, Contradiction and Unmentioned. At last, the
decision is made according to:

fi =Wf r̃i + bf ∈ R3, (8)
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Model
Dev Set Test Set

Decision Making Question Gen. Decision Making Question Gen.

Micro Macro BLEU1 BLEU4 Micro Macro BLEU1 BLEU4

NMT (Saeidi et al., 2018) - - - - 44.8 42.8 34.0 7.8
CM (Saeidi et al., 2018) - - - - 61.9 68.9 54.4 34.4
BERTQA (Zhong and Zettlemoyer, 2019) 68.6 73.7 47.4 54.0 63.6 70.8 46.2 36.3
UcraNet (Verma et al., 2020) - - - - 65.1 71.2 60.5 46.1
BiSon (Lawrence et al., 2019) 66.0 70.8 46.6 54.1 66.9 71.6 58.8 44.3
E3 (Zhong and Zettlemoyer, 2019) 68.0 73.4 67.1 53.7 67.7 73.3 54.1 38.7
EMT (Gao et al., 2020a) 73.2 78.3 67.5 53.2 69.1 74.6 63.9 49.5
DISCERN (Gao et al., 2020b) 74.9 79.8 65.7 52.4 73.2 78.3 64.0 49.1
DGM (ours) 78.6 82.2 71.8 60.2 77.4 81.2 63.3 48.4

Table 1: Results on the blind held-out test set and the dev set of ShARC end-to-end task. Micro and Macro stand
for Micro Accuracy and Macro Accuracy respectively.

where fi is the score predicted for the three labels
of the i-th condition. This prediction is trained via a
cross entropy loss for multi-classification problems:

Lentail = −
1

N

N∑
i=1

log softmax(fi)r, (9)

where r is the ground-truth state of fulfillment.
After obtaining the state of every rule, we are

able to give a final decision towards whether it is
Yes, No, Inquire or Irrelevant by attention.

αi = wTα [fi; r̃i] + bα ∈ R1,

α̃i = softmax(α)i ∈ [0, 1],

z =Wz

∑
i

α̃i[fi; r̃i] + bz ∈ R4,
(10)

whereαi is the attention weight for the i-th decision
and z has the score for all the four possible states.
The corresponding training loss is:

Ldecision = − log softmax(z)l, (11)

The overall loss for decision making is:

L = Ldecision + λLentail. (12)

Qustion Generation. If the decision is made to
be Inquire, the machine need to ask a follow-up
question to further clarify. Question generation in
this part is mainly based on the uncovered informa-
tion in the rule document, and then that informa-
tion will be rephrased into a question. We predict
the position of an under-specified span within a
rule document in a supervised way. Following De-
vlin et al. (2019), our model learns a start vector
ws ∈ Rd and end vector we ∈ Rd to indicate the
start and end positions of the desired span:

span = argmin
i,j,k

(wTs tk,i + wTe tk,j), (13)

where tk,i denote the i-th token in the k-th rule
sentence. The ground-truth span labels are gen-
erated by calculating the edit-distance between
the rule span and the follow-up questions. Intu-
itively, the shortest rule span with the minimum
edit-distance is selected to be the under-specified
span. Finally, we concatenate the rule document
and the predicted span as an input sequence to fine-
tune UniLM (Dong et al., 2019) and generate the
follow-up question.

4 Experiments

4.1 Experimental Setup

Dataset. We conduct experiments on ShARC
dataset, the current CMR benchmark3 collected
by Saeidi et al. (2018). It contains up to 948 dialog
trees clawed from government websites. Those di-
alog trees are then flattened into 32,436 examples
consisting of utterance id, tree id, rule document,
initial question, user scenario, dialog history, ev-
idence and the decision. It is worth noting that
evidence is the information that we need to extract
from user information and thus will not be given in
the testing phase. The sizes of train, dev and test
are 21,890, 2,270 and 8,276 respectively. We also
showed the generalizability of our model on the
Multi-Turn Dialogue Reasoning (MuTual) dataset
(Cui et al., 2020), which has 8,678 multiple choice
samples and is divided into 7,376, 651, 651 of train,
dev and test sets respectively.

Evaluation. For the decision-making subtask,
ShARC evaluates the Micro- and Macro- Acc.
for the results of classification. If both the pre-
diction and ground truth of decision is Inquire,

3Leaderboard can be found at website https://
sharc-data.github.io/leaderboard.html

 https://sharc-data.github.io/leaderboard.html
 https://sharc-data.github.io/leaderboard.html
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BLEU(Papineni et al., 2002) score (particularly
BLEU1 and BLEU4) will be evaluated on the
follow-up question generation subtask.

Implementation Details. For rule EDU relation
prediction, we keep all the default parameters of
the original discourse relation parser4, with F1
score achieving 55. In the decision-making stage,
we finetune an ELECTRA-based model. The di-
mension of hidden states is 1024 for both the en-
coder and decoder. The training process uses Adam
(Kingma and Ba, 2015) for 5 epochs with learning
rate set to 5e-5. We also use gradient clipping with
a maximum gradient norm of 2, and a total batch
size of 16. In the question generation stage, for
the sake of consistency, we also use an ELECTRA-
based model for span extraction. For UniLM, we
finetune it with a batch size of 16, a learning rate
of 2e-5 and beam size is set to 10 for inference.
It takes 3-4 hours for training on a single TITAN
RTX 2080Ti GPU (24GB memory).

4.2 Results

Table 1 shows the results of DGM and all the base-
line models for the End-to-End task on the blind
held-out test set of ShARC5. Evaluating results in-
dicate that DGM outperforms the baselines in most
of the metrics. In particular, DGM outperforms the
previous state-of-the-art model DISCERN by 4.2%
in Micro Acc. and 2.9% in Macro Acc.

To test the generality of DGM on other different
PrLMs and to do a fair comparison with previous
models, We alter the underlying PrLMs to other
variants in DGM and the previous state-of-the-art
model DISCERN respectively. The results on the
dev set of ShARC are shown in Table 2. In the first
place, DGM performs better than DISCERN on all
the PrLMs, which indicates the all-round superior-
ity of DGM. Additionally, results on ELECTRA is
generally better than that of BERT and RoBERTa.
This indicates that ELECTRA is an even better
trained PrLM. By the aforementioned analysis, our
DGM can generally perform well on widely-used
PrLMs.

4https://github.com/shizhouxing/
DialogueDiscourseParsing

5As indicated in (Gao et al., 2020a,b), the question genera-
tion results normally suffer from randomness. As the focus of
this task is the decision making task like previous studies.

PrLMs Micro Acc. Macro Acc.
DISCERN DGM DISCERN DGM

BERTbase 69.8 70.4 75.3 76.0
RoBERTabase 74.9 75.8 79.8 80.2
ELECTRAbase 75.2 75.5 79.7 80.4
BERTlarge 72.8 73.0 77.8 78.0
RoBERTalarge 76.1 76.6 80.6 81.0
ELECTRAlarge 77.2 78.6 80.3 82.2

Table 2: Performance of DISCERN and DGM on differ-
ent PrLMs on the dev set of ShARC.

In addition, Table 3 lists the class-wise classi-
fication accuracy of our model. Results demon-
strate that our model performs quite satisfactorily
for all classification subtasks, outperforming all
other models in three of all four subtasks though
a minor behind on the Irrelevant subtask. Com-
pared to competent models, our model boosts the
performance with a great gain to judge whether
the user’s requirements need further inquiry or are
already fulfilled. It is worth noting that the Inquire
subtask is the most fundamental one among all sub-
tasks required by the concerned CMR. The superi-
ority of our model for this core subtask shows that
our DGM model indeed effectively captures the
complicated interactions among all the concerned
document rules and scenarios.

Models Total Yes No Inquire Irrelevant

BERTQA 63.6 61.2 61.0 62.6 96.4
E3 68.0 65.9 70.6 60.5 96.4
UrcaNet 65.9 63.3 68.4 58.9 95.7
EMT 73.2 70.5 73.2 70.8 98.6
DISCERN 75.2 71.9 75.8 73.3 99.3
DGM (ours) 77.8 75.2 77.9 76.3 97.8

Table 3: Class-wise decision prediction accuracy on the
dev set of ShARC.

5 Analysis

5.1 Ablation Study

To investigate the impacts of different graphs,
we conducted an ablation study on the decision-
making subtask which is the vital part of our model,
directly influencing the results afterward. Detailed
results on the dev set of ShARC in Table 4 show
that both the explicit and implicit discourse graph
are indispensable as removing any one of them
causes a performance drop (1-3 points) on both
Macro Acc. and Micro Acc. Especially, these two
metrics drop by a great margin as we remove the
explicit discourse graph, which shows that explicit
discourse relation reasoning is crucial in CMR.

https://github.com/shizhouxing/DialogueDiscourseParsing
https://github.com/shizhouxing/DialogueDiscourseParsing
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Example Discourse Relation DecisionStructure Type

Snippet: Export products made from endangered animals: 
(special rules)0 If the animal is classied as B, C or D1 you do 
not need to do anything2

Scenario: I do not have medicare for this person.
Question: Can I export products made from this animal?

Yes ×
No

Irrelevant
Inquire √

Simple

Snippet: Who may receive a grant?0 Contrary to what you
might see online in the media1 the federal government
does not offer grants or free money to individuals2 to start a
business3 or cover personal expenses4
Scenario: I live in Norway with my wife and children.
Question: Can I get a grant from federal government?

QA-pair

Elaboration
Continuation

Alternation

Contrast Explanation

Disjunction

Yes
No ×

Irrelevant
Inquire √

Snippet: In order to qualify for this benefit program0 home-
owners and renters must have sustained damage B, C or D1 
and be located in a disaster declared county2

Scenario: (empty)
Question: Do I qualify for this loan?

Conjunction Continuation Continuation

Yes
  No

Irrelevant ×
Inquire √

Snippet: Going abroad0 If your trip is going to last longer
than 8 or 12 weeks, contact the Tax Credit Office within a
month1 your tex credits will end unless2 you get UK benifits
or State Pension3 and you live in another European country
with a child4

Comment

Comment

Contrast

Contrast

Complex

Yes
  No √

Irrelevant
Inquire ×Scenario: (empty)

Question: Will my tex credit end?

Figure 4: Examples selected from the dev set of ShARC where DISCERN fails but our model succeeds.

Also, we can see that adding the special token
[RULE] indeed conduce to the performance.

Models Macro Acc. Micro Acc.

DGM 82.2 78.6
w/o Explicit Discourse Graph 79.8 75.2
w/o Implicit Discourse Graph 81.3 76.7
w/o both 77.3 71.7
w/o [RULE] 81.6 77.9

Table 4: Ablation study of our model for decision mak-
ing subtask on the dev set of ShARC.

5.2 User Scenario Interpretation

In DGM, by injecting the user scenario as the
global node in the explicit discourse graph we in-
tend to improve the interpretation ability of our
model with respect to user scenarios. To test the
effect of the proposed model on scenario interpre-
tation, we create a subset based on the dev set
consisting of 761 samples that have user scenar-
ios and an empty dialog history. The results on
the decision-making subtask in Table 5 shows that
our model can greatly improve the interpretation
of user scenarios by surpassing DISCERN 11.8%
and 14.8% of Macro Acc. and Micro Acc. respec-
tively. In particular, DGM outperforms DISCERN

by a large margin in every class of decision.

Models Macro Micro Yes No Irrelevant Inquire

DISCERN 63.5 60.2 35.3 50.7 100.0 67.8
DGM 75.3 75.0 58.3 62.8 100.0 79.1

Table 5: Results for decision making over user scenario
subset of the ShARC dev set.

Manually analyzing the predicted results also
indicates that DGM is capable of various reason-
ing including numerical reasoning, commonsense
reasoning and rule document paraphrasing. For
example, for numerical reasoning, given a scenario

“I plan on being away for five months before return-
ing”, DGM is able to match that with “your tax
credits will stop if you expect to be away for one
year or more” in the rule document.

5.3 Rule Document Interpretation

To see how DGM interpret the rule document, we
analyzed the predictions from DGM and DISCERN

on the dev set of ShARC to see how our model
fixes the erroneous cases made by DISCERN.

We selected four types of rule structures and the
representative examples are shown in Figure 4. It
can be seen that the discourse relation tagged for
the rule document can well represent the real rela-
tion in the discourse. For example, in the third case,

“homeowners and renters must have sustained dam-
age B, C or D” is the continuation of “in order to
qualify for this benefit program” and ”be located
in a disaster declared county” is the continuation
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of it. The discourse relation informs that “be lo-
cated in a disaster declared county” and “have sus-
tained damage B, C or D” are two conditions one
must obey to be qualified. Generally, Continuation
may indicate that two rules have some conjunctive
relations while Alternation denotes a disjunctive
relation. All the relations together characterize the
complex rule relations and thus are vital in deci-
sion making. Statistics regarding relations can be
found in Table 6. The contextualized information
containing in the rule document learned by the im-
plicit discourse graph also contributes to the overall
performance as it digs the semantically rich repre-
sentations of rule EDUs.

Relation Types Train Set Dev Set

Comment 28756 2374
Clarification question 330 69
Elaboration 639 82
Acknowledgement 6242 815
Continuation 7317 1090
Explanation 10831 1155
Conditional 1445 139
Question-answer pair 1824 468
Alternation 896 323
Result 664 0
Correction 14 0
Contrast 16523 1595

Table 6: Statistics analysis of relation types of the train
and dev on ShARC. “Comment”, “Continuation”, “Ex-
planation” and “Contrast” constitutes the majority of
the discourse relations.

5.4 Generalizability Evaluation
To verify DGM’s generalizability and show that
it can be smoothly applied to a broad type of QA
tasks, We conducted experiments on a represen-
tative dialogue reasoning dataset MuTual. It is
modified from Chinese high school English listen-
ing comprehension test data. It consists of 8860
annotated dialogues, namely, 7088 training sam-
ples, 886 developing samples and 886 testing sam-
ples. For each example, there is a dialogue history
following by four candidate responses. Each can-
didate is relevant to the dialogue context but only
one of them is logically correct. Our aim is to pre-
dict the correct answer given dialogue history and
response candidates.

To apply DGM on MuTual, we first annotated
the utterances of dialogue history of their discourse
relations. Then pass the dialogue and the response
candidates into a pre-trained language model to
get the representation of each utterance. Armed
with these representations and discourse relations,

we are now able to construct the explicit discourse
graph. Here, we set the global representation [CLS]
(Devlin et al., 2019) of dialogue history as the
global node. The implicit discourse graph can be
constructed as Section 3.2 stated.

For the sake of computational efficiency, the
maximum number of utterances is set to be 25.
The concatenated context, response candidate in
one sample is truncated or padded to be of length
256. We use ELECTRA as the PrLM and AdamW
(Loshchilov and Hutter, 2019) as the optimizer for
training. The batch size is 24 and the learning rate
is 6e-6. We run a total of 3 epochs and select the
model of the best results in the development set.

Table 7 displays the results on MuTual, which
shows that DGM achieves a consistent improve-
ment on the performance with respect to all the
corresponding metrices.

Models Dev Set Test Set
R4@1 R4@2 MRR R4@1 R4@2 MRR

ELECTRA 90.6 97.7 94.9 90.0 97.9 94.6
DGM 91.3 98.3 95.3 90.7 98.2 95.1

Table 7: Results on the dev and test set of MuTual
dataset

6 Conclusions

In this paper, we presented a novel Dialogue Graph
Modeling framework for Conversational Machine
Reading. Our DGM consists of two complementary
graphs which respectively capture both explicit and
implicit interactions among multiple complicated
elements in the challenging task, in which Explicit
Discourse Graph is for extra knowledge learning
with tagged EDU discourse relations while Implicit
Discourse Graph helps with inside rule document
understanding. Experiments on ShARC show the
effectiveness by achieving a new state-of-the-art
result. Our method may be smoothly applied to
a broad type of QA tasks, such as our practice on
the MuTual dataset that also achieves a consistent
performance.
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