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Abstract

Recently, Text-to-SQL for multi-turn dialogue
has attracted great interest. Here, the user
input of the current turn is parsed into the
corresponding SQL query of the appropriate
database, given all previous dialogue history.
Current approaches mostly employ end-to-end
models and consequently face two challenges.
First, dialogue history modeling and Text-to-
SQL parsing are implicitly combined, hence
it is hard to carry out interpretable analysis
and obtain targeted improvement. Second,
SQL annotation of multi-turn dialogue is very
expensive, leading to training data sparsity.
In this paper, we propose a novel decoupled
multi-turn Text-to-SQL framework, where an
utterance rewrite model first explicitly solves
completion of dialogue context, and then a
single-turn Text-to-SQL parser follows. A
dual learning approach is also proposed for
the utterance rewrite model to address the data
sparsity problem. Compared with end-to-end
approaches, the proposed decoupled method
can achieve excellent performance without any
annotated in-domain data. With just a few an-
notated rewrite cases, the decoupled method
outperforms the released state-of-the-art end-
to-end models on both SParC and CoSQL
datasets.

1 Introduction

Text-to-SQL has lately become an interesting re-
search topic along with the high demand to query
a database using natural language (NL). Standard
large database format can only be accessed with
Structured Query Language (SQL), which requires
certain special knowledge from users, hence low-
ering the accessibility of these databases. Text-to-
SQL tasks, however, greatly minimize this gap and
allow the query based on NL. Previous work on

∗The corresponding authors are Lu Chen and Kai Yu.

Show the treatment details.

Utterances Semantic-Completion Utterances

Show the treatment details.

Show the treatment details ordered 
the cost in ascending order.

Order the cost in ascending order .

Ellipsis

Show the treatment details ordered 
the cost in descending order.

What about in descending order?

SELECT cost_of_treatment FROM Treatments 
ORDER BY cost_of_treatment DESC Ellipsis

Which treatment is the most recent 
cost?

Which one is the most recent cost?

SELECT cost_of_treatment FROM Treatments 
ORDER BY date_of_treatment DESC LIMIT 1 Co-reference
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SELECT * FROM Treatments

Figure 1: An example to demonstrate the co-reference
and ellipsis phenomenon in a conversation, where the
right column shows the annotated semantic-completion
utterances.

Text-to-SQL mostly focuses on single-turn utter-
ance inference, evaluated on context-independent
Text-to-SQL benchmarks. Nevertheless, in prac-
tice, the users usually need to interact with the
Text-to-SQL system step-by-step to address their
query purpose clearly. Under such conversation
scenarios, the co-reference and information ellipses
are always present, shown in Figure 1. Recently
proposed methods are mostly end-to-end, which
endeavors to design a suitable model to encode the
dialogue context and infer the corresponding SQL
based on the whole dialogue context. The main lim-
itation of the end-to-end multi-turn Text-to-SQL
models lies in their extreme reliance on annotated
multi-turn Text-to-SQL data. The large-scale multi-
turn Text-to-SQL data is time-consuming and ex-
pensive. The annotators not only need to be SQL
experts but also have to infer the complete and
exact query intent of the latest utterance of the
speaker.

Different from previous end-to-end approaches,
we propose a DEcoupled muLti-Turn pArsing
(DELTA) framework, which decouples the multi-
turn Text-to-SQL into two subsequent pipeline
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tasks: utterance rewrite and single-turn Text-to-
SQL. In recent years, these two individual tasks are
both well-studied. The utterance rewrite task aims
to generate the latest semantic-completion question
based on the dialogue context. The single-turn Text-
to-SQL task aims to parse the semantic-completion
question to a SQL, where the state-of-the-art meth-
ods (Shi et al., 2020; Yu et al., 2020b; Chen et al.,
2021; Rubin and Berant, 2021) can achieve over
70% exact match accuracy on Spider (Yu et al.,
2018) (a cross-domain single-turn Text-to-SQL
dataset) and even achieve more than 80% on eas-
ier Text-to-SQL benchmarks (Dahl et al., 1994;
Zhong et al., 2017). However, there is no rewrite
data on the existing multi-turn Text-to-SQL bench-
marks and the existing utterance rewrite datasets
normally pay more attention to the co-reference
problem but ignore the information ellipses. Due
to the limitation of the in-domain annotated rewrite
data, we further propose a dual learning method
to make comprehensive use of the unlabeled multi-
turn data to learn a reliable rewrite model. Our pro-
posed framework DELTA is evaluated on both the
SParC (Yu et al., 2019b) and CoSQL datasets (Yu
et al., 2019a), the two existing large-scale bench-
mark for the multi-turn Text-to-SQL task.

Contributions are highlighted below:

• We propose a decoupled parsing framework
for the multi-turn Text-to-SQL task, whose
annotated data is much easier to collect. Even
without any in-domain multi-turn Text-to-
SQL data, the decoupled parsing method
can achieve encouraging results on multi-turn
Text-to-SQL benchmarks.

• The decoupled framework includes an utter-
ance rewrite model which is adapted from the
pretrained BART (Lewis et al., 2020), with
a newly implemented dual learning method
to make comprehensive use of the unlabeled
multi-turn data. Our adapted rewrite model
achieves new state-of-the-art performance on
the utterance rewrite benchmarks.

• With fully labeled multi-turn Text-to-SQL
data, our decouple parsing method outper-
forms all the released end-to-end multi-turn
Text-to-SQL model.

2 Decoupled Parsing Framework

In this section, we elaborate our decoupled parsing
framework, which consists of two phases: 1) an

utterance rewrite model (Section 2.1), to generate
semantic-completion question based on the dia-
logue context; 2) a single-turn Text-to-SQL parser
(Section 2.2), which is fed with the rewritten ques-
tion to predict the corresponding SQL query. To
further improve the rewrite model performance,
we propose a dual learning method to make use
of large-scale unlabeled data, which is detailed in
Section 3.

2.1 Phase-I: BART as Rewrite Model
We leverage the pretrained BART (Lewis et al.,
2020), which is a Transformer-based encoder-
decoder architecture, as the utterance rewrite model.
This idea is inspired by its success on the text gen-
eration tasks, including question answering and
summarization. Along with the success of pre-
trained language models, the Transformer architec-
ture has been widely applied in natural language
process (NLP) tasks. Transformer aims to encode a
sequenceX = [xi]

n
i=1 with the self-attention mech-

anism (Vaswani et al., 2017). Assume that [x
(l)
i ]ni=1

is the representation of the sequence X at (l)-th
Transformer layer. The next Transformer takes the
following operations with H attention heads:
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where h is the head index, dz is the hidden dimen-
sion, α(h)

ij is attention probability,
f

denotes the
concatenation operation, LN(·) is layer normaliza-
tion (Ba et al., 2016) and FFN(·) is a feed-forward
network consists of two linear transformations.

Similar to other large-scale pretrained language
models, BART also uses a standard Transformer-
based sequence-to-sequence architecture, where
the encoder is the bidirectional Transformer and
the decoder is the auto-regressive Transformer.
BART’s pretraining method reconstructs the orig-
inal text from its corrupted text. In its essence,
BART is a denoising autoencoder, which is appli-
cable to a very wide range of NLP tasks. In our
utterance rewrite task, both the co-reference and in-
formation ellipses can be regarded as the corrupted
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noise of an utterance. Based on this idea, BART
can be an appropriate method to denoise the co-
reference and information ellipses. In addition, the
rewrite data in the public multi-turn Text-to-SQL
benchmarks are lacking. Therefore, we propose
a dual learning method to learn a reliable rewrite
model with large-scale unlabeled dialogue data.
The details are introduced in Section 3.

2.2 Phase-II: RATSQL as Parsing Model
Given a natural language question and a schema
for a relational database, the goal of Text-to-SQL
parser is to generate the corresponding SQL query.
Regarding the single-turn Text-to-SQL parsing
model, we directly use the current state-of-the-art
RATSQL model (Wang et al., 2020). RATSQL
provides a unified framework, which is based on
a relation-aware Transformer (RAT), to encode
the question and the corresponding schema. The
relation-aware Transformer is an important exten-
sion to the traditional transformer, which takes
the input sequence as a labeled, directed, fully-
connected graph. The pairwise relations between
input elements are considered in RAT. RAT incor-
porates the relation information in Equation 1. The
edge from element xi to element xj is represented
by vector rij , which is represented as biases incor-
porated in the Transformer layer, as follows:
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The relations among the Text-to-SQL input ele-
ments can be categorized into three types: intra-
question, question-schema, and intra-schema. The
intra-question relation means both tokens are the el-
ements of the question. The question-schema rela-
tions are normally named by schema linking, which
is used to represent the matching degree between
the question token and the schema token. The intra-
schema relations include the relation types of the
relational database: primary key, foreign key, etc.
However, these relations within the input elements
are independent of the domain information of the
database. Incorporating the domain-independent
relations into the representation of the Text-to-SQL
input is thus beneficial to the Text-to-SQL parser
generation.

During decoding, the SQL query is first repre-
sented as an abstract syntax tree (AST) follow-
ing a well-designed grammar. Followed by that,
the AST is flattened as a sequence by the deep-
first search (DFS) method. RATSQL uses the
LSTM to generate the flattened AST sequence.
The generated actions defined by the grammar has
two structures: (1) it expands the last generated
node into a grammar rule, called APPLYRULE or
when completing a leaf node; (2) alternatively, it
selects a column/table from the schema, called
SELECTCOLUMN and SELECTTABLE.

3 Dual Learning for Utterance Rewrite

Due to the limitation of the in-domain annotated
rewrite data, we propose a semi-supervised learn-
ing method via dual learning to make full use of the
unlabeled multi-turn data to learn a reliable rewrite
model. In this section, we first introduce the pri-
mal and dual tasks of the utterance rewrite. We
then demonstrate the dual learning algorithm for
utterance rewrite in detail, where a large amount
of unlabeled utterance rewrite data participate in
optimizing the primal and dual models under the
dual learning framework.

3.1 Primal and Dual Tasks

In a conversation scenario, the co-reference and in-
formation ellipses are always present in the user’s
expressions (Androutsopoulos et al., 1995). Re-
cently, Liu et al. (2020a) make a significant step to
analyze the co-reference and ellipsis phenomenon
at the fine-grained level. Co-reference has been
divided into five types according to the existing pro-
noun: Bridging Anaphora, Definite Noun Phrases,
One Anaphora, Demonstrative Pronoun, and Pos-
sessive Determiner. Ellipsis has been character-
ized by its intention: Continuation and Substitution.
where the substitution can be further classified into
4 types: explicit vs. implicit and schema vs. opera-
tor. The detailed introduction of these fine-grained
types refers to (Liu et al., 2020a).

The primal task aims to denoise the above co-
reference and ellipsis and generate a semantic-
completion utterance c(t) = [c(t,i)]ni=1 based on
the utterance x(t) = [x(t,i)]mi=1 at the t-th turn and
the dialogue history h = [x(j)]t−1j=1. We directly use
the pretrained BART as the rewrite model (named
rewriter). We further concatenate the dialogue
history and the latest utterance as the input of the
rewriter, where they are separated by the special
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Figure 2: The dual learning architecture of the utterance rewrite task. Rewriter and Simplifier represent the dual
models: rewrite model and simplification model. Both two models are initiated by pretrained BART. During the
dual learning closed-loop game, two models are updated by policy gradient loss (Lpg) and cross-entropy loss (Lce).

token “</s>”. The dual task is to generate a sim-
plified expression based on the latest utterance and
the dialogue history. The simplified expression con-
tains the above co-reference and ellipsis as more
as possible without changing the original semantic
meaning of the dialogue. Similar to the rewriter,
we use the pretrained BART as the initial simplifi-
cation model (named simplifier).

3.2 Dual Learning Algorithm

Under the dual learning framework, the dual mod-
els can be regarded as two agents in a closed-loop
game. The game starts with one of the dual agents.
The output of the start agent will be scored by an ex-
ternal reward function. Since the reward feedback
is non-differentiable, the start agent is optimized
by the policy gradient method (Sutton et al., 1999).
The end agent is fed with the output of the start
agent, where the end agent aims to reconstruct the
initial input of the start agent. Thus, the end agent
can be optimized by maximum likelihood estima-
tion (MLE). Before deep-diving into the dual learn-
ing algorithm, we first introduce the definitions of
the dual framework for the utterance rewrite.

3.2.1 Definition
Suppose we have unlabeled dialogue data Du =
{(x(t);h)}. There are two dual models: rewriter
with parameter Θc and simplifier with parameter
Θs. Two language models (LMc(·) and LMs(·))
are used to evaluate the quality of the generated

utterances by rewriter and simplifier respectively.
Both two language models are fine-tuned from
GPT-2 model (Radford et al., 2019). LMc(·) is
trained with semantic-completion Spider dataset.
LMs(·) is trained from multi-turn Text-to-SQL
data (SParC and CoSQL), where the utterances
at the first turn are removed. There is an exter-
nal single-turn Text-to-SQL parser RATSQL(·),
which parses a question into a SQL query. Next,
we will introduce the strategy of agent optimization
under dual learning framework.

3.2.2 Loop Starts from Rewriter
As shown in Fig. 2, we sample an unlabeled di-
alogue data (x(t);h) from Du. The rewriter gen-
erates k possible rewritten formats [ĉ

(t)
i ]ki=1 with

beam search mechanism. There are two-level ex-
ternal reward functions to evaluate the quality of
generated ĉ(t)i : token-level reward and sentence-
level reward.
Token-level Reward To reserve the schema infor-
mation of the database mentioned in original utter-
ance x(t), the generated token ĉ(t,j)i will get +0.1
reward at j-th step when it is database-related to-
ken mentioned in x(t). To decrease the co-reference
phenomenon in the rewritten utterance, we punish
the generated pronoun words (e.g., it, their, and so
on) with −0.1. Otherwise, the generated tokens
will get zero points.
Sentence-level Reward We first use the pre-
trained language model LMc(·) to evaluate the
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quality of the rewritten utterance with rLMc =

log(LMc(ĉ
(t)
i ))/len(ĉ

(t)
i ), where len(ĉ

(t)
i ) denotes

the number of the tokens in ĉ(t)i . In practice, the
rewritten utterance ĉ(t)i can be directly evaluated by
the user, who does not need any SQL background.
The user can give an indicated score (0 or 1) to eval-
uate whether ĉ(t)i meets his/her real intent. Instead,
we feed the rewritten utterance ĉ(t)i into Text-to-
SQL parser and get the corresponding SQL query
with q̂ = RATSQL(ĉ

(t)
i ). If q̂ equals to the golden

SQL, we can say the rewritten utterance meets the
user’s intent (ru = 1) and vise versa (ru = 0). The
final sentence-level reward of ĉ(t)i is represented as
rci = rLMc + ru.

For the j-th token in the rewritten utterance
ĉ
(t)
i , its accumulated reward can be represented

as R(t,j)
i = r

(t,j)
i +

∑m
l=j+1 λ

l−jr
(t,l)
i , where λ is

discount rate, r(t,j)i means the j-th token reward of
the rewritten utterance and the final token reward
equals to the sentence-level reward r(t,m)

i = rci .
The rewriter can be optimized by policy gradient
method as:

Lpg(Θc) = −
k,m∑
i,j=1

R
(t,j)
i log

(
P (ĉ

(t,j)
i |(x(t);h); Θc)

)
.

To force the simplifier to reconstruct the original
input x(t) as similar as possible, the simplifier can
be optimized with maximum likelihood estimation
(MLE) as:

Lce(Θs) = −log
(
P (x(t)|(ĉ(t)i ;h); Θs)

)
.

Noting that x(t) could be a semantic-completion
utterance. It is not reasonable to force the simpli-
fier to reconstruct a semantic-completion utterance.
Thus, we first compare the length of the original
utterance len(x(t)) with the length of the rewritten
one len(ĉ

(t)
i ). Only when len(x(t)) < len(ĉ

(t)
i ), we

optimize the simplifier with MLE.

3.2.3 Loop Starts from Simplifier
As shown in Fig. 2, we also sample an unlabeled
dialogue data (x(t);h) from Du. The simplifier
generates k possible simplified formats [ŝ

(t)
i ]ki=1

with beam search mechanism evaluated by two-
level external reward functions.
Token-level Reward To decrease the schema in-
formation mentioned in original utterance x(t), the
generated token ŝ(t,j)i will get −0.1 punishment at

j-th step when it is database-related token men-
tioned in x(t) and history h. To encourage the
co-reference phenomenon in the simplified utter-
ance, we award the pronoun words with +0.1 re-
ward. Otherwise, the generated tokens will get zero
points.
Sentence-level Reward We only use the pre-
trained language model LMs(·) to evaluate the
quality of the simplified utterance with rLMs =

log(LMs(ŝ
(t)
i ))/len(ŝ

(t)
i ), where len(ŝ

(t)
i ) denotes

the number of the tokens in ŝ(t)i .
For the j-th token in the simplified utterance ŝ(t)i ,

its accumulated reward is represented as R(t,j)
i =

r
(t,j)
i +

∑m
l=j+1 λ

l−jr
(t,l)
i , where r(t,j)i means the

j-th token reward of the simplified utterance and
the final token reward equals to the sentence-level
reward r(t,m)

i = rLMs. Similar to the first loop in
Section 3.2.2, the simplifier and the rewriter can be
optimized with policy gradient method and MLE
respectively:

Lpg(Θs) = −
k,m∑
i,j=1

R
(t,j)
i log

(
P (ŝ

(t,j)
i |(x(t);h); Θs)

)
,

Lce(Θc) = −log
(
P (x(t)|(ŝ(t)i ;h); Θc)

)
.

Noting that only when len(x(t)) > len(ŝ
(t)
i ), we

optimize the rewriter with MLE.

4 Experiments

Series of experiments are conducted to validate our
proposed utterance rewrite model and the decou-
pled framework. We first validate the pretrained
BART’s performance on the utterance rewrite
benchmarks. Then, the multi-turn Text-to-SQL
with the decoupled parsing method (DELTA) are
experimented on the limited utterance rewrite data.
Finally, we analyze the interpretability of the de-
coupled parsing method through the case study.

4.1 Experimental Setup

Datasets&Metrics Our proposed rewrite model
is validated on two utterance rewrite datasets:
TASK (Quan et al., 2019) and CANARD (Elgo-
hary et al., 2019a). We employ the widely used
automatic metrics BLEU, ROUGE, EM (Exact
Match) and rewrite F-score as our evaluation met-
rics. BLEUn(Bn) and ROUGEn(Rn) are used
to calculate the similarity and the overlapping at
the n-grams level between predictions and golden
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TASK

Models EM B4 F1

GECOR 1† 68.5 83.9 66.1
GECOR 2† 66.2 83.0 66.2

RUN‡ 69.2 85.6 70.6
BART 74.2 89.4 81.2

CANARD

Models B1 B2 B4 R2 RL

Pronoun Sub‡ 60.4 55.3 47.4 63.7 73.9
L-Ptr-Gen‡ 67.2 60.3 50.2 62.9 74.9

RUN‡ 70.5 61.2 49.1 61.2 74.7
BART 84.5 71.3 54.3 71.1 81.7

Table 1: The experimental results on rewrite datasets TASK (left) and CANARD (right). †: results from (Quan
et al., 2019); ‡: results from (Liu et al., 2020b).

Models
SParC CoSQL

Question Match Interaction Match Question Match Interaction Match
Dev. Test Dev. Test Dev. Test Dev. Test

EditSQL (Zhang et al., 2019) 47.2 47.9 29.5 25.3 39.9 40.8 12.3 13.7
RichContext (Liu et al., 2020a) 52.6 - 29.9 - 41.0 - 14.0 -
IGSQL (Cai and Wan, 2020) 50.7 51.2 32.5 29.5 44.1 42.5 15.8 15.0

R2SQL (Hui et al., 2021) 54.1 55.8 35.2 30.8 45.7 46.8 19.5 17.0
DELTA+Dual(ours) 58.6 59.9 35.6 31.8 51.7 50.8 21.5 19.7

Table 2: The question match accuracy and interaction match accuracy on SParC and CoSQL datasets. Since the
test datasets are not public, RichContext has not evaluated by the dataset owner.

ones. EM means the exact match rate, where the
prediction exactly equals to the golden. Rewrite
F-score Fn is calculated on the collection of n-
grams that contain at least one word from the con-
text. Our decoupled parsing method is evaluated
on two multi-turn Text-to-SQL tasks: SParC and
CoSQL. Following (Yu et al., 2019b), with Ques-
tion Match and Interaction Match as the metrics.
Question match means the predicted SQL equals
the golden one for each question, while Interaction
match indicates the predicted SQL queries of all
the questions in an interaction are correct.
Implementation Details Our implementation is
based on PyTorch (Paszke et al., 2019) and Hug-
gingFace’s (Wolf et al., 2020) Transformers library.
We reproduce RATSQL with the same setup pre-
sented in (Wang et al., 2020), where the encoder
consists of eight relation-aware Transformer (RAT)
layers. When fine-tuning the BARTs (rewriter and
simplifier) on the utterance rewrite datasets, we
use the AdamW as the optimizer with the learning
rate 2e-6. At the dual learning and co-training pe-
riod, we set the learning rate as 1e-6. Specifically,
BARTs mentioned above refer to BARTlarge. The
discount rate λ in the dual learning method is 1.

4.2 Experimental Results

4.2.1 BART as Rewrite Model

For the rewrite task, we compared the pretrained
BART with state-of-the-art rewrite models: L-Ptr-

Gen (See et al., 2017), GECOR (Quan et al., 2019),
and RUN (Liu et al., 2020b). Table 1 shows the ex-
perimental results on TASK and CANARD datasets.
As indicated, using the BART as rewrite model
surpasses the best baseline RUN by a large margin
on all the metrics. Even for the most challenging
metric EM, the BART exceeds the previous best
model by 5.0 points on TASK. The BART also ob-
tains a large boost on CANARD, which improves
the state-of-the-art by 4.1 points and 6.8 points on
B4 and RL respectively. The above experimental
results demonstrate the superiority of the BART as
the rewrite model.

4.2.2 DELTA for Decoupled Parsing
Regarding the multi-turn Text-to-SQL task, we
compared the decoupled parsing method with all
the released end-to-end multi-turn Text-to-SQL
models: EditSQL (Zhang et al., 2019), RichCon-
text (Liu et al., 2020a), IGSQL (Cai and Wan,
2020), and R2SQL (Hui et al., 2021).

Since there is no utterance rewrite data on SParC
and CoSQL datasets, we randomly sample 10%
dialogues on these two datasets and annotate them
as the rewrite in-domain data. There are 741 anno-
tated turns and 695 annotated turns on SParC and
CoSQL respectively. At the Phase-I, we first use
the rewrite in-domain data to warm-up the rewrite
model and simplification model, where their en-
coders share the parameters inspired by (Lample
et al., 2018). Then, we use the rest of 90% di-
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Precedent Question Current Question Rewritten Question Predicted SQL Status

how many people
live in asia ?

what about the largest
gnp among them ?

how many people live
what is the country
in asia that is the
largest gnp among
them ?

SELECT country.Population
FROM country WHERE
country.Continent= ’value’
ORDER BY country.GNP
ESC LIMIT 1

Fail
in Phase-I

which students have
pets ?

what are the different
first names ?

what are the different
first names of the
students that have pets ?

SELECT Student.Fname
FROM Student JOIN
Has pet ON Student.stuid
= Has pet.stuid

Fail
in Phase-II

what flights land
in aberdeen ?

also include flights that
land in abilene .

what flights land in
aberdeen or abilene ?

SELECT * FROM flights
JOIN airports WHERE
airports.City = ’value’
OR airports.City = ’value’

Success

Table 3: Three instances parsed by our proposed decoupled parsing method with rewritten utterance and final
predicted SQL query. The red means that the error happens. The green is modified by us.

Variants SParC
QM IM

(0) DELTA + Dual 58.6 35.6
(1) DELTA + Co-training 57.2 33.6
(2) - Dual 55.5 31.7
(3) - parsing in-domain data 54.7 31.5
(4) - rewrite in-domain data 42.1 14.4
(5) - rewriter 34.5 7.1

Table 4: The ablations of our proposed decoupled pars-
ing framework. Since the test dataset of the SParC is
not released, we report all the performances on its de-
velopment. QM: question match accuracy; IM: interac-
tion match accuracy.

alogues as unlabeled data to further improve the
rewrite model with the dual learning method, de-
tailed in Section 3. At the Phase-II, we first use the
single-turn Text-to-SQL data (Spider) to warm-up
the RATSQL parser. Since there is an annotation
gap1 between Spider and multi-turn Text-to-SQL
datasets, we use the annotated Text-to-SQL data on
the SParC and CoSQL to fine-tune the pretrained
RATSQL parser, where the multi-turn dialogue
data are rewritten as single-turn data by the rewrite
model trained in Phase-I. Table 2 shows that our
proposed decoupled framework (DELTA+Dual)
gets a considerable performance boost on SParC
and CoSQL datasets.

4.2.3 Ablation Study
We conducted an ablation study to analyze the
contribution of our proposed decoupled parsing

1For example, “Tell me how many rooms cost more than
120, for each different decor.” is annotated as “SELECT decor,
count(*) FROM Rooms WHERE basePrice > 120 GROUP
BY decor” in SParC. It is tend to be annotated as “SELECT
count(*) FROM Rooms WHERE basePrice > 120 GROUP
BY decor” in Spider.

framework on the SParC dataset. To compare
with our proposed dual learning method on rewrite
task, we examined another semi-supervised learn-
ing method co-training (Blum and Mitchell, 1998),
which uses the pretrained rewrite model to annotate
the unlabeled data and add these pseudo-labeled
data to improve the original rewrite model itera-
tively. To fairly compare with the dual learning
method, we only use the pseudo labeled rewrite
data that are correctly predicted by the RATSQL
parser at each iteration of the co-training method.
As shown in Table 4, our proposed dual learning
method outperforms the co-training method at row
(1). To further validate the effect of the dual learn-
ing method, we remove the dual learning part in the
Phase-I. Compared with our adapted dual learning
method at row (2), the above two variants have a
significant performance degradation, which demon-
strates the superiority of the dual learning method
on rewrite task.

Compared with the end-to-end multi-turn Text-
to-SQL models, our proposed decoupled parsing
framework even does not require any annotated
multi-turn in-domain data. We first evaluate the
performance of the decoupled method without any
Text-to-SQL parsing in-domain data at row (3).
There are 3.9 points and 4.1 points degradation
on question match accuracy and interaction match
accuracy respectively, which is caused by the anno-
tation gap between Spider and SParC. We further
drop our annotated rewrite in-domain data at row
(4) and warm-up the rewrite model and simplifica-
tion model with TASK and CANARD datasets. As
shown in Table 4, we can find the decoupled pars-
ing framework still gets 42.1% question match ac-
curacy without any annotated multi-turn in-domain
data. Lastly, we just remove the Phase-I (rewrite
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Figure 3: The rewrite error analysis (a) in the fine-
grained level and the error rate of the two decoupled
models (b) at turn-wise level.

model) at row (5), where the RATSQL parser is
trained on Spider and fine-tuned with multi-turn
Text-to-SQL data. It can be regarded as the base-
line of all the ablations, which only gets 34.5%
question match accuracy.

4.3 Case Analysis
Compared with end-to-end multi-turn Text-to-SQL
models, our decoupled parser can generate the in-
termediate rewritten utterance, which is easier to
understand for the user than a SQL query. As intro-
duced in Section 3.2.2, the feedback of the user can
be used to optimize the rewrite model. Addition-
ally, our decoupled parser is more convenient in
data collection compared with end-to-end methods,
which does not require annotators’ familiarization
with SQL to rewrite an utterance. When collecting
single-turn Text-to-SQL data, the annotator does
not need to consider the dialogue context. It is also
costly to collect the dialogue data on the SQL query
task.

Table 3 displays three cases parsed by our pro-
posed decoupled method. We can pinpoint exactly
which phase the error occurred under decoupled
parsing framework. Through fine-grained error
analysis, the bottleneck of multi-turn parser can
be found accurately. Thus, we can target to op-
timize the bottleneck individually. Figure 3(a)
shows the error rate of the utterance rewrite model
(DELTA+Dual) on SParC development dataset at

a fine-grained level. The orange line denotes the
error rate on the individual co-reference or ellipsis
type. The blue line denotes the overall error ratio.
We can see that most rewrite errors happen on the
co-reference side, especially at Demonstrative Pro-
noun type. For the ellipsis, Continuation type is a
serious problem. Figure 3(b) shows the error ratios
that happen in the rewrite model (Phase-I) or in
the parsing model (Phase-II). We can find that at
the first three turns the parsing model is still the
bottleneck. After the third turn, the rewrite model
gets a bigger error rate. The error rate of the rewrite
model is more sensitive than the parser with turn
increased. We can conclude that we need more an-
notated rewrite data, especially with Continuation
type and Demonstrative Pronoun type.

5 Related Work

Utterance Rewrite Recently, the utterance rewrite
has raised large attention. Some works use the
sequence-to-sequence architecture with copy mech-
anism (Elgohary et al., 2019b; Quan et al., 2019;
Rastogi et al., 2019) to solve the incomplete ques-
tion problem. Liu et al. (2019) decompose the utter-
ance rewrite model as two-phase subtasks: split and
recombine. The split and recombine models are
both learned from the well-designed reward func-
tion by the policy gradient method. Borrowing the
idea from image segmentation, Liu et al. (2020b)
formulate the utterance rewrite as the semantic
segmentation task, where the rewrite model is im-
plemented with UNet (Ronneberger et al., 2015).
For the downstream task, the utterance rewrite has
been successfully used in dialogue state tracking
(DST) tasks (Rastogi et al., 2019; Han et al., 2020).
Yu et al. (2020a) propose a rule-based and self-
supervised learning method to generate weakly-
supervised rewrite data, which are used to fine-tune
GPT-2. Different from the previous works, we di-
rectly use the pretrained BART, which is a denois-
ing autoencoder, as the utterance rewrite model.
End-to-End Text-to-SQL Parser Edit-
SQL (Zhang et al., 2019) proposes an Edit-based
model that reuses the SQL query generated from
the previous step to alleviate the pressure of
the increasing turns. RichContext (Liu et al.,
2020a) conducts an exploratory study on semantic
parsing in context and performs a fine-grained
analysis. IGSQL (Cai and Wan, 2020) presents
a schema interaction graph encoder to capture
the historical information of database schema
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items. R2SQL (Hui et al., 2021) presents a
dynamic graph framework that employs dynamic
memory decay mechanisms to introduce inductive
bias to construct enriched contextual relation
representation at both utterance and token level.
Dual Learning Dual learning method is first
proposed to improve neural machine translation
(NMT) (He et al., 2016). The dual learning mech-
anism enables a pair of dual systems to auto-
matically learn from unlabeled data through a
closed-loop game. The idea of dual learning has
been applied into various tasks, such as Ques-
tion Answer (Tang et al., 2017)/Generation (Tang
et al., 2018), Image-to-Image Translation (Yi
et al., 2017), Open-domain Information Extrac-
tion/Narration (Sun et al., 2018), Text Simplifica-
tion (Zhao et al., 2020), Semantic Parsing (Cao
et al., 2019; Zhu et al., 2020a; Cao et al., 2020) and
dialogue state tracking (Chen et al., 2020c).

6 Conclusion and Future Work

In this paper, we propose a decoupled parsing
framework (DELTA+Dual) to solve the multi-turn
Text-to-SQL task. The previous end-to-end multi-
turn Text-to-SQL models rely on large-scale multi-
turn data. DELTA can achieve considerable per-
formance without any multi-turn Text-to-SQL data.
We adapt the pretrained BART as the rewrite model
and achieve new state-of-the-art performance on
the utterance rewrite benchmarks. We further pro-
pose an efficient dual learning method to make full
use of unlabeled dialogue data. On the challenging
multi-turn Text-to-SQL benchmarks, DELTA sur-
passes all the released end-to-end models with fully
labeled data. In the future, we will try to reformu-
late the decoupled parsing method as a multitask,
where the rewrite model and Text-to-SQL model
are trained simultaneously. The proposed DELTA
is also easy to extend to the other conversational
semantic parsing tasks, like dialogue state track-
ing (Chen et al., 2020b; Zhu et al., 2020b; Chen
et al., 2020a).
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