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Abstract

Multi-hop question generation requires com-
plex reasoning and coherent language realiza-
tion. Learning a generation model for the
problem requires extensive multi-hop question
answering (QA) data, which are limited due
to the manual collection effort. A two-phase
strategy addresses the insufficiency of multi-
hop QA data by first generating and then
composing single-hop sub-questions. Learn-
ing this generating and then composing two-
phase model, however, requires manually la-
beled question decomposition data, which is
labor intensive. To overcome this limitation,
we propose a novel generative approach that
optimizes the two-phase model without ques-
tion decomposition data. We treat the unob-
served sub-questions as latent variables and
propose an objective that estimates the true
sub-questions via variational inference. We
further generalize the generative modeling to
single-hop QA data. We hypothesize that each
single-hop question is a sub-question of an
unobserved multi-hop question, and propose
an objective that generates single-hop ques-
tions by decomposing latent multi-hop ques-
tions. We show that the two objectives can be
unified and both optimize the two-phase gen-
eration model. Experiments show that the pro-
posed approach outperforms competitive base-
lines on HOTPOTQA, a benchmark multi-hop
question answering dataset.

1 Introduction

Question generation aims to automatically gener-
ate valid and coherent questions based on given
context, which is widely applied to enrich ques-
tion answering (QA) datasets, facilitate text com-
prehension (Ko et al., 2020), seek clarification in
conversation (Rao and Daumé III, 2019), etc. Re-
cently, neural encoder-decoder based approaches
∗Rui Zhang is the corresponding author.

Table 1: Multi-Hop Question Reasoning Example

Supportive
Evidence

Paragraph A. Dario Franchitti

[1] George ..., known professionally as Dario
Franchitti, is a retired Scottish racing driver.
[2] After Franchitti did not secure a
single-seater drive in 1995, he was contracted
by the AMG team to compete in touring cars
in the DTM and its successor — the
International Touring Car Championship.

Paragraph B. Mercedes-AMG

[1] Mercedes-AMG GmbH (AMG)... is the
high performance division of Mercedes-Benz.
[2] Mercedes-AMG is headquartered in
Affalterbach, Baden Württemberg, Germany.

Reasoning
Progress

< Dario Franchitti , contracted by , AMG >
< Dario Franchitti , competed in , DTM >
< AMG , headquartered in , Affalterbach,
Baden Württemberg, Germany >

Multi-hop
Question

After he was contracted by the team that is
headquartered in Affalterbach, Baden
Württemberg, Germany, Dario Franchitti
competed in what series?

Sub-
Questions

Which team is headquartered in Affalterbach,
Baden Württemberg, Germany?
After contracted by AMG, Dario Franchitti
competed in what series?

Answer DTM

have shown promising results for simple, single-
hop question generation (Du and Cardie, 2018).
Such approaches directly maps context (e.g., text
passages) to questions without reasoning, and thus
struggle when generating multi-hop questions (Pan
et al., 2020). Here, reasoning refers to identify-
ing and aggregating the relevant information taken
from multiple documents to derive the question.
Table 1 illustrates the reasoning process of a multi-
hop question; in this example, the entity that links
the two passages, i.e., “AMG”, is firstly identified,
and the relations around it in the context are trans-
formed into a question. To model such reasoning
processes in an end-to-end manner requires exten-
sive training data, and is thus impractical due to the
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extensive collection effort of multi-hop QA data.

To address this problem, recent studies propose
to augment the generation model with an explicit
reasoning progress. For example, a straightforward
solution is to identify the anchoring entities via
named entity recognition (NER), and find relations
via relation extraction. The extracted structural rea-
soning path, in the form of subject-predicate-object
triples as illustrated in Table 1, is then fed to the
generation model as auxiliary features (Yu et al.,
2020b). However, the reasoning capability is con-
strained by the off-the-shelf extraction tools which
cannot be extended to arbitrary context (Yang et al.,
2018; Dhingra et al., 2020).

Another line of recent studies on multi-hop ques-
tion answering models the reasoning process by
decomposing a multi-hop question into several sub-
questions (Min et al., 2019; Wolfson et al., 2020).
As illustrated in Table 1, the answer of the multi-
hop question can be derived by answering a se-
ries of single-hop sub-questions. Ideally, question
generation can also adopt this two-phase strategy
which first generates sub-questions and then com-
poses the sub-questions into a multi-hop question.
However, this strategy requires a parallel corpus
that annotates each multi-hop question to its corre-
sponding sub-questions, and obtaining such anno-
tations still requires extensive efforts and costs.

To address these issues, we propose to jointly
optimize the two-phase model using non-parallel
single-hop and multi-hop corpuses only, in which
the questions are not paired. We propose a gen-
erative objective that models the multi-hop and
single-hop question generation (QG) tasks in a uni-
fied way. The key idea is that each question, either
multi-hop or single-hop, can be considered a par-
tially observed 〈multi-hop question, sub-question〉
pair and treat the unobserved part as a latent vari-
able. In the generative modeling of multi-hop QG,
we use the two-phase model as a generation model
and introduce a posterior model to estimate unob-
served sub-questions. The generation and the pos-
terior models are jointly optimized via variational
inference (Kingma and Welling, 2014). For gener-
ative single-hop QG, we instead use the two-phase
model as a posterior model to estimate unobserved
multi-hop questions, and the posterior model is
jointly optimized with a generation model that de-
composes a multi-hop question into sub-questions.
In this way, we integrate the optimization of the
two-phase model in both generative multi-hop and

single-hop QG tasks, serving as the generation and
the posterior model, respectively.

Optimizing the generative objective in the text
space is, however, prone to compounding errors
due to the diversities of potential reasoning paths.
There are multiple ways to raise a single-hop ques-
tion given the same piece of information, and it is
challenging to find the valid one only given the text
passages. We address this challenge by equipping
the generative modeling with a planning mecha-
nism that uses a latent variable to encode the de-
sired reasoning path. In this way, the inference
of sub-questions is guided by a pre-sampled plan
(i.e., the latent variable) and thus maintains con-
sistency with the target multi-hop question. We
achieve latent variable learning by incorporating an
end-to-end differentiable bottleneck into the sub-
question generation model, which can be naturally
integrated into the overall objective. Moreover,
the proposed planning mechanism also promotes a
more stable training. This is because the original
generative modeling involves a sequential sampling
of latent variables (i.e., sub-questions), which is
known to cause high variance and result in an unsta-
ble training (He et al., 2020). The planning mecha-
nism relieves the sequential sampling requirement,
since it encodes the high-level planning and covers
the dependency between sub-questions.

Our contributions are summarized as follows:
• We propose a novel generative objective that uni-
fies non-parallel question corpuses and relieves the
requirements of extensive annotations for learning
a two-phase question generation model.
• We propose a planning mechanism to guide the
generation towards sub-questions that are more
probable to compose into a multi-hop question.
• We conduct experiments on a benchmark multi-
hop question answering dataset. The results show
that our approach outperforms the state-of-the-art
under both language generation and question an-
swering based evaluations.

2 Preliminaries

Let DM = {(qi, ai, ci)|1 ≤ i ≤ N} be a set of N
multi-hop question-answer-evidence triples, where
the evidence is a set of potentially relevant sen-
tences ci = {d1, d2, ..., dk}, and each multi-hop
question q requires reasoning over multiple sen-
tences to find the answer a. Multi-hop question
generation (QG) aims to generate a question q that
has the pre-selected answer a given the evidence set
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(a) Generative multi-hop QG (left) with planning (right)

(b) Generative single-hop QG (left) with planning (right)

Figure 1: A graphical representation of the proposed
generative model. White circles denote the observed
variables and gray circles denote the latents. 1

c. Existing studies adopt a strategy commonly used
in single-hop question generation, which formu-
lates multi-hop QG as a seq-to-seq problem. Since
extensive annotation efforts are needed to produce
multi-hop QG examples, few multi-hop QG exam-
ples are available. Thus, a naive adoption of seq-to-
seq learning may not yield an effective multi-hop
QG model, especially in the low-resource scenario.

To address data insufficiency, a two-phase strat-
egy is considered based on the assumption that each
multi-hop question q can be decomposed into two
single-hop sub-questions s1 and s2.2 The multi-
hop question generation is then performed by a
sub-question generation model pS and a question
composing model pC as

p(q|a, c) = pC(q|s1, s2)pS(s2, s1|a, c). (1)

The training of these two models require question
decomposition data, which are pairs of a multi-hop
question and its corresponding sub-question anno-
tations {(q, 〈s1, s2〉)}. However, it is non-trivial
to obtain the question decomposition data, which
requires extensive human annotation effort.

1Note that the generation of single-hop questions s, multi-
hop question q, and planning variables z are conditioned on
evidence set c and answer a, which is omitted in Fig. 1.

2The formulation can be easily extended to more sub-questions

3 Proposed Model

We take a two-phase approach for multi-hop ques-
tion generation while do not require a question
decomposing dataset that contains pairs of multi-
hop questions and sub-questions. We assume that
a single-hop question answering dataset DS and
a multi-hop dataset DM are available for train-
ing. Both datasets are non-parallel, i.e., contain
question-answer pairs but not sub-questions, and
the evidence passages of both datasets shall come
from the same source (e.g., Wikipedia articles).

Under these problem settings, we aim to learn
the single-hop QG model pS and the question com-
posing model pC using both DS and DM. To ef-
fectively train these two models in the absence of
question decomposition data, we propose a uni-
fied generative formulation that naturally connects
single-hop and multi-hop questions. Specifically,
in modeling the generation process of multi-hop
questions, we treat the corresponding sub-questions
as latent variables and propose an objective that
jointly optimizes pS and pC (Sec. 3.1). We fur-
ther extend the generative formulation to model
the generation of single-hop questions, and both
generation processes together form the overall op-
timization objective (Sec. 3.2). Then, we propose
a planning-aware generation strategy to better opti-
mize the objective in Sec. 3.3. We summarize the
overall learning and inference process in Sec. 3.4.

3.1 Generative Modeling of Multi-Hop QG

We now reconsider the two-phase question genera-
tion strategy in Eqn. 1. Since we do not have the
parallel data, it is infeasible to directly model the
conditional probability p(q|s), where s = {s1, s2}
is the set of sub-questions of q. We thus propose
to treat the unobserved sub-questions as latent vari-
ables, and describe p(q|a, c) in a generative way as

p(q) =
∑
s

p(q, s) =
∑
s

pθ(q|s)pψ(s) (2)

where p(q) and p(q, s) are shorthands for p(q|a, c)
and p(q, s|a, c), 3 pψ is a conditional prior model,
and pθ is a generation model for multi-hop ques-
tions. Since this likelihood is intractable, we in-
stead derive and optimize its evidence lower bound

3Same below for brevity when the context is clear.
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(ELBO) (Kingma and Welling, 2014)

log p(q) ≥ Eqφ(s|q)[log
pθ(q|s)pψ(s)
qφ(s|q)

]

= Eqφ(s|q)[log pθ(q|s)]− KL(qφ(s|q)||pψ(s))
(3)

where qφ(s|q) is a posterior model for latent vari-
able s, and KL denotes the Kullback-Leibler di-
vergence. We now substitute the latent variable s
with two sub-questions, s1 and s2, and define the
factorized form of the posterior and the prior in a
hierarchical manner

qφ(s|q) = qφ(s2|q, s1)qφ(s1|q)
pψ(s) = pψ(s2|s1)pψ(s1).

(4)

We can now rewrite the ELBO in Eqn. 3 with the
factorization and obtain

log p(q) ≥ Eqφ(s1|q)qφ(s2|s1,q)[log pθ(q|s1, s2)]
− KL(qφ(s1|q)||pψ(s1))
− KL(qφ(s2|q, s1)||pψ(s2|s1))
:= LELBO(q)

(5)
Fig. 1(a) shows the directed graphical model

of the generative modeling of multi-hop question
generation. Specifically, given an evidence set and
a pre-selected answer, a single-hop question s1 is
first sampled. Given s1 and relevant information in
the context, a second sub-question s2 that satisfies
a valid reasoning process is further sampled. Since
two sub-questions are both unobserved, we esti-
mate s1 and s2 using the posterior model qφ. The
sub-questions then form the observed multi-hop
question q via question composing as pθ(q|s1, s2).

To perform effective optimization, we tie the
parameters of the posterior model qφ at different hi-
erarchies, i.e., qφ(s1|·) and qφ(s2|·), as one single-
hop QG model. Such parameter tying also applies
to the prior model pψ. We implement the genera-
tion model pθ, the prior pψ, and the posterior qφ in
Eqn. 5 using pre-trained encoder-decoder models
which will be detailed in Sec. 3.4. We notice that
the prior pψ and the generation model pθ actually
play the same role as the single-hop QG model pS
and question composing model pC in Eqn. 1. Thus,
the generative modeling enables a joint optimiza-
tion of pS and pC using multi-hop QA data only
and without question decomposing data.

3.2 Generative Modeling of Single-Hop QG
Considering that the multi-hop QA data is limited,
we propose to integrate single-hop QA data into

the joint optimization objective. We extend the
proposed generative modeling by assuming that
each single-hop question is obtained by decom-
posing an unobserved multi-hop question. With a
slight abuse of notation, we use (s, a, c) to denote
a single-hop question-answer-evidence triple, and
describe p(s|a, c) as

p(s) =
∑
q

p(s, q) =
∑
q

pθ′(s|q)pψ′(q) (6)

where we omit the condition as in Eqn. 2, and
q is a multi-hop question that has a sub-question
s. The generation model pθ′ and the prior model
pψ′ are parameterized with θ′ and ψ′, respectively.
We treat the unobserved q as a latent variable and
derive the evidence lower bound as

log p(s) ≥ Eqφ′ (q|s)[log pθ′(s|q)]

−KL(qφ′(q|s)||pψ′(q))] := LELBO(s)
(7)

where qφ′ is a posterior model to estimate the un-
observed question q.

Fig. 1(b) illustrates the generative modeling for
single-hop QG. Specifically, a multi-hop question
is first sampled by the prior pψ′ , and we assume that
its sub-question set includes the observed single-
hop question s. The question s is then generated by
decomposing the multi-hop question q via pθ′(s|q).
We estimate the unobserved multi-hop question q
using the posterior model pφ′ .

We observe that the posterior approximation in
single-hop QG (dashed line in Fig. 1(b)-left) is the
same as the generative process in multi-hop QG
(solid line in Fig. 1(a)-left). Thus, we can realize
the posterior model qφ′(q|s) by reusing the prior
pψ and the generative model pθ in Eqn. 5 as

qφ′(q|s) = pθ(q|ŝ, s)pψ(ŝ|s) (8)

where ŝ is the unobserved second sub-question that
forms the multi-hop question together with s. Note
that we no longer need a hierarchical form since
one sub-question is observed.

Further, we observe that the generative process
in single-hop QG (solid line in Fig. 1(b)-left) is
part of the posterior approximation of multi-hop
QG (dashed line in Fig. 1(b)-left). This way, we
realize the generation model pθ′ and the prior pψ′
using the models already present in multi-hop QG

pθ′(s|q) = qφ(s|q)
pψ′(q) = pθ(q|s1, s2)pψ(s2|s1)pψ(s1)

(9)
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Table 2: Question Generation Diversification Example.

Supportive Evidence

After Franchitti did not secure a single-seater drive in 1995,
he was contracted by the AMG team to compete in touring
cars in the DTM and its successor — the International
Touring Car Championship.

Potential Generated Sub-Questions

Q: Did Dario Franchitti secure a single
seater drive in 1995? A: No

Q: Dario Franchitti was contracted by
which team to compete in the DTM? A: AMG

Q: The International Touring Car Cham-
pionship is the successor of what series? A: DTM

Q: After contracted by AMG, Dario
Franchitti competed in what series? A: DTM

where the prior pψ′(q) is inferred by first estimating
and then composing the latent sub-questions s1 and
s2. Note that pθ, pψ, and qφ are all taken from the
generative modeling of multi-hop QG. Thus, the
single-hop QG objective (Eqn. 7) optimizes the
same set of models as in multi-hop QG objective
(Eqn. 3). This way, we seamlessly unify the multi-
hop and single-hop QA data for joint optimization.

3.3 Planning Guided Question Generation
There is a challenge under the generative formula-
tion: the diversification of feasible generated ques-
tions can impinge the model training. Given the
same evidence set and pre-selected answer, there
can be multiple ways to raise a questions (Lee et al.,
2020). However, not every potential single-hop
question is qualified as a sub-question to form the
target multi-hop question, as illustrated in Table. 2.
To address this challenge, we propose to learn a la-
tent planning variable which serves as a generation
planning to guide the generation process.

The latent planning variable aims to capture the
high-level reasoning required to answer the multi-
hop questions, which is abstracted as a reasoning
path in existing studies. In order to model decision
making of the reasoning path, we define the latent
variable z as a discrete variable. We now incorpo-
rate the latent variable into the generative modeling
of multi-hop QG

log p(q) = log
∑
s

∫
z
p(q, z, s)dz

≥ Eqω(z|q)[p(q|z)]− KL(qω(z|q)||pω(z))
:= LELBO(q, z)

(10)
where qω and pω are posterior and prior models,
respectively, and the reason of having the same

parameters ω will be detailed later. The conditional
probability p(q|z) is modeled by letting the terms
of LELBO(q) in Eqn. 5 be additionally conditioned
on the sampled latent variable z (as illustrated in
Fig. 1(a)-right). The generation of sub-questions,
both prior pψ and posterior qφ, is now aware of the
planning as

qφ(s|q, z) = qφ(s1|q, z)qφ(s2|q, z)
pψ(s|z) = pψ(s1|z)pψ(s2|z).

(11)

We now no longer need a hierarchical form like
Eqn. 4, since the latent planning variable already
encodes the information of the other sub-question.
Thus, this formulation also alleviates the high vari-
ance issue commonly encountered in hierarchical
variational training (Vahdat and Kautz, 2020).

We also consider the planning guided mecha-
nism in the generative modeling of single-hop QG

log p(s) = log
∑
q

∫
z
p(s, z, q)dz

≥ Eqω(z|q)[p(s|z)]− KL(qω(z|s)||pω(z))
:= LELBO(s, z)

(12)
where p(s|z) is modeled by letting the prior and the
posterior in LELBO(s) be additionally conditioned
on z The realizations in Eqn. 8 and Eqn. 9 are now
formulated as

qφ′(q|s, z) = pθ(q|ŝ, s)pψ(ŝ|z)
pψ′(q|z) = pθ(q|s1, s2)pψ(s1|z)p(s2|z)

(13)

We implement the latent variable as discretized
VAE (van den Oord et al., 2017) by adding a learn-
able codebook between the encoder and the de-
coder. The codebook is a set of prototype vectors
ek, k ∈ 1, 2...K, each having the same dimension-
ality as that of the encoder output. The discrete
variable is obtained by using a nearest-neighbor
lookup to find the vector closest to the encoder out-
put. The corresponding prototype vector is then
fed into the decoder as an additional context em-
bedding to which every decoding step could at-
tend. With this discretization bottleneck design,
the encoder-decoder model and the codebook can
be jointly optimized.

3.4 Learning and Inference

We initialize the generative model pθ, the prior
pψ and the posterior qφ using BART (Lewis et al.,
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2020), a pre-trained seq-to-seq model. BART uses
the standard Transformer based encoder-decoder ar-
chitecture (Vaswani et al., 2017), and is optimized
by reconstructing the intentionally corrupted doc-
uments. We adopt an initial fine-tuning step for
all three models using question answering data
DS and DM, which adjusts the initialization pre-
trained from general texts to better fit the question
generation tasks. We then optimize pθ, pψ, and
qφ together with the discretization bottleneck qω
using the generative modeling of both multi-hop
and single-hop question answering data

L =
∑
q∈DM

LELBO(q, z)+
∑
s∈DS

LELBO(s, z) (14)

After training the single-hop QG model (i.e., pψ),
question composing model (i.e., pθ), and the bottle-
neck qω, inference follows the two-stage strategy.
We first infer a latent planning variable given the
evidence set and the answer. The sub-questions are
generated based on the inferred planning variable
and are composed into a multi-hop question.

4 Experiments

To show the effectiveness of the proposed approach,
planning guided latent reasoning (PLAR), we ex-
periment on two multi-hop question generation
settings (Sec. 4.1). We compare against state-of-
the-art approaches in both settings (Sec. 4.2). We
further consider a question answering based perfor-
mance measure, and analyze the effectiveness of
the proposed generative modeling (Sec. 4.3).

4.1 Settings
We use HOTPOTQA (Yang et al., 2018), a crowd-
sourced multi-hop question answering (QA) dataset
in our experiments. It contains over 90K ques-
tion answering examples, and the evidence set of
each question includes relevant paragraphs from
Wikipedia. The question-relevant sentences within
these paragraphs are further annotated as support-
ing facts. We follow the original data split of HOT-
POTQA, which includes 90,440 / 6,072 examples
for training and evaluation, respectively. We fur-
ther hold out 6,072 examples from the training data
as the validation set. We use SQuAD (Rajpurkar
et al., 2016) as the single-hop QA dataset, which
has over 100K questions also crowd-sourced based
on Wikipedia articles. Following the conventional
evaluation metrics, we use n-gram BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,

2005), and ROUGE-L (Lin and Hovy, 2002) to
evaluate the question generation quality.

We consider two input settings to thoroughly
evaluate the multi-hop question generation (QG)
performance: sentence-level and paragraph-level.
In the first setting, following the existing multi-hop
QG task formulation (Pan et al., 2020; Yu et al.,
2020b), we take the question-relevant sentences
(i.e., supporting facts) along with the answer as
inputs to generate the question. However, human
annotated supporting facts are not always available,
while identifying two relevant paragraphs is rel-
atively achievable. Thus, we further consider a
paragraph-level setting where, besides the answer,
we instead use the paragraphs containing support-
ing facts as part of the input. In both settings, in
order to simulate a low-resource scenario, we train
PLAR and other baselines using two different sub-
sets of the question answering examples, HOTPOT-
10K and HOTPOT-30K, containing 10K and 30K
randomly sampled training examples, respectively.

Note that we do not utilize any annotated ques-
tion decomposition dataset (e.g., QDMR (Wolfson
et al., 2020)). This is because it is labour-intensive
to obtain the extra question decomposition anno-
tations, which are not present in HotpotQA. Thus,
it is not practical to assume such decomposition
annotations would be available in different QA
tasks. We aim to tackle this challenge by utiliz-
ing non-parallel single-hop questions, which is rel-
atively easy to acquire and do not require extra
task-specific annotations.

We compare with three baselines that are based
on seq-to-seq models and are competitive in single-
hop question generation tasks: ASs2s (Kim et al.,
2019), Maxout-QG (Zhao et al., 2018), BART
(Lewis et al., 2020). We compare with two base-
lines that consume auxiliary reasoning path fea-
tures for multi-hop QG: RC-QG (Yu et al., 2020b)
uses reasoning chains built via named entity recog-
nition and relation extraction; and SG-DQG (Pan
et al., 2020) adopts semantic role labeling tech-
niques to build semantic graphs. We also compare
the full PLAR with its two variants: Pipeline indi-
vidually trains a single-hop QG model and a ques-
tion composing model using synthetic question de-
composition data obtained as Perez et al. (2020);
and PLAR w/o plan uses the generative objectives
as PLAR without the planning mechanism.
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Table 3: Question Generation Results (Sentence-Level)

HOTPOT-30K HOTPOT-10K

MODEL BLEU-1 BLEU-4 METEOR ROUGE-L BLEU-1 BLEU-4 METEOR ROUGE-L

Seq-to-Seq
Application

ASs2s 27.12 10.11 13.27 25.69 24.32 9.27 11.93 23.20
Maxout-QG 28.21 10.26 13.64 25.80 25.47 9.19 11.84 23.51
BART 30.52 11.15 14.87 27.22 26.10 10.12 12.46 23.63

Reasoning Path
Enhanced

RC-QG 30.86 11.36 15.29 28.66 29.31 11.16 14.88 26.89
SG-DQG 32.93 12.32 16.40 29.81 31.12 12.27 15.25 27.90

Proposed
Pipeline 30.11 11.65 15.20 27.28 28.23 10.02 13.21 25.21
PLAR w/o plan 35.19 13.48 17.54 31.02 33.68 13.87 16.64 28.87
PLAR 37.32 14.94 18.87 32.63 35.96 15.32 17.37 29.85

4.2 Overall Results

Table 3 shows that PLAR consistently outperforms
baselines on both subsets in the sentence-level in-
put setting. We can see that PLAR achieves a signif-
icant performance gain for all metrics. For example,
PLAR (32.63) outperforms SG-DQG (29.81) under
ROUGE-L on HOTPOT-30K. Meanwhile, we also
find that the generative modeling is essential to the
performance gain of PLAR. For examples, PLAR
w/o plan (16.64) achieves 25.9% improvements
over Pipeline (13.21) under METEOR on HOTPOT-
10K. This validates that unifying single-hop and
multi-hop QA data can effectively alleviate the data
scarcity issue. We further find that Pipeline has a
heavier performance decrease (comparing with the
baselines) when having fewer data. For example,
Pipeline outperforms RC-QG under BLEU-4 on
HOTPOT-30K, while it is outperformed by RC-QG
on HOTPOT-10K. This is largely because the train-
ing of each phase is individual performed which
is prone to data insufficiency especially in a more
extreme low-resource scenario.

For the paragraph-level input setting, Table 4
shows the results that PLAR consistently outper-
forms the baselines by a large margin. For example,
PLAR (17.79) achieves a gain of more than 33%
compared to SD-DQG (13.37) under METEOR on
HOTPOT-30K. By comparing PLAR (27.64) with
PLAN w/o plan (24.81) and Pipeline (23.04) un-
der ROUGE-L on HOTPOT-10K, we find that the
contribution of the planning mechanism is more
significant than that of the generative modeling.
This is largely because the diversification of poten-
tial sub-questions raises greater challenges in the
paragraph-level setting. Using the planning vari-
ables, PLAR can effectively generate the feasible
sub-questions. We also provide qualitative exam-
ples in Appendix to show the effectiveness of the
planning variables. We also find that the reasoning
path augmented baselines are not as competitive

as in the sentence-level input setting. For example,
RC-QG outperforms all the seq-to-seq based base-
lines under METEOR in the sentence-level setting,
while it only outperforms ASs2s in the paragraph-
level setting. The reason is that handcrafted rea-
soning features cannot generalize well to a larger
evidence set. PLAR overcomes this limitation by
optimizing reasoning capability taking advantage
of both single-hop and multi-hop QA data.

4.3 Discussion

We first study whether the generated questions can
boost the question answering performance. We
compare the performances of a BERT QA model
(Devlin et al., 2019) on both subsets, where the QA
model is trained using QA data generated by differ-
ent QG models. The results in Table 5 show that the
learning of multi-hop QA models relies heavily on
sufficient supervision, since a significant perform
reduction is observed when training on a subset
only. PLAR achieves more effective training than
the baselines and its variants, especially in the more
challenging subset. It achieves the most perfor-
mance gain (17.3%) over the subset-only training
result under F1 on HOTPOT-30K. We also find that
the QG results of BART do not improve QA perfor-
mance while BART performs comparable to other
baselines (e.g., SG-DQG) on automatic evaluation
metrics. This is aligned with our intuition that the
text fluency is insufficient for obtaining multi-hop
questions that benefit the QA task. It is essential to
incorporate reasoning into the generation process.

We now study the effect of unified generative
question generation. To investigate how the gener-
ative multi-hop (Eqn. 5) and single-hop objective
(Eqn. 7) contribute to the overall question genera-
tion training, we compare PLAR with PLAR using
multi-hop objective only and PLAR using planning
guided multi-hop objective under varying sizes of
single-hop question answering data. The results on
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Table 4: Question Generation Results (Paragraph-Level)

HOTPOT-30K HOTPOT-10K

MODEL BLEU-1 BLEU-4 METEOR ROUGE-L BLEU-1 BLEU-4 METEOR ROUGE-L

Seq-to-Seq
Application

ASs2s 23.33 8.71 11.01 22.18 22.01 8.82 10.00 20.76
Maxout-QG 25.04 9.82 12.36 24.51 23.71 9.05 11.28 22.42
BART 26.13 10.34 13.40 24.97 24.60 9.63 12.37 22.79

Reasoning Path
Enhanced

RC-QG 25.75 9.02 12.51 24.08 23.32 8.71 11.08 20.51
SG-DQG 26.97 10.42 13.37 25.43 24.07 10.03 11.54 22.57

Proposed
Pipeline 27.06 10.43 13.93 25.62 24.41 10.24 11.84 23.04
PLAR w/o plan 32.27 12.10 15.76 28.48 27.31 11.23 12.06 24.81
PLAR 36.74 13.63 17.79 30.35 32.58 13.32 14.18 27.64

Table 5: Question Answering Results using Synthetic
Data from Question Generation

HOTPOT-30K HOTPOT-10K

QA SUPERVISION EM F1 EM F1

w/o QG Subset only 52.2 66.1 46.0 58.9

Subset
w/ QG

BART 51.4 64.0 43.1 54.3
SG-DQG 53.3 67.2 47.3 62.8

Pipeline 54.8 68.3 49.1 61.7
PLAR w/o plan 60.9 72.8 53.4 65.0
PLAR 61.5 73.0 54.8 66.2

* Both question generation and question answering are per-
formed in the paragraph-level setting.

the two subsets under ROUGE-L in the sentence-
level setting are shown in Fig. 2(a) and Fig. 2(b).
We can see that both objectives are important. For
example, when using complete single-hop QA data
on HOTPOT-30K, multi-hop and single-hop genera-
tive objectives bring 7.3% and 11.5% improvement,
respectively. We further find that the performance
gain of PLAR is largely attributed to the single-
hop generative objective when available single-hop
questions are limited. The reason is that without the
generative single-hop objective, training the sub-
question generation model heavily relies on the
initial fine-tuning step, and is thus prone to single-
hop QA data insufficiency. The full PLAR model
addresses this limitation by further training the sub-
question generation model with supervision from
generative single-hop and multi-hop QG.

5 Related Work

Question generation has a wide range of applica-
tions besides expanding question answering data,
such as initiating a conversation of dialogue sys-
tems (Mostafazadeh et al., 2017), providing prac-
tice exercises for educational purposes (Jia et al.,
2020), and accelerating real-time question answer-
ing (Seo et al., 2019). It also has great potential
in enriching task-oriented dialogue datasets (Sun
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Figure 2: Effects of unified generative modeling

et al., 2016, 2017; Huang et al., 2020a; Kim et al.,
2020b). Early studies build on encoder-decoder
models and utilize different evidence information,
e.g., Wikipedia passages (Du and Cardie, 2018), re-
views (Yu et al., 2020c), and dialogue history (Gao
et al., 2019). These studies often assume that the
questions are single-hop which be answered by one
piece of evidence. As more high-quality multi-hop
question answering datasets become available (e.g.,
HOTPOTQA (Yang et al., 2018)), recent years have
seen a growing interest in multi-hop question gen-
eration. Most recent approaches add heuristically
extracted features to the encoder-decoder model,
which relies on large-scale training data and can
still suffer from error propagation (Yu et al., 2020b;
Pan et al., 2020). A recent study (Yu et al., 2020a)
which also studies low-resource question genera-
tion assumes that a large amount of unanswered
multi-hop questions are available, which is also
difficult to obtain. We aim to overcome these limi-
tations in this study.

Our study is also related to generative model-
ing which treats unobserved variables (e.g., fea-
tures or labels) as latent variables, and approxi-
mates the distribution through variational inference
(Kingma and Welling, 2014). Generative modeling
has been applied to dialogue response generation
(Zhao et al., 2019; Huang et al., 2020b; Yang et al.,
2020), policy learning (Huang et al., 2019, 2020c),
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sentiment analysis (Xu et al., 2017; Li et al., 2019),
knowledge retrieval (Lee et al., 2019; Kim et al.,
2020a; Su et al., 2021; Tan et al., 2021), and text
style transfer (He et al., 2020). While these works
focus on utilizing unlabeled data to boost model
performance, we aim to unify non-parallel question
corpuses to enable joint learning.

6 Conclusions

We proposed a jointly optimized two-phase model
named PLAR for low-resource question genera-
tion. PLAR effectively utilizes non-parallel single-
hop and multi-hop question answering data to per-
form optimization. We further designed a planning
mechanism to guide the generation process of sub-
questions so that the generation results are valid
to compose a multi-hop question. Experimental
results confirm that PLAR achieves better perfor-
mance compared with the state-of-the-art under
various metrics, especially in a question answering
based evaluation. For future work, we will explore
the heterogeneous multi-hop QG task that requires
reasoning beyond plain texts, e.g., tables.
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A Implementation Details

We use HOTPOTQA split as the original paper (Yang et al., 2018) 4, and use SQuAD v1.1 (Rajpurkar et al.,
2016) 5 training set only since single-hop question answering data only involves in the training. We use
the BART-base model implementation from huggingface library 6 as the single-hop question generation
model and question composing model. We set the batch size to 32 in sentence-level setting and 16 in
paragraph-level setting. The models are trained by Adam (Kingma and Ba, 2015) with a learning rate
initially set to 3e-5 on NVIDIA GeForce RTX 2080 Ti. We use grid search to find the best hyperparameters
for the models based on validation performance, which we use a combination of METEOOR, ROUGE-L
and BLEU scores to measure. 7 We set dimensionality of codebook of the planning mechanism (i.e., K) to
100, which is chosen among {50, 75, 100, 150, 200}

B Sub-Question Generation Qualitative Analysis

Table 6 and 7 show question generation results from PLAR and Pipeline model.

C Planning Mechanism Case Study

Table 8 and 9 show the generation results by different sampled planning variables z in the paragraph-level
setting. We can see that with different predicted z (denoted by different zi ), PLAR raises different
sub-questions and presents different high-level reasoning type. We also find that some planning variable
cannot lead to a reasonable multi-hop question, and the prediction of PLAR can well capture the correct
plan (denoted by higher p(z|a, c)).

Table 6: Sub-Question Generation and Question Composing Examples.

Supportive
Evidence

Paragraph A. Dario Franchitti

[1] George Dario Marino Franchitti, MBE (born 19 May 1973), known professionally
as Dario Franchitti, is a retired Scottish racing driver. [2] After Franchitti did not
secure a single-seater drive in 1995, he was contracted by the AMG team to compete in
touring cars in the DTM and its successor — International Touring Car Championship.

Paragraph B. Mercedes-AMG

[1] Mercedes-AMG GmbH, commonly known as AMG, is the high performance
division of Mercedes-Benz. [2] AMG independently hires engineers, manufactures and
customizes Mercedes-Benz AMG vehicles. [3] Mercedes-AMG is headquartered in
Affalterbach, Baden Württemberg, Germany.

Groundtruth
QA Pair

After he was contracted by the team that is headquartered in Affalterbach, Baden-
Württemberg, Germany, Dario Franchitti competed in what series? (Answer: DTM)

PLAR
QG results

Sub-question 1: Affalterbach Germany is the location of what team?

Sub-question 2: After contracted by AMG, Dario Franchitti competed in what series?

Multi-hop question: After he was contracted by the team that is headquartered in
Affalterbach, Baden-Württemberg, Germany, Dario Franchitti competed in what series?

Pipeline
QG results

Sub-question 1: What is headquartered in Affalterbach Baden Germany?

Sub-question 2: Dario Franchitti competed in what series in 1995?

Multi-hop question: Dario Franchitti competed in what series in 1995 in Affalterbach
Baden Germany?

4https://hotpotqa.github.io/
5https://rajpurkar.github.io/SQuAD-explorer/
6https://huggingface.co/facebook/bart-base
7We use the implementations of the metrics as https://github.com/Maluuba/nlg-eval
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Table 7: Sub-Question Generation and Question Composing Examples

Supportive
Evidence

Paragraph A. Goran Dragić

[1] Goran Dragić (born 6 May 1986) is a Slovenian professional basketball for the
Miami Heat of the National Basketball Association (NBA). [2] He plays at both the
point guard and shooting guard positions.

Paragraph B. 2013–14 Phoenix Suns season

[1] The 2013–14 NBA season was the Phoenix Suns’ 46th season in the NBA. [2] When
the Suns began the regular season, Goran Dragić, P. J. Tucker, Markieff Morris, and his
twin brother Marcus Morris were the only players returning from playing with last
season’s team (while Channing Frye was still on last season’s team, he didn’t play any
games due to a life-threatening heart ailment he had at the time).

Groundtruth
QA Pair

Which team’s 2013-2014 season had players including a Slovenian who plays at both
the point guard and shooting guard positions? (Answer: the Phoenix Suns)

PLAR
QG results

Sub-question 1: Which Slovenian player plays at the point guard and shooting guard
position?

Sub-question 2: In 2013 NBA season which team have the player?

Multi-hop question: In 2013 NBA season which team have the Slovenian player which
plays at the point guard and shooting guard position?

Pipeline
QG results

Sub-question 1: Goran Dragić plays at what positions?

Sub-question 2: What team begins season with players returning from last season?

Multi-hop question:Goran Dragić plays at what positions in the team with players
returning from last season?
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Table 8: Generation Results of Different Sampled Planning Variables

Supportive
Evidence

Paragraph A. Koyaanisqatsi

[1] Koyaanisqatsi, also known as Koyaanisqatsi: Life Out of Balance, is a 1982
American experimental film directed by Godfrey Reggio with music composed by Philip
Glass and cinematography by Ron Fricke.

Paragraph B. Mad Hot Ballroom

[1] Mad Hot Ballroom is a 2005 American documentary film directed and co-produced
by Marilyn Agrelo and written and co-produced by Amy Sewell, about a ballroom dance
program in the New York City Department of Education, the New York City public
school system for fifth graders. [2] Several styles of dance are shown in the film, such as
tango, foxtrot, swing, rumba and merengue.

Groundtruth
QA Pair

Which film was created more recently, Koyaanisqatsi or Mad Hot Ballroom? (Answer:
Mad Hot Ballroom)

PLAR w/
Planning z1
p(z1|c,a)=0.52

Sub-question 1: Which year is film Koyaanisqatsi created?

Sub-question 2: Which year is film Mad Hot Ballroom created?

Multi-hop question: Film Koyaanisqatsi and Mad Hot Ballroom, which is created
later?

PLAR w/
Planning z2
p(z2|c,a)=0.33

Sub-question 1: What is the name of file directed by Marilyn Agrelo?

Sub-question 2: What 1982 experimental film Godfrey Reggio directed?

Multi-hop question: Are Koyaanisqatsi and Mad Hot Ballroom by the same director?

PLAR w/
Planning z3
p(z3|c,a)=0.10

Sub-question 1: What movie has music by Philip Glass?

Sub-question 2: What movie shows dance styles such as tango, foxtrot?

Multi-hop question: What movie has music by Philip Glass and dance styles such as
tango, foxtrot?
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Table 9: Generation Results of Different Sampled Planning Variables

Supportive
Evidence

Paragraph A. Force India VJM10

[1] The Force India VJM10 is a Formula One racing car designed and constructed by
Force India to compete during the 2017 Formula One season. [2] The car is driven by
Sergio Pérez and Esteban Ocon, who joined the team after Nico Hülkenberg left the
team at the end of the season.

Paragraph B. Esteban Ocon

[1] Esteban Ocon (born 17 September 1996) is a French racing driver who currently
drives in Formula One for Force India. [2] He made his Formula One debut for Manor
Racing in the 2016 Belgian Grand Prix, replacing Rio Haryanto. [3] Ocon is part of the
Mercedes-Benz driver development programme.

Groundtruth
QA Pair

Force India VJM10 is a Formula One racing car previous driven by Nico Hülkenberg,
and is now driven by which driver born 17 September 1996? (Answer: Esteban Ocon)

PLAR w/
Planning z1
p(z1|c,a)=0.71

Sub-question 1: who drives Force India VJM10, a Formula One racing car previous
driven by Nico Hülkenberg?

Sub-question 2: which driver is born 17 September 1996?

Multi-hop question: who is born 17 September 1996 and drives Force India VJM10, a
Formula One racing car previous driven by Nico Hülkenberg?

PLAR w/
Planning z2
p(z2|c,a)=0.11

Sub-question 1: Who currently drives in Fomula One for Force India?

Sub-question 2: Who joined Force India after Nico Hülkenberg left?

Multi-hop question: Who joined and drives for Force India after Nico Hülkenberg left?


