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Abstract

Generative linguistic steganography mainly
utilized language models and applied stegano-
graphic sampling (stegosampling) to gener-
ate high-security steganographic text (stego-
text). However, previous methods generally
lead to statistical differences between the con-
ditional probability distributions of stegotext
and natural text, which brings about security
risks. In this paper, to further ensure secu-
rity, we present a novel provably secure gener-
ative linguistic steganographic method ADG,
which recursively embeds secret information
by Adaptive Dynamic Grouping of tokens ac-
cording to their probability given by an off-
the-shelf language model. We not only prove
the security of ADG mathematically, but also
conduct extensive experiments on three pub-
lic corpora to further verify its imperceptibil-
ity. The experimental results reveal that the
proposed method is able to generate stegotext
with nearly perfect security.

1 Introduction

Steganography is the technology of hiding secret in-
formation within an innocent natural carrier (such
as image (Hussain et al., 2018), audio (Mishra
etal., 2018), video (Liu et al., 2019), text (Krishnan
et al., 2017), etc) in order to avoid eavesdropping.
Steganography differs from cryptography in that
cryptography only conceals the content of secret
information, whereas steganography even conceals
its very existence, which makes it more secure and
reliable in some scenarios (Anderson and Petitco-
las, 1998).

Natural language is suitable as a carrier of
steganography by virtue of its high robustness in
transmission (Ziegler et al., 2019). Unlike digi-
tal images or digital audio which is sensitive to
distortions like compression, cropping, blurring or
pixel-wise dropout, text can usually be transmitted

losslessly through different kinds of public chan-
nels. Nevertheless, text generally has low entropy
and lacks sufficient redundancy for information
hiding (Sharma et al., 2016), which often results
in low embedding capacity of linguistic steganog-
raphy. For example, in traditional modification-
based methods (such as synonym substitution (Xi-
ang et al., 2014, 2018) and spelling transformation
(Shirali-Shahreza, 2008)), where secret informa-
tion is encoded by slightly modifying an existing
covertext, the options for modification can be very
limited to keep the text fluent enough so as not to
arouse suspicions.

In recent years, powered by the advanced tech-
nology of deep learning and natural language pro-
cessing, language models based on neural networks
have made significant progress in generating flu-
ent text (Radford et al., 2019; Brown et al., 2020),
which bring new vitality to linguistic steganogra-
phy and facilitate the investigation of generation-
based methods (Fang et al., 2017; Yang et al.,
2018a; Dai and Cai, 2019; Ziegler et al., 2019;
Yang et al., 2020a; Zhou et al., 2021). The gener-
ative linguistic steganography directly transform
secret information into innocuous-looking stegano-
graphic text (stegotext) without any covertext. Us-
ing an off-the-shelf language model, secret infor-
mation can be encoded in the selection of token at
each time step autoregressively during the genera-
tion procedure, which greatly alleviates the draw-
back of low embedding capacity. However, previ-
ous methods inevitably introduce distortions during
generation. The imperceptibility of generative lin-
guistic steganography still needs further optimiza-
tion.

In this paper, we aim to further improve the im-
perceptibility of generative linguistic steganogra-
phy. The contributions of this work are the follow-
ing:

1. We present ADG (Adaptive Dynamic
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Grouping), a novel generative linguistic
steganographic method based on off-the-
shelf language models, which groups the
tokens adaptively in accordance with their
probability at each time step to embed secret
information dynamically in the generated
stegotext.

2. We discuss the security of ADG and give
mathematical proof, which reveals that the
proposed method is provably secure.

3. Through quantitative analysis, we derive sat-
isfactory experimental results in terms of
both imperceptibility and embedding capac-
ity, which further verifies the effectiveness of
ADG.

Our code is available at https://github.com/M
hzzzzz/ADG-steganography.

2 Formalism

2.1 Notation

We use lowercase letters in bold type (e.g. a) to
denote vectors, normal lowercase letters (e.g. a)
to denote scalars and uppercase letters (e.g. A)
to denote sets. We use the symbol |A| to denote
the size of a set. Calligraphic letters denote neural
models (e.g. A). Both English letters and Greek
letters are adopted. We use p(-) and ¢(-) to denote
distributions and f(-) to denote functions, which
are usually shortened to p, ¢ and f. Subscripts
and superscripts are used to tell the different vari-
ables/distributions/functions apart.

2.2 Generative Linguistic Steganography

Language modeling is a task to estimate the joint
distribution of serialized natural language pr,as(w),
where w is a sequence of n tokens [w1, w2, ..., W]
and each token belongs to the vocabulary ¥. For
an autoregressive language model £, the output
is usually factorized as a product of conditional
distribution of the current token

prv(w) = pry(wr, wa, ..., wy)

n

= prm(wi) - HPLM(wt!UJh ey Wi—1).

=2

)

According to Simmons (1984), it is usually sup-
posed that Alice (sender) wants to send a secret
message m ~ Uniform({0, 1}!) to Bob (receiver)
through a public channel monitored by Eve (adver-
sary). In generative linguistic steganography, they
share an embedding algorithm f,,,;, which takes a

language model £ and the secret message 1 as in-
put and then outputs stegotext y to transmit. They
also share a corresponding extraction algorithm
fext, which is the inverse mapping of f.,,,; that is
able to recover the secret message m according to
the language model £ and the received stegotext y.

2.3 Imperceptibility

In order to avoid raising Eve’s suspicions, stegotext
y is required to be fluent enough and statistically
indistinguishable from natural innocuous text x,
which we call covertext. Cachin (1998) proposed
the information-theoretic security of steganography
to measure the statistical imperceptibility quanti-
tatively, which is defined as the Kullback-Leibler
divergence (KL divergence) between the distribu-
tions of covertext « and stegotext y. The distortion
of generative linguistic steganography is two-fold:
one is introduced by the bias of the language mod-
els, which is the gap between the true distribution
of natural text pye(x) and the modeled distribu-
tion pr s (); the other is introduced by fe;,5. In-
stead of directly sampling from the modeled dis-
tribution, the embedding algorithm f.,; actually
provides a special way to sample from pra/(y),
which we call steganographic sampling (stegosam-
pling). It is equivalent to sampling from a modified
distribution ¢(y) produced by an implicit language
model £’. In a word, the latter distortion is the
gap between pr s (y) and ¢(y), which can also be
regarded as the gap between the conditional dis-
tributions pras(ye|y<¢) and q(y;|y<¢). We simply
use pras and q to refer to the conditional distribu-
tions in the rest of this paper.

3 Related Work

In the early stage, some researchers investigated
rule-based approaches or using Markov Chains
to achieve generative linguistic steganography
(Wayner, 1992; Chapman and Davida, 1997; Chap-
man et al., 2001; Chapman and Davida, 2002; Dai
et al., 2010; Moraldo, 2014; Luo et al., 2016; Yang
et al., 2018b). However, these methods followed
a simplistic pattern and are hard to guarantee the
grammatical correctness and the semantic fluency
of the generated stegotext.

With the development of deep learning, language
models based on neural networks show great per-
formance on automatic text generation. The pattern
of generating stegotext with neural language mod-
els has been widely accepted. Fang et al. (2017)
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proposed a linguistic steganographic method that
randomly partitioned the vocabulary Y into 2% bins
[Bi, Ba, ..., By] and each one contained |%|/2° to-
kens. At each time step, they selected the token
with the highest probability within the bin accord-
ing to the b—Dbit secret information to be embedded.
Yang et al. (2018a) improved the embedding algo-
rithm by building the mapping from secret informa-
tion to tokens dynamically at each time step rather
than statically in advance. Concretely, the top 2"
tokens with the highest probability were encoded
by Huffman coding algorithm. Then they took
the token which has the same code as the secret
information. Dai and Cai (2019) proposed patient-
Huffman, which was an improved version of Yang
et al. (2018a) that sacrificed embedding capacity
for imperceptibility. They first calculated the dis-
tortion (total variation distance or KL divergence)
between ¢ and py s and then only used Huffman
coding embedding algorithm to embed secret infor-
mation when the distortion was less than a preset
threshold d. Otherwise they directly sampled a to-
ken to avoid high distortion occasions. Ziegler et al.
(2019) employed arithmetic coding to embed secret
information. They truncated the top h likely tokens
and left out the low-probability long-tails. Then the
tokens are encoded by arithmetic coding algorithm
and selected according to the secret information.
Compared with other coding algorithm, arithmetic
coding has higher compression rate, which results
in less damage to conditional probability distribu-
tion pr, s and helps to improve imperceptibility.

4 ADG Methodology

According to the analysis in Section 2.3, the distor-
tion of generative linguistic steganography includes
the bias of the language model £ and the damage
to the conditional distribution caused by the em-
bedding algorithm f.,,,. The former is not our
research priority. With the development of auto-
matic text generation, the former distortion can be
gradually minimized. In this paper, we mainly pay
attention to the latter distortion. We aim to seek an
optimal solution theoretically and experimentally.

Given an off-the-shelf language model, how can
we embed secret information to the generated to-
kens? Unlike previous works that encoded the con-
ditional distribution by lossless coding algorithm,
we achieve this goal in a novel way by grouping.
Through mathematical analysis and proof, we pro-
pose a provably secure method ADG, which does

little damage to the conditional distribution and
is nearly equivalent to directly sampling from the
full distribution. In this section, we investigate the
security of steganography by grouping and give
detailed descriptions of the proposed method.

4.1 Steganography by Grouping

Steganography by grouping is to group all tokens
in the vocabulary into several groups, so that each
group represents a unique secret message. E.g. we
can Tokens belonging to the target group are able
to make up the stegotext. In such a way, Bob reads
each token in the sequence in turn and performs
the same grouping operation to extrapolate which
groups the current token belongs to, thereby ex-
tracting the corresponding secret information. The
key question is: how to group the tokens at each
time step to ensure an optimal imperceptibility?
We have the following assumption.

Assumption 1. For secret information in the
form of uniformly distributed bitstream, adap-
tively grouping the vocabulary into u groups (u =
2", r € N,r < logy|X|) with equal probability
will ensure the optimal imperceptibility.

Proof. Assuming that the discrete conditional prob-
ability distribution pr s is arbitrarily partitioned
into u groups to embed r-bit secret information.
p;j denotes the probability of the j-th token in the
t-th group. n; and n; denote the total probability
and the size of the i-th group respectively. Then
we have

n; u
Zpij = i, Zm =1 2)
j=1 i=1

Our goal is to figure out the grouping algorithm
to achieve the best imperceptibility, i.e. to min-
imize the gap between py s and ¢. First of all,
starting from the modeled distribution prys =
(..., Dij, --.], we calculate the equivalent distribution
q. The probability of each token is firstly normal-
ized within its group (1/7;) and then multiplied by
the selected probability of the group, which is 1/u
since secret information is uniformly distributed.
Therefore, ¢ has the following form

q = [ Dij/uni, ...). 3)

We measured the gap between the two distributions
with KL divergence, which is

LM
Dir(prmllg) =) prarlog pT
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=1 j=1

=> " pijlog(um)

i=1 j=1
U n;g

=D _log(umi) > pi
i=1 j=1

= Z n; log(un;). 4)
i=1

Dij /Wh

Therefore, the KL divergence between the two
distributions is a function of the vector n =

[7717 T2y eey nu]
Next, we will prove Assumption 1 in two steps.

[1]. Considering the auxiliary function
fauz(n) = nlog(un), (0 < n < 1), we firstly
analyse its concavity and convexity on the do-
main of definition. For every 11,72 € (0,1) and
0<A<,

Jauz(Am + (1 = A)n2)
= AMaua(m) — (1 = A) faua(n2)
= (A + (1 = A)me) log(u(Am + (1 = A)m2))
= A(m log(um)) — (1 = A) (12 log(uny))
A+ (1= M2
m
)\771 —+ (1
2

A+ (1= N)me —1)
m

A (
(1 - Ny E = A
2

= A+ (1= N)m2 —m)
(I =2m + (1= XN)m2 —n2)

=AA =D+ A1 = N2
(1
0

= A log

.
+ (1= X2 log )12

IN

_l’_

_1>

— M)A — (1= A) A

)
As aresult, fu,,,(n) is convex over (0, 1).
[2]. Then, when generalizing to w variables
u

N1, N2y -5 Nus Zm = 1, according to Jensen’s

=1
inequality (Jensen et al., 1906), there is

2?21 Jauz (1) _
” =
Zz 1 Th

> faux(

D iy i log(um)

Zm log Z

(6)

The equality sign holds if and only if

M ="N2= .. =1y (N

u
= Z fauz(n;) takes
i=1
the minimum value 0 when each component of 1
is equal, in which case prjs and g are equivalent
and that achieves the optimal information-theoretic

security defined by Cachin (1998). U

It means that D1, (pras||q)

Therefore, we basically construct the idea of our
embedding algorithm, that is, to adaptively group
the vocabulary into multiple groups at each time
step, so that each group is assigned approximately
the same probability. In practice, since the probabil-
ity distribution is discrete, the probability of groups
may not be absolutely equal. Firstly, we determine
the number of groups u to be its maximum value
2l loga Pmaz| \where Pmaz 18 the highest probabil-
ity in pras. Secondly, since the time complexity of
solving the global optimal solution of equal group-
ing is unacceptable, we implement a suboptimal
solution in ADG, as demonstrated in Algorithm 1.
In line 10, we employ binary search algorithm to
select the token that has the nearest probability of
a given value. Our implementation enables us to
obtain a unique grouping result for any py s, which
ensures that the secret information can be extracted
accurately and completely at the receiving end.

4.2 Recursion and Pruning

After obtaining the grouping results, we can select
the group according to the next log u bits of secret
information to be embedded and simply sample
a token in the group to generate stegotext. As a
matter of fact, we can also continue grouping the
obtained groups to further enlarge the embedding
capacity and recursively grouping the new groups
until it is impossible to be equally participated (the
normalized p,,q, Of the current group is greater
than 0.5). In order to improve the efficiency of the
recursive grouping, we employ pruning strategy
to remove the redundant grouping operations. We
only need to recursively group the selected groups
every time in accordance with the secret informa-
tion to be embedded. In this manner, the amount
of secret information embedded in each token is
adjusted dynamically according to its probability
distribution.

To sum up, at each time step, the proposed
ADG embedding algorithm first conducts the equal
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Algorithm 1: Suboptimal solution of equal
grouping.
Data: vocabulary 2, distribution py, s
Result: set of groups G
1 list of tokens = sorted (prs);
2 Pmaz = probability of the first token;
3 U= QL* logy Pmac ] ;

4 mean = 1/u;
sfor(i=17<u—1:i++) do

6 G, = [the first token];
7 remove the first token;
8 while Z probability of G; < mean do
9 € = mean — Z probability of G;;
10 select a token with the nearest
probability of ¢;
1 if probability of the token — e < ¢
then
12 append the token to G;;
13 remove the token;
14 end
15 else
16 ‘ break;
17 end
18 end
probability of the rest tokens
19 mean = ; ;
uU—1
20 end
21 append the rest tokens to G;
2 G=[G1,Ga,....,Gy];

grouping algorithm adaptively according to the con-
ditional distribution, and then recursively repeats
the operation on the selected group dynamically
according to the secret information, until it is in-
divisible. At last, we normalize the probability of
the last selected group and sample a token to gen-
erate the stegotext. We have proved the security of
equal grouping algorithm. Obviously, it can also be
extended to the recursive manner of ADG, which
means the proposed method is provably secure.

4.3 Information Extraction

The extraction algorithm is basically the inverse
process of the embedding algorithm. For an ex-
actly successful extraction, Alice and Bob have to
share the same language model, vocabulary and
grouping algorithm. At each time step, Bob is
supposed to recursively operate the same grouping
algorithm as Alice do, and then select the group

contains the current token in the stegotext. The
index of the selected groups reveal the embedded
secret information.

5 Experimental Results and Analysis

In this section, we evaluate the performance of
ADG in terms of both embedding capacity and
imperceptibility. Details of our experiments and the
analysis of the results are present in the following
subsections.

5.1 Datasets

We evaluated the performance of ADG on three
public corpora, namely “Large Movie Review
Dataset” (Movie) (Maas et al., 2011), “All the
News” (News)l and “Sentiment140” (Tweet) (Go
et al., 2009). Large movie review dataset is origi-
nally built for binary sentiment classification, con-
taining 100,000 movie reviews in total crawled
from IMDb?. “All the news” is a collection of pub-
lications of mainstream news media. Sentiment140
is also used in sentiment analysis tasks, which con-
tains 1,600,000 tweets extracted from Twitter".

We converted the raw text to lowercase and re-
moved HTML tags and most punctuations, then
segmented it into sentences with NLTK tools
(Loper and Bird, 2002). We filtered out sentences
with length below 5 or above 200. For the conve-
nience of training and evaluation, any token occur-
ring less than 10 times was mapped to a special
token “_UNK”. We also added “_BOS” and “_EOS”
at the beginning and end of each sentence to help
training. Sentences in a batch were padded to the
same length with a special padding token “_PAD”.
Finally, we divided the preprocessed corpora into
training set and test set according to the ratio of 9:1.
Statistics are demonstrated in Table 3.

5.2 Implementation Details

In experiments, we utilized LSTMs (Hochreiter
and Schmidhuber, 1997) for word-level generation.
We stacked 2 LSTM layers and the model was
implemented with Pytorch (Paszke et al., 2017).
The dimension of word embedding was set to be
350. Hidden states in LSTM were set to be 512-
dimensional vectors. In the training procedure,
we applied SGD algorithm together with Adam

lhttps://www.kaggle.com/snapcrack/all
—the—-news

2https://www.imdb.com/

*https://twitter.com/
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Table 1: Results of ER, KLD; and KLDs.

METHOD \ Movie | News | Tweet

| fER |KLD, |KLD, | {ER |KLD, |KLD,| fER |KLD; |KLD;
Bins (b =1) 1.000 2.497 27.595 1.000 2.742 26.331 1.000 2.431 19.519
Bins (b = 2) 2.000 2.338 33.206 2.000 2.593 35.207 2.000 2.421 17.604
Bins (b = 3) 3.000 2.319 29.778 3.000 2.592 55.781 3.000 2.429 21.286
Bins (b = 4) 4.000 2.439 54.155 4.000 2.550 87.441 4.000 2.314 27.230
Bins (b = 5) 5.000 2.503 73.075 5.000 2.500 116.857 | 5.000 2.482 29.171
Huffman (k = 1) 1.000 1.961 21.219 1.000 2.338 11.226 1.000 2.121 6.252
Huffman (k = 2) 1.824 1.433 13.199 1.824 1.751 8.793 1.841 1.586 5.208
Huffman (k = 3) 2.509 1.106 8.487 2.518 1.372 6.855 2.595 1.145 4.141
Huffman (k = 4) 3.145 0.819 6.334 3.224 1.084 5.419 3.266 0.880 3.197
Huffman (k = 5) 3.705 0.658 4.657 3.872 0.838 3.995 3.932 0.694 2.738
Patient-Huffman (6 = 1.0) 1.125 0.327 0.767 0.809 0.256 0.441 0.988 0.298 0.545
Patient-Huffman (6 = 1.5) 1.711 0.588 2.132 1.460 0.559 1.817 1.668 0.621 1.280
Patient-Huffman (6 = 2.0) 2.129 0.819 4.564 1.905 0.808 3.497 2.201 0.908 2.445
Arithmetic (h = 100) 4.224 0.362 2.956 4.412 0.425 2.269 4.308 0.333 1.508
Arithmetic (h = 200) 4.651 0.240 2.321 4.908 0.295 1.688 4.805 0.253 1.749
Arithmetic (h = 300) 4.903 0.205 1.903 5.127 0.245 1.426 4.942 0.206 1.242
ADG ‘ 5.147 0.033 1.946 ‘ 5.650 0.027 0.866 ‘ 5411 0.048 1.189

(Kingma and Ba, 2014) to train the language model.
Learning rate was set to be 0.001. The SGD update
direction was computed using a batch of 32 training
samples. They were both trained for 30 epochs on
one GeForce GTX 1080 GPU. In the generation
procedure, we adopted the model performing best
on test sets. All generated sentences must be longer
than 5 and shorter than 200.

5.3 Baselines

We rebuilt Fang et al. (2017) (Bins), Yang et al.
(2018a) (Huffman), Dai and Cai (2019) (Patient-
Huffman) and Ziegler et al. (2019) (Arithmetic)
as baselines. For fair comparison, we rebuilt all
the baselines with the same language models. For
Bins, we set b to be 1, 2, 3, 4, 5 and the corre-
sponding number of bins was 2, 4, 8, 16, 32. For
Huffman, we built Huffman tree with the top 2,
4, 8, 16, 32 likely tokens. For Patient-Huffman,
we measured the distortion by KL divergence and
restricted the threshold § to 1, 1.5, 2 with top 8
tokens. For Arithmetic, we truncated the condi-
tional distribution at h = 100, 200, 300. In each
case, we generated 1,000 stegotext. We randomly
chose same amount of covertext from the test sets
for further evaluation.

5.4 Metrics

The metrics we utilized to evaluate the performance
on embedding capacity and imperceptibility are
listed as follows.

Embedding Rate (ER): It is the average amount
of information that one single token can carry, and
is in unit of bits per word (bpp). Embedding rate is
a metric to indicate the embedding capacity. Higher
is better.

KL Divergence between the implicit distribution
q and the modeled distribution py s (KLDq): It
reflects the gap introduced by the embedding algo-
rithm. Lower is better and the unit is bit.

KL Divergence between the statistical distribu-
tions of the sentence embedding of covertext and
stegotext (KLD»): It indirectly reflects the overall
information-theoretic security. We mapped all ste-
gotext and covertext to fixed length dense vectors
v, and vy by third-party sentence vectorization
tool (Le and Mikolov, 2014), and assumed that the
resulting vectors of covertext and stegotext both
obey isotropic Gaussian distribution. Then KLD,
is computed by

Dicr(p(va)llp(vy))

T 9 ey
Oz

20,2 5)’
(8)

where p and o are the mean and standard devia-
tion of sentence vectors. We set the dimension of
sentence vectors to be 100. Lower is better and the
unit is bit.

Detection Accuracy: It reflects the anti-
steganalysis ability of steganographic methods. Ste-
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Table 2: Results of ER, Accy and Accs.

METHOD \ Movie | News | Tweet

| TER Accy Acc | TER Accy Acc; | TER Accy Aces
Bins (b=1) 1.000 0.873 0.854 1.000 0.887 0.856 1.000 0.787 0.814
Bins (b = 2) 2.000 0.812 0.802 2.000 0.855 0.830 2.000 0.739 0.753
Bins (b = 3) 3.000 0.810 0.789 3.000 0.833 0.819 3.000 0.720 0.733
Bins (b = 4) 4.000 0.825 0.832 4.000 0.843 0.852 4.000 0.748 0.760
Bins (b = 5) 5.000 0.876 0.872 5.000 0.877 0.882 5.000 0.750 0.786
Huffman (k = 1) 1.000 0.891 0.891 1.000 0.891 0.885 1.000 0.785 0.806
Huffman (k = 2) 1.824 0.838 0.836 1.824 0.851 0.826 1.841 0.749 0.758
Huffman (k = 3) 2.509 0.796 0.760 2.518 0.816 0.785 2.595 0.684 0.702
Huffman (k = 4) 3.145 0.713 0.690 3.224 0.768 0.718 3.266 0.634 0.632
Huffman (k = 5) 3.705 0.673 0.645 3.872 0.710 0.664 3.932 0.602 0.593
Patient-Huffman (6 = 1.0) 1.125 0.588 0.578 0.809 0.559 0.542 0.988 0.528 0.552
Patient-Huffman (6 = 1.5) 1.711 0.654 0.683 1.460 0.674 0.683 1.668 0.589 0.581
Patient-Huffman (6 = 2.0) 2.129 0.722 0.714 1.905 0.725 0.726 2.201 0.650 0.661
Arithmetic (h = 100) 4.224 0.601 0.582 4.412 0.630 0.608 4.308 0.547 0.554
Arithmetic (h = 200) 4.651 0.565 0.556 4.908 0.594 0.559 4.805 0.537 0.561
Arithmetic (h = 300) 4.903 0.571 0.562 5.127 0.558 0.566 4,942 0.532 0.534
ADG ‘ 5.147 0.548 0.544 ‘ 5.650 0.543 0.519 ‘ 5.411 0.496 0.497

Table 3: Statistics of the preprocessed datasets.

DATASET  |X|  |TRAINING] ITEST)|
Movie 37,800 1,002,609 111,402
News 50,178 1,461,567 162,397
Tweet 30,152 1,572,599 174,734

ganalysis is the technology used by Eve to de-
tect hidden information in stegocarriers, which is
the opposite direction of steganography. In our
experiment, we employed linguistic steganalysis
approaches based on Fasttext (Yang et al., 2019)
(Accy) and TextCNN (Yang et al., 2020b) (Accs).
We took stegotext as positive samples and cover-
text as negative samples. We conducted 10-fold
cross validation and reported the average accuracy.
Closer to 50% is better.

Effective Embedding Rate: It is a new metric
we proposed to evaluate the comprehensive perfor-
mance of steganographic algorithms. It is defined
to be calculated by

EER = 2 x (1 — Acc) x ER, ©))
meaning that if the stegotext has a certain prob-
ability of being detected, the average amount of
secret information actually transmitted should be
discounted accordingly. For mathematical rigor-
ousness and completeness, if Acc < 0.5, we assign
1 — Accto Ace. In extreme cases where the stego-

carriers are completely natural, the detection accu-
racy should be 50% and EER is equal to ER. On

the contrary, stegocarriers with 100% detection ac-
curacy cannot carry a single bit. We calculated this
metric with the accuracy results obtained by the
two aforementioned steganalysis method (EER;,
EER,). Higher is better and the unit is bpp.

5.5 Results and Analysis

The results of KLD; and KLDs, are listed in Table 1.
KLD; measures the distortion between ¢ and py, 7,
which is introduced by the embedding algorithm
ADG. KLDs estimates the overall information-
theoretic security that also considers the deviation
of language models. In terms of KLLD;, we found
that the proposed method ADG outperforms all
baselines and it is very close to the optimal value
0 (stochastic sampling), which means generating
stegotext by ADG is almost equivalent to normal
generation with the language models. The results
of KLLD; are also advantageous, indicating that the
generated stegotext is statistically consistent with
the covertext. We noticed that some baselines can
also perform well on KLLDs (e.g. Patient-Huffman
(0 = 1.0)). However, they have a crucial flaw in
embedding capacity.

Table 2 demonstrates the results of anti-
steganalysis, where we found the tendency co-
heres with that of KLLD; and KLLD2. The proposed
method ADG outperforms all baselines on the three
corpora and it is very close to the optimal value 0.5,
which further confirms its imperceptibility. Be-
sides, we also illustrated some examples of stego-
text generated by ADG in Table 5 for qualitative
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Table 4: Results of ER, EER; and EER».

METHOD \ Movie | News | Tweet
| TER 1EER; 1EER: | TER  1EER; 71EER: | fER  1EER; 1EER;
Bins (b= 1) 1.000  0.254 0.292 1.000  0.226 0.287 1.000  0.425 0.373
Bins (b = 2) 2.000  0.752 0.794 2.000  0.582 0.680 2.000 1.044 0.988
Bins (b = 3) 3.000 1.137 1.266 3.000  0.999 1.089 3.000 1.683 1.605
Bins (b = 4) 4.000 1.396 1.344 4.000 1.252 1.180 | 4.000  2.020 1.924
Bins (b = 5) 5.000 1.245 1.280 5.000 1.230 1.180 5.000  2.500 2.135
Huffman (k = 1) 1.000  0.218 0.219 1.000  0.219 0.231 1.000  0.430 0.387
Huffman (k = 2) 1.824  0.593 0.600 1.824  0.546 0.635 1.841 0.924 0.893
Huffman (k = 3) 2.509 1.024 1.202 2.518 0.927 1.083 2.595 1.638 1.549
Huffman (k = 4) 3.145 1.809 1.950 3.224 1.496 1.821 3266  2.387 2.404
Huffman (k = 5) 3.705 2.427 2.627 3872 2249 2.602 3932  3.133 3.200
Patient-Huffman (§ = 1.0) 1.125 0.927 0.949 0.809  0.713 0.740 0.988 0933 0.886
Patient-Huffman (§ = 1.5) 1.711 1.182 1.083 1.460  0.952 0.925 1.668 1.369 1.400
Patient-Huffman (§ = 2.0) 2.129 1.184 1.220 1.905 1.050 1.044 2.201 1.541 1.490
Arithmetic (h = 100) 4224  3.371 3.527 4412 3.269 3.459 4.308 3.908 3.843
Arithmetic (h = 200) 4.651 4.051 4.125 4.908 3.981 4324 | 4.805 4.449 4219
Arithmetic (h = 300) 4.903 4.207 4.290 5.127 4532 4450 | 4942  4.630 4.606
ADG | 5147  4.648 4.699 | 5.650 5.164 5435 | 5411 5.373 5.384
Table 5: Examples of stegotext generated by ADG on the three corpora.

The supporting cast was also excellent.

But I guess you ’ve seen the many silent movies along with his other films.
Movie | And this movie was a precursor of val kilmer in the extreme.

It ’s a unique wonderful movie that deserves all the recognition it deserved.

This is the worst movie I have ever seen.

The FBI estimated its total wealth on Thursday.

Remember this is in part because of the actual policies of Donald Trump.
News He said he did not care about any counterintelligence investigation.

Today however the process could not change even if he doesnt agree with Trumps rhetoric.

More than 100 000 people have been detained and another 30 000 civilians have been wounded early on Sunday.

Worst headache everrrr I dunno why but it was so scary.

I had a blast today in the MTV Movie Awards.
Tweet | Ahhh some brothers do n’t play sports!

Sadly you will be missing so much.

I do n’t think the peach ice cream last night was good.

study. We found that the stegotext is fluent enough,
with correct grammar and coherent semantics.

Finally, taking both embedding capacity and im-
perceptibility into account, we investigated effec-
tive embedding rate listed in Table 4. It can be
concluded that our method has excellent compre-
hensive performance, which outperforms all base-
lines. In general, the experimental results indicate
that the proposed method ADG is able to resist
both perceptual and statistical steganalysis of Eve,
meanwhile ensure a remarkable embedding rate,
which reveals its effectiveness.

6 Conclusion

Previous works of generative linguistic steganog-
raphy inevitably introduce distortions to the distri-
bution estimated by off-the-shelf language models.
In this paper, we attempted to achieve provably se-

cure generative linguistic steganography during the
procedure of stegotext generation. We proposed
ADG, which embeds secret information by adap-
tive dynamic grouping. According to the mathe-
matical proof and extensive experiments conducted
on three public corpora, we found that the pro-
posed method is provably secure and capable of
generating fluent stegotext with high embedding
capacity and high imperceptibility. We hope our in-
vestigation of provably secure generative linguistic
steganography can be leveraged as a building block
for future research.
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