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Abstract

Sequence-to-sequence models usually transfer
all encoder outputs to the decoder for genera-
tion. In this work, by contrast, we hypothesize
that these encoder outputs can be compressed
to shorten the sequence delivered for decoding.
We take Transformer as the testbed and intro-
duce a layer of stochastic gates in-between the
encoder and the decoder. The gates are regular-
ized using the expected value of the sparsity-
inducing L0 penalty, resulting in completely
masking-out a subset of encoder outputs. In
other words, via joint training, the L0DROP
layer forces Transformer to route information
through a subset of its encoder states. We in-
vestigate the effects of this sparsification on
two machine translation and two summariza-
tion tasks. Experiments show that, depending
on the task, around 40–70% of source encod-
ings can be pruned without significantly com-
promising quality. The decrease of the output
length endows L0DROP with the potential of
improving decoding efficiency, where it yields
a speedup of up to 1.65× on document sum-
marization and 1.20× on character-based ma-
chine translation against the standard Trans-
former. We analyze the L0DROP behaviour
and observe that it exhibits systematic pref-
erences for pruning certain word types, e.g.,
function words and punctuation get pruned
most. Inspired by these observations, we ex-
plore the feasibility of specifying rule-based
patterns that mask out encoder outputs based
on information such as part-of-speech tags,
word frequency and word position. 1

1 Introduction

Neural sequence-to-sequence (Seq2Seq) models
have dominated various text generation tasks,
including machine translation (Vaswani et al.,

1Source code is available at https://github.com/
bzhangGo/zero.
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Figure 1: Distribution of the summed attention weight per
source word estimated on the English-German WMT14 test
set. For each (source sentence, translation) pair, we extract the
attention matrices from all encoder-decoder attention sublay-
ers in Transformer and average them over different (8) heads
and (6) layers. The attention value for each source word is
summed over all target words in the translation. Higher atten-
tion weights suggest larger impacts on translation. Around
49.7% source words get attention weights of less than 0.6,
compared to the mean value of 1.03.

2017) and abstractive document summariza-
tion (Gehrmann et al., 2018; Liu and Lapata, 2019).
These models generally follow the encoder-decoder
paradigm, where the encoder interprets source con-
text and converts source words into vector represen-
tations such that the decoder has sufficient informa-
tion to predict the target sequence. Early Seq2Seq
models (Sutskever et al., 2014; Cho et al., 2014)
provided only the last and/or first encoder states
to the decoder. In contrast, modern approaches
rely on the attention mechanism (Bahdanau et al.,
2015) and implicitly make an assumption that in-
formation from all encoder outputs should flow to
the decoder.2 However, this assumption neglects
the fact that a large portion of source words in
machine translation receives just minor attention
as shown in Figure 1, let alone in summarization
where the input contains redundant expressions and
large parts of text are not relevant to any plausible
summary. Moreover, information content varies

2We interchangeably use source representation, encoder
output and source encoding unless otherwise specified.

https://github.com/bzhangGo/zero
https://github.com/bzhangGo/zero
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Figure 2: Encoder-decoder attention distribution of target
words (y-axis) over source words (x-axis) for the vanilla atten-
tion (Vaswani et al., 2017), the sparse attention (Correia et al.,
2019) and our model. Darker color indicates larger attention
weight, and the white blocks denote an attention weight of
0. The source words whose encoding is pruned by L0DROP
(receiving zero weight) are highlighted in red.

across words, for example, it is negatively corre-
lated with event frequency (Shannon, 1948; Zipf,
1949). When moving from word-level to character-
level processing, the notion of encoding informa-
tion and computing attention on the level of charac-
ters also seems excessive. Previous work has pro-
posed hierarchical architectures where character-
level encodings are compressed into word-level
or span-level states (Ling et al., 2015; Lee et al.,
2017).

In this work, we hypothesize that encoder out-
puts are compressible and we can force Seq2Seq
model to route information through their subset.
Figure 2 illustrates our intuition as well as the dif-
ference with existing work (Vaswani et al., 2017;
Correia et al., 2019). Instead of dynamically spar-
sifying attention weights for individual decoder
steps (Correia et al., 2019), we aim at detecting un-
informative source encodings and dropping them
to shorten the encoding sequence before genera-
tion. To this end, we build on recent work on
sparsifying weights (Louizos et al., 2018) and acti-
vations (Bastings et al., 2019) of neural networks.
Specifically, we insert a differentiable neural spar-
sity layer (L0DROP) in-between the encoder and
the decoder. The layer can be regarded as provid-
ing a multiplicative scalar gate for every encoder
output. The gate is a random variable and, unlike
standard attention, can be exactly zero, effectively
masking out the corresponding source encodings.
The sparsity is promoted by introducing an extra
term to the learning objective, i.e. an expected
value of the sparsity-inducing L0 penalty. By vary-
ing the coefficient for the regularizer, we can obtain
different levels of sparsity. Importantly, the objec-
tive remains fully end-to-end differentiable.

Given an encoding sequence of length N , the
vanilla attention model attends to it recurrently for

M steps at the decoding phase, leading to a compu-
tational complexity of O(NM) (N = 6, M = 6
in Figure 2). This could be costly if N or M is
very large. With the induced sparse structure by
L0DROP, we introduce a specialized decoding al-
gorithm which lowers this complexity to O(N ′M)
(N ′ ≤ N , and N ′ = 3 in Figure 2). As a result,
L0DROP can improve decoding efficiency by re-
ducing the encodings’ length, especially for long
inputs.

We apply L0DROP to Transformer (Vaswani
et al., 2017), the state-of-the-art Seq2Seq model.
We conduct extensive experiments on WMT trans-
lation tasks with two language pairs and docu-
ment summarization tasks covering single docu-
ment and multiple documents settings. We also
explore character-based machine translation where
the lengthy character sequence often leads to slow
inference. We analyze how pruning source en-
codings impacts the generation quality and which
word types get pruned. Inspired by the analysis
of L0DROP, we further study rule-based sparsity
patterns , such as deterministically filtering out the
encodings of words with specific POS tags, high-
frequency words or simply attending to every other
word in the sequence.

Our main findings are summarized as follows:

• We confirm that the encoder outputs can be
compressed, around 40–70% of them can be
dropped without large effects on the genera-
tion quality.
• The resulting sparsity level differs across word

types, the encodings corresponding to func-
tion words (such as determiners, prepositions)
are more frequently pruned than those of con-
tent words (e.g., verbs and nouns).
• L0DROP can improve decoding efficiency

particularly for lengthy source inputs. We
achieve a decoding speedup of up to 1.65×
on document summarization tasks and 1.20×
on character-based machine translation task.
• Filtering out source encodings with rule-

based sparse patterns is feasible, and con-
firms information-theoretic expectations, al-
though rule-based patterns do not generalize
well across tasks.

2 Related Work

Approaches to compression in Seq2Seq models
fall into the category of model parameter compres-
sion (See et al., 2016), sequential knowledge dis-
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tillation (Kim and Rush, 2016) or sparse attention
induction that ranges from modeling hard atten-
tion (Wu et al., 2018) to developing differentiable
sparse softmax functions or regularizing attention
weights for sparsity (Niculae and Blondel, 2017;
Correia et al., 2019; Cui et al., 2019; Zhang et al.,
2019). Unfortunately, the success of all these stud-
ies builds upon the access to all source encodings
in training and decoding. Learning which encoder
outputs to prune in Seq2Seq models, to the best of
our knowledge, has never been investigated before.
Sukhbaatar et al. (2019) learn attention spans in
self-attention and discard information from states
outside of the span; this method is not directly ap-
plicable to encoder-decoder attention.

We use the differentiable L0-relaxation which
was first introduced by Louizos et al. (2018) in the
context of pruning individual neural network pa-
rameters. It was previously used to prune heads in
multi-head attention (Voita et al., 2019). Our work
is more similar in spirit to Bastings et al. (2019)
where they used the L0 relaxations to construct in-
terpretable classifiers, i.e. models that can reveal
which words they rely on when predicting a class.
In their approach, the information from dropped
words is lost rather than rerouted into the states of
retained words, as desirable for interpretability but
problematic in the text generation set-up.

The number of the source encodings selected
by L0DROP is sentence-dependent, which differs
from the linear-time model of Wang et al. (2019),
although both can accelerate decoding. Our study
of rule-based sparsity patterns is in line with the
sparse Transformer (Child et al., 2019) though we
also explore the use of external linguistic informa-
tion (POS tag) in our sparsification rules, and focus
on encoder outputs instead of self-attention.

Character-based translation gained increasing
popularity due to its capability of handling out-of-
vocabulary issues while avoiding tokenization and
subword segmentation (Ling et al., 2015; Costa-
jussà and Fonollosa, 2016; Sennrich, 2017; Cherry
et al., 2018). Recent efforts often focus on clos-
ing the performance gap against its subword-level
counterpart (Libovický and Fraser, 2020; Gao et al.,
2020), but little study explores solutions to improve
its inefficient inference resulted from the long char-
acter sequences. In this respect, Cherry et al. (2018)
proposed to use conditional computation to dynam-
ically compress encoder states. Similar to our re-
sults, they also observed a trade-off between the

translation quality and the degree of compression.

3 Background: Transformer

We take Transformer (Vaswani et al., 2017) as our
testbed. Transformer uses the dot-product attention
network as its backbone to handle intra- and inter-
sequence dependencies:

ATT(H,M) = AV = SM

(
QKT

√
d

)
V, (1)

where Q,K,V = HWq,MWk,MWv. The in-
put H ∈ RJ×d of length J queries and summarizes
task-relevant clues from the memory M ∈ RI×d
of length I based on their dot-product seman-
tic matching A ∈ RJ×I . SM denotes the soft-
max function, d is the model dimension, and Wq,
Wk,Wv ∈ Rd×d are trainable model parameters.
Vaswani et al. (2017) also extend this mechanism
to multi-head attention.

Given a source sequence X = (x1, x2, . . . , xN ),
Transformer maps it to the target sequence Y =
(y1, y2, . . . , yM ) following the encoder-decoder
paradigm (Bahdanau et al., 2015):3

XL = Encoder
(
X0
)

(2)
L
:=
l=1

FFN
(

ATT(Xl−1,Xl−1)
)
,

YL = Decoder
(
Y0,XL

)
(3)

L
:=
l=1

FFN
(

ATT
(

ATT(Yl−1,Yl−1),XL
))

,

where X0 ∈ RN×d and Y0 ∈ RM×d stand for
the source and the shifted target sequence embed-
ding, respectively, enriched with positional encod-
ing (Vaswani et al., 2017). FFN(·) is a point-wise
feed-forward network. ATT(·, ·) in the decoder de-
notes masked ATT(·, ·) which prevents access to fu-
ture target words. Both the encoder and the decoder
involve a stack of L identical layers, with the en-
coder output XL fed to the decoder via an encoder-
decoder attention sublayer, i.e. the ATT(·, ·) in Eq.
(3). Based on the decoder output YL, Transformer
performs the next-word prediction and adopts the
maximum likelihood loss for training.

4 Neural Sparsity Layer: L0DROP

In this section, we introduce a neural sparsity layer
(L0DROP), which we use to prune encoder outputs.

3Each sublayer (ATT/ATT/FFN) in the encoder and de-
coder is wrapped with residual connection (He et al., 2015)
followed by layer normalization (Ba et al., 2016), which are
dropped in Eq. (2) and (3) for clarity.
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Figure 3: Hard concrete distribution (orange curve): samples
are first stretched from the binary concrete distribution (dashed
blue curve) to a stretched distribution (solid blue curve), and
then rectified to collapse the probability mass of the shadow
areas into {0} and {1} (solid orange points).

At inference time, only retained encoder outputs
will be used as input to the decoder.

4.1 Training with L0DROP

Intuitively, L0DROP assigns each encoder output
xLi a gate gi ∈ [0, 1] (i ∈ {1, . . . , N})

L0DROP(xLi ) = gix
L
i , (4)

and prunes encodings by closing their gates, i.e.
gi = 0, relying on adding a differentiable sparsity-
inducing penalty to the objective.

More formally, to achieve sparsity, each gate is
assumed to be a random variable and its value is
drawn from the HardConcrete distribution:

gi ∼ HardConcrete(αi, β, ε), (5)

where αi, β and ε are shape parameters of the dis-
tribution. HardConcrete (Louizos et al., 2018) is a
parameterized family of mixed discrete-continuous
distributions over the closed interval [0, 1]. These
distributions have point mass at 0 and 1 and con-
tinuous density in-between, i.e. in (0, 1), as shown
in Figure 3. Thus, the gates will have a non-zero
probability of being exactly 0, corresponding to
masking out the input completely.

Specifically, the sample from HardConcrete dis-
tribution is obtained by stretching and rectifying
samples from BinaryConcrete distributions (Mad-
dison et al., 2017; Jang et al., 2017):

si ∼ BinaryConcrete(αi, β) (6)

s̄i = si (1 + 2ε)− ε, (7)

gi = min (1,max (0, s̄i)) . (8)

In the above expression, we first obtain a sample
from the BinaryConcrete distribution (Eq. (6)),
then stretch it from (0, 1) to (−ε, 1 + ε) (Eq. (7),

ε > 0), and finally rectify with a hard sigmoid to
the closed interval [0, 1] (Eq. (8)).

The probability of gi being exactly 0 (p(gi =
0|αi, β, ε)) equals the probability of s̄i hitting
(−ε, 0) and is available in a closed form (Louizos
et al., 2018):

p(gi = 0|αi, β, ε) = σ(β log
ε

1 + ε
− logαi),

where σ(·) denotes the sigmoid function. The pa-
rameter αi (i.e. the location parameter of Bina-
ryConcrete) is predicted relying on the encoder
output xi:

logαi = xLi w
T , (9)

where w ∈ Rd is a learned parameter vector; the
temperature β and the stretch degree ε are treated
as hyperparameters. By adjusting αi the model can
change the shape of the HardConcrete distribution,
and dynamically decide which outputs to pass to
the decoder and which to prune.

Note that the sum

L0(X) =
N∑
i=1

1− p(gi = 0|αi, β, ε), (10)

yields the expected number of open gates, or,
equivalently, the expected L0 loss on gate vector
(g1, . . . , gN ). Minimizing the loss encourages the
model to prune encoder outputs.

Once L0DROP is integrated as a new layer into
Transformer, the decoder, previously defined in Eq.
(3), becomes:

YL = Decoder(Y0,L0DROP(XL)). (11)

Other components in Transformer are kept intact,
except for using a modified objective L(X,Y ):

LMLE(X,Y ) + λL0(X)

=− logEg∼p(g|φ) [p(Y,g|X)] + λL0(X)

≤ Eg∼p(g|φ) [− log p(Y,g|X)] + λL0(X)

= L(X,Y ) (12)

where φ is short for (α, β, ε), λ ∈ R+ is a hyperpa-
rameter defining the level of sparsity. The bound is
derived by applying Jensen’s inequality.

Importantly, the objective remains fully differ-
entiable as we can rely on the reparameterization
technique (Kingma and Welling, 2013) to sample
g̃ for computing unbiased estimates of the gradi-
ents. Adding L0DROP and the regularizer intro-
duces only a negligible computational overhead to
training compared to the original Transformer.
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Algorithm 1 Decoding algorithm for L0DROP

Input: Source encodings, XL ∈ RN×d;
Gates, ĝ ∈ RN ;
Query state, ylj ∈ Rd;

Output: Attention vector for the query
. step 1: reorganize source-side inputs
. note this step can be done before the decoder

1: I ← {i|ĝi 6= 0} . N ′← |I|
2: ĝ′ ∈ RN ′

, X′L ∈ RN ′×d← ĝ[I], XL[I]
3: c← N −N ′
4: X̄L ← [0 ∈ Rd,X′L � ĝ′], c← [c,1 ∈ RN ′

]
. step 2: attention with counts

5: q,K,V← yljWq, X̄
LWk, X̄

LWv

6: e ∈ RN ′+1 ← qKT /
√
d

. perform softmax with counts
7: a← c� exp(e)/

∑
i (ci exp(ei))

8: v ∈ Rd ← aV
9: return v

4.2 Decoding with L0DROP

At test time we do not sample gate values but es-
timate their expected value gi, following Louizos
et al. (2018):

ĝi = min(1,max(0, σ(logαi)(1+2ε)−ε)), (13)

which often turns out to be exactly either 0 or 1,
albeit being in-between in some cases. Encodings
corresponding to non-zero ĝi are preserved and
simply weighted by the expectation ĝi.

To leverage the induced sparse structure, we re-
vise the decoding procedure as in Algorithm 1. The
notation [·, ·] refers to row-wise concatenation, [I]
stands for extracting elements with the indices I ,
� is element-wise multiplication, and 1 ∈ RN ′

indicates a vector of ones of length N ′. We first
reorganize the gates ĝ ∈ RN and the source encod-
ings XL ∈ RN×d by eschewing the entries corre-
sponding to closed gates (ĝi = 0, line 1-2). We
augment the compressed sequence X′L ∈ RN ′×d

with a dummy zero encoding vector 0 ∈ Rd to rep-
resent all pruned encodings, and record their count
into a counting vector c ∈ RN ′+1 (line 4).4 Notice
that this step is decoder-agnostic, which only relies
on the source encodings and L0DROP gates. We
then modify the attention process to enable the in-
clusion of this counting information (line 5-8) for
correctly estimating the attention weights. Note

4Note thatN ′ ≤ N . L0DROP could increase the sequence
length if no source encoding is pruned, which is not observed
in our experiments.

that the shortened source sequence X̄L is reused
across decoder layers and steps. L0DROP changes
the dependency of the encoder-decoder attention
on source sequence from O(NM) to O(N ′M),
and allows for efficiency gains even with moderate
sparsity, especially for large L, N and M .

5 Experimental Setup

We study L0DROP on machine translation tasks
(WMT14 English-German (En-De) (Bojar et al.,
2014) and WMT18 Chinese-English (Zh-En) (Bo-
jar et al., 2018)5) and document summarization
tasks (CNN/Daily Mail (Hermann et al., 2015)6 and
WikiSum (Liu et al., 2018)7). We adopt BLEU (Pa-
pineni et al., 2002) and ROUGE-L (Lin, 2004) to
evaluate the translation and summarization quality,
respectively. Other details, including model set-
tings, are given in the Appendix A. For character-
based translation, we employ the same model ar-
chitecture and hyperparameters for training and
decoding as specified in Appendix A, except that
we adopt larger-batch training (∼85K characters)
and encourage longer sequence decoding (length
penalty of 1.0).

6 Results and Analysis

How much can encoder outputs be sparsified?
We answer this question by analyzing the impact of
pruning source encodings on the generation quality.
We first train a baseline Transformer model, and
then finetune this model using L0DROP (Eq. (12))
with varied λ to explore different levels of sparsity.
We sample λ with a range of (0, 1.5] and a step size
of 0.1, and finetune WMT14 En-De and WMT18
Zh-En models for extra 50K steps, and CNN/Daily
Mail for extra 20K steps. We use the sparsity rate
to measure the sparsity; we define it as the ratio of
the pruned source encoding number #(ĝi = 0) to
the total number of source words.

Figure 4 shows the results. The generation qual-
ity exhibits a negative correlation with the sparsity
rate across different tasks, reflecting the useful-
ness of encoder outputs for generation. However,
the fact that we can remove about 40% source en-
codings without largely degrading the generation
performance (-0.5 BLEU and -0.1 ROUGE-L) sup-
ports our hypothesis that we can force Seq2Seq

5https://www.statmt.org/wmt14(8)/translation-task.html
6https://github.com/harvardnlp/

sent-summary
7https://github.com/nlpyang/hiersumm

https://github.com/harvardnlp/sent-summary
https://github.com/harvardnlp/sent-summary
https://github.com/nlpyang/hiersumm
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Figure 4: Generation quality (BLEU and ROUGE-L, evaluated on test set) as a function of sparsity rate for WMT14 En-De,
WMT18 Zh-En and CNN/Daily Mail. Pruning about 40% source encodings results in marginal performance loss on all tasks.

Task Time Speedup Sparsity Quality

WMT14 En-De 68.89 1.00× 0.00% 27.59
68.38 1.01× 46.7% 27.06

WMT14 En-De 1418 1.00× 0.00% 25.40
(Char) 1186 1.20× 46.1% 25.35

WMT18 Zh-En 116.3 1.00× 0.00% 21.10
118.3 0.98× 39.1% 20.80

CNN/Daily Mail 3909 1.00× 0.00% 36.88
3227 1.21× 47.6% 36.51

WikiSum 70505 1.00× 0.00% 39.20
42669 1.65× 71.5% 38.75

Table 1: Decoding results for different tasks when finetuning
with λ = 0.3. “Time”: the decoding time (in seconds) of
the whole test set. “Sparsity”: the sparsity rate, 0.00% in-
dicates the Transformer baseline. “Speedup”: the decoding
acceleration over the baseline. “Quality”: BLEU for WMT
tasks and ROUGE-L for summarization tasks. “Char”: the
character-level models, where we set λ = 0.02. We evaluate
the decoding time on GeForce GTX 1080 Ti, with a batch size
of 32 for WMT tasks and 10 for summarization tasks.

model to route information through a subset of its
source encodings. We also observe that the com-
pressibility seems relatively language independent
(the curves of WMT14 En-De 4(a) and WMT18
Zh-En 4(b) are similar) but clearly task dependent.
Compared to translation tasks, the summarization
task seems less sensitive to the pruning of source
encodings. We ascribe this to the property of sum-
marization where the summary only reflects a part
of the input document, rather than the entire docu-
ment.

Does L0DROP improve the decoding speed?
With appropriate finetuning, L0DROP can shorten
the encoding sequence fed to the decoder, reduc-
ing the calculation amount of the encoder-decoder
attention. However, the encoder-decoder attention
corresponds to about 1/3 of the decoder calcula-

tions,8 and Algorithm 1 also brings in extra over-
head, such as gathering and indexing operations.
Thus, a speed-up is not guaranteed, and we report
empirical decoding time across different tasks.

Results in Table 1 show that L0DROP only
marginally improves the decoding speed for
subword-based machine translation, despite a high
sparsity rate of 46.7% (WMT14 En-De) and 39.1%
(WMT18 Zh-En). By contrast, L0DROP yields a
speedup of 1.21× and 1.65× on CNN/Daily Mail
and WikiSum, respectively. One explanation lies at
the significant difference in target sequence length,
where the average length per summary is>60, com-
pared to ∼25 in machine translation. Note that
L0DROP achieves a substantially higher sparsity
rate of 71.5% on WikiSum with the same λ = 0.3.
This is because the input paragraphs overlap in
content; the information about redundant words
does not need to be routed into other encoder states,
making it easier to prune them.

When it comes to character-based translation, we
observe that L0DROP performs comparably to the
baseline (-0.05 BLEU) with a high sparsity rate of
46.1%. This echoes with our findings on subword-
based translation, except that L0DROP also im-
proves inference efficiency here due to the higher
sequence length with a decoding speedup of 1.20×.
In comparison to adaptive compression (Cherry
et al., 2018), L0DROP delivers higher compres-
sion ratio with almost no quality loss. This fur-
ther demonstrates the effectiveness of L0DROP in
handling lengthy inputs. We notice that character-
level models still underperform their subword-level
counterparts with the standard Transformer, but

8At decoding, the encoder-decoder attention accounts for
about 34.4% decoder time according to profiling on our im-
plementation.
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Figure 5: Curves for sparsity rate of different types of encod-
ing on the WMT14 En-De test set. x-axis denotes the overall
sparsity rate. The encoding of content words and BPEH is
more valuable for generation, compared to that of function
words and punctuation.

closing this performance gap is beyond the scope
of this study.

Note that the pretraining-then-finetuning schema
is mainly used for saving training efforts. By
scheduling λ linearly with training steps, we can
train models with L0DROP (Eq. (12)) from scratch,
and obtain a BLEU score of 27.03 (λ = 0.2, warm-
up step of 200K) on WMT14 En-De (using sub-
words), comparable to using finetuning (27.04).

What types of source encoding are required for
generation? Our goal here it to understand en-
codings of which types of tokens are retained. For
each source encoding, we regard the POS of its cor-
responding word as its type. We take WMT14 En-
De as our benchmark, where we annotate POS for
source sentences in the test set using the Stanford
POS tagger (Toutanova et al., 2003). We handle
subwords separately by labeling its first piece as
BPEH while the others as BPEO, regardless of the
POS of its unsegmented form. We group different
POS tags into 6 categories for the sake of analy-
sis: BPEH, BPEO, function words, content words,
punctuation and the rest.9

Figure 5 shows how the sparsity rate of each
encoding type changes as a function of the overall
sparsity rate. We find that L0DROP first choose
to eliminate the encoding of punctuation, followed
by that of function words. These words often sig-
nal structural and grammatical relationships that,
while important to build up a representation of the
sentence, can be easily compressed. In contrast,
pruning content words, which express richer lexi-

9Function words include CC, IN, RP, TO, UH, DT and WP.
Content words include MD, JJ, NN, RB and VB. Others include
other POS tags except for punctuation and BPEO/BPEH, such
as CD, EX, FW and SYM.
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Figure 6: Distribution of the position of pruned source char-
acters within a word on the WMT14 En-De test set. x-axis:
0.0 and 1.0 corresponds to the beginning and ending of one
word, respectively.
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Figure 7: Distribution of the summed attention weight per
source word on the WMT14 En-De test set for Transformer
with L0DROP (sparsity rate 47%, BLEU 27.06). Only 4.5%
source words get attention weights of less than 0.6.

cal meaning, is more difficult. The sharp increase
of content word sparsity after the overall sparsity
rate of 0.5 in Figure 5 correlates with a sharp drop
in translation quality (see Figure 4(a)). We also
observe that there is a large difference between
BPEO and BPEH, albeit both from the same word.
L0DROP favours to prune the encoding of BPEO,
indicating that the model learns to use word-initial
representations (BPEH) to represent whole words.

For character-level models, we observe that
L0DROP identifies the inter-word structure in char-
acter sequences, and removes 89.2% encodings
of the space symbol. We didn’t find any other
character-specific pruning patterns, but Figure 6
reveals that the encodings of characters near the
ending of a word are more likely to be pruned com-
pared to those at the beginning positions. This
result resonates with our above observation on sub-
word pruning, where L0DROP prefers to drop the
encoding of BPEO rather than BPEH.

What’s the effect of L0DROP on Transformer?
Transformer can lose the access to around 40%
source encodings while largely retaining the same
performance. We try to figure out what has changed
inside Transformer in order to support L0DROP,
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Figure 8: Entropy of the retained source encodings (top)
and the pruned ones (bottom) versus the sparsity rate on the
WMT14 En-De test set. We use the sparsity variable ĝ learned
by L0DROP to classify the encodings of our baseline Trans-
former. Higher entropy indicates that the distribution tends
to be uniform. With fewer retained encodings, Transformer
tends to spread its attention weights to include more source-
side information.

and analyze the attention weights (i.e. A in Eq.
(1)) of all encoder-decoder attention sublayers and
the last encoder self-attention sublayer; these sub-
layers are directly connected with L0DROP in the
computation graph. We test on WMT14 En-De.

We visualize the distribution of the encoder-
decoder attention weight per source word for Trans-
former with a sparsity rate of 47% (BLEU 27.06).
Compared to the vanilla Transformer (Figure 1),
distributions in Figure 7 show that the average at-
tention weight obtained by each source word has
increased (+0.77, 1.03→1.80), and the proportion
of source words receiving attention weights of less
than 0.6 is substantially reduced, by a factor of
10 (49.7%→4.5%). This indicates that L0DROP

forces Transformer to distribute its attention more
evenly among retained source encodings.

Apart from the encoder-decoder attention, we
also inspect the self-attention in the last encoder
layer. We average the self-attention weights over
8 different heads, and compare the attention en-
tropy of the retained source encodings (ĝi 6= 0)
and the pruned ones (ĝi = 0). We report average
entropy values over the whole test set. Figure 8
shows how increasing sparsity affects the entropy.
Although L0DROP selects to drop uninformative
encodings, the increase in the entropy of the re-
tained encodings (Figure 8 (a)), when compared

to the baseline, suggests that the encoder actually
encodes more context information into these rep-
resentations, confirming that the model learns to
compress context information when sparsity is en-
forced. Another observation is that the entropy
curve of L0DROP for the pruned encodings is in
line with that of the baseline, albeit on a larger scale
(Figure 8 (b)). This signifies that L0DROP enforces
Transformer to adapt its attentions to better coor-
dinate with source context representations, which
ensures its effectiveness on generation.

Can we prune encodings earlier in the encoder?
Rather than stackingL0DROP on top of the encoder
outputs, we insert L0DROP in-between every adja-
cent pair of encoder layers. We work on WMT14
En-De and finetune with λ = 0.2. We get a spar-
sity rate of 0.0%, 0.0%, 8.6%, 8.6%, 8.7% and
34.0% for the first to the last L0DROP layer, re-
spectively, with a BLEU score of 26.74. This result
suggests that Transformer does not gain much bene-
fit from pruning encodings earlier. The model tends
to retain encodings at shallow levels (0.0%/8.6%
< 34.0%), and loses 0.3 BLEU compared to its
L0DROP baseline (λ = 0.2, sparsity rate 31.7%,
BLEU 27.04). We believe that the encoder relies
on low-level information (including the words) to
fully ‘understand’ the sentence, though part of the
final encodings is discardable.

7 Exploring Rule-based Sparse Patterns

Our analysis shows that the sparsity induced by
L0DROP follows certain patterns, with the encod-
ings of ‘less content-bearing’ words pruned first.
This suggests that we may be able to define heuris-
tic patterns manually. In this section, we explore
the following three rule-based patterns according
to our study on WMT14 En-De:

POS Pattern This pattern discards the source en-
codings of those easy-to-prune types, includ-
ing function words, punctuation, BPEO and
MD, EX, which account for 46.4% of the
source-side WMT14 En-De training data.

Freq Pattern Inspired by the fact that punctuation
and function words are high frequency words,
we propose to filter out the source encodings
corresponding to top-frequent words with a
threshold of 46.3% (top 100 words). We also
include an inverse version, Inv Freq Pattern,
for comparison, which drops the encodings
of most rare words; source words whose fre-
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Pattern WMT14 En-De CNN/Daily Mail

Sparsity BLEU Sparsity RL

Baseline 0.00% 27.59 0.00% 36.88
L0DROP 46.7% 27.06 47.6% 36.51

POS Pattern 46.7% 27.11 39.6% 35.57
Freq Pattern 42.1% 26.98 47.8% 35.67
Group Pattern 50.0% 26.82 50.0% 30.69

Inv Freq Pattern 44.7% 26.42 39.0% 27.89

Table 2: Sparsity and generation quality for different models
on the WMT14 En-De (measured by tokenized case-sensitive
BLEU) and the CNN/Daily Mail (measured by ROUGE-L or
RL) test set. The sparsity rate is evaluated on test set.

quency ranks lower than 452 are removed,
covering ∼40.0% of the source training data.

Group Pattern We explore a position-based pat-
tern that only feeds the encodings at odd posi-
tions to the decoder, indicating a sparsity rate
of ∼50%. This pattern is partially motivated
by Child et al. (2019).

The design of these patterns follows our analysis on
L0DROP, where we match the sparsity rate in each
pattern to the optimal rate of L0DROP on WMT14
En-De. We examine the feasibility of these patterns
on WMT14 En-De and CNN/Daily Mail.

Table 2 shows the results. On WMT14 En-
De, Transformer using these rule-based patterns
achieves comparable translation quality toL0DROP

(-0.24 to +0.05 BLEU) with similar sparsity rate.
One interesting observation is that Transformer
also works with language- and context-agnostic
sparsity patterns (Freq Pattern). The performance
drop by Inv Freq Pattern (-0.64 BLEU) is in line
with the information-theoretic expectation that in-
formation from frequent words is easier to com-
press than that of rare words.

However, note that we developed our heuristics
to mimic the behaviour of L0DROP for WMT14
En-De task. L0DROP has the advantage that it is
data-driven and task-agnostic so that we can eas-
ily apply L0DROP to summarization. By contrast,
these rule-based patterns discovered on translation
tasks are not optimal for other tasks, which results
in deteriorated performance on CNN/Daily Mail
(-5.82 to -0.84 RL). In particular, Transformer suf-
fers from a large performance drop with the Group
pattern (-5.82 RL). These results suggest that us-
ing rule-based sparse patterns to manually define
the sparsity of encoder outputs is possible though
the patterns lack generalization ability to different
tasks.

8 Conclusion and Future Work

By introducing a L0-regularized neural sparsity
layer (L0DROP) in Transformer, we confirm that
the encoder outputs are compressible to varying
degrees. Pruning encoder outputs often results in
a drop in performance, but we can get comparable
results with 40–70% source encodings dropped.
One benefit of pruning source encodings is to
shorten encoding sequences for the decoder, which
is especially beneficial for efficiency on long se-
quences, and accelerates the decoding speed by up
to 1.65× on document summarization tasks and
1.20× on character-based machine translation. Our
analysis on WMT14 En-De shows that L0DROP

learns to drop the encodings of (relatively frequent)
function words and retain encodings of (relatively
rare) content words, but relies on self-attention to
reroute information from these to-be-pruned posi-
tions. Based on our analysis, we define rule-based
sparsity patterns, which also allow for compres-
sion without degrading translation quality much,
and show that frequent tokens are more amenable
to sparsification than rare tokens. However, we
find that our rule-based patterns do not general-
ize across tasks, while L0DROP is data-driven and
applicable across tasks. We hope that, besides prac-
tical implication, our work contributes to better
understanding encoder-decoder models.

For future work, we find that the sparsity induced
by L0DROP is highly task-dependent and hardly
manipulated. We will develop novel algorithms to
make the sparsity induction more controllable.
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A Experimental Settings

Machine Translation We train translation mod-
els on the WMT14 English-German translation
task (En-De) (Bojar et al., 2014) and the WMT18
Chinese-English translation task (Zh-En) (Bojar
et al., 2018). WMT14 En-De and WMT18 Zh-En
contain around 4.5M and 25M training sentence
pairs, respectively. We use newstest2013 as the vali-
dation set for WMT14 En-De and newstest2017 for
WMT18 Zh-En. We evaluate the translation quality
with BLEU metric (Papineni et al., 2002), and re-
port tokenized BLEU on newstest2014 for WMT14
En-De and detokenized BLEU on newstest2018 for
WMT18 Zh-En using sacreBLEU (Post, 2018). We
apply the byte pair encoding (BPE) algorithm (Sen-
nrich et al., 2016) with 32K merging operations to
handle rare words for both translation tasks.

Document Summarization We train abstractive
summarization models on the CNN/Daily Mail
dataset (Hermann et al., 2015) and the WikiSum
dataset (Liu et al., 2018) for single- and multi-
document summarization task, respectively. We
use the non-anonymized version of CNN/Daily
Mail (Gehrmann et al., 2018). We pre-process this
dataset with a BPE vocabulary of 32K and trun-
cate each article to 400 subwords (Gehrmann et al.,
2018). We use the ranked version of WikiSum (Liu
and Lapata, 2019), where top-40 paragraphs are
extracted for each instance paired with a summary
of 121 words on average. We concatenate all these
paragraphs into one source sequence following the
given ranking order. CNN/Daily Mail pairs news ar-
ticles (791 words on average) with multi-sentence
summaries (63 words on average), and involves
287,227 training pairs, 13,368 validation pairs and
11,490 test pairs. WikiSum contains 1.58M training
pairs, 38,144 validation pairs and 39,357 test pairs.
We employ BPE preprocessing following Liu and
Lapata (2019) and truncate each source sequence
to 2048 subwords. We evaluate the summariza-
tion quality using the F1 score of ROUGE-L (Lin,
2004). The used parameters for ROUGE-1.5.5.pl
are -m -a -n 2.

Model Settings We formulate all the tasks as
sequence-to-sequence tasks, and experiment with
the base setting of Transformer (Vaswani et al.,
2017): d = 512, the middle layer size of FFN(·) is
2048, and the number of attention head is 8. Fol-
lowing Louizos et al. (2018), we set ε = −0.1, and
β = 2/3 for L0DROP. We tune the hyperparam-

eter λ for different tasks. We augment the MLE
loss with label smoothing of 0.1. We use Adam
optimizer (β1 = 0.9, β2 = 0.98) (Kingma and
Ba, 2015) for parameter tuning, and schedule the
learning rate based on the inverse square root of
running steps with a warm-up step of 4K. We apply
dropout to attention weights and residual layers
to avoid overfitting, with a rate of 0.1/0.1 except
for CNN/Daily Mail where 0.3/0.5 is used. We
train different models with varied training steps:
300K for WMT14 En-De, 500K for WMT18 Zh-
En, 100K for WikiSum and 80K for CNN/Daily
Mail, where sequence pairs of roughly 25K target
subwords are organized into one minibatch. We
average the last 5 checkpoints for evaluation where
beam search is adopted for decoding with beam
size of 4 and length penalty of 0.6.


