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Abstract

Unknown intent detection aims to identify the
out-of-distribution (OOD) utterance whose in-
tent has never appeared in the training set. In
this paper, we propose using energy scores for
this task as the energy score is theoretically
aligned with the density of the input and can
be derived from any classifier. However, high-
quality OOD utterances are required during
the training stage in order to shape the energy
gap between OOD and in-distribution (IND),
and these utterances are difficult to collect in
practice. To tackle this problem, we propose
a data manipulation framework to Generate
high-quality OOD utterances with importance
weighTs (GOT). Experimental results show
that the energy-based detector fine-tuned by
GOT can achieve state-of-the-art results on
two benchmark datasets.

1 Introduction

Unknown intent detection is a realistic and chal-
lenging task for dialogue systems. Detecting out-
of-distribution (OOD) utterances is critical when
employing dialogue systems in an open environ-
ment. It can help dialogue systems gain a better
understanding of what they do not know, which
prevents them from yielding unrelated responses
and improves user experience.

A simple approach for this task relies on the soft-
max confidence score and achieves promising re-
sults (Hendrycks and Gimpel, 2017). The softmax-
based detector will classify the input as OOD if
its softmax confidence score is smaller than the
threshold. Nevertheless, further works demonstrate
that using the softmax confidence score might be
problematic as the score for OOD inputs can be
arbitrarily high (Louizos and Welling, 2017; Lee
et al., 2018).
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 Utterance: How much did I spend this week
 Intent: spending history

Locating Module

 Intent-related Word(s): How much did I spend this week

Generating Module

 OOD Utterance 1: How much did I drink this week
 OOD Utterance 2: How much did I lose this week

……

Weighting Module

Figure 1: An overview of our framework GOT. For
the utterance “How much did I spend this week” from
CLINC150 dataset (Larson et al., 2019). Our locating
module locates the intent-related word “spend”. And
then our generating module generates words “drink”,
“lose” to replace it and obtains OOD utterances. Fi-
nally, our weighting module assigns a weight for each
of OOD utterances.

Another appealing approach is to use genera-
tive models to approximate the distribution of in-
distribution (IND) training data and use the likeli-
hood score to detect OOD inputs. However, Ren
et al. (2019) and Gangal et al. (2019) find that like-
lihood scores derived from such models are prob-
lematic for this task as they can be confounded by
background components in the inputs.

In this paper, we propose using energy scores
(Liu et al., 2020) for unknown intent detection. The
benefit is that energy scores are theoretically well
aligned with the density of the inputs, hence more
suitable for OOD detection. Inputs with higher
energy scores mean lower densities, which can be
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classified as OOD by the energy-based detector.
Moreover, energy scores can be derived from any
pre-trained classifier without re-training. Never-
theless, the energy gap between IND and OOD
utterances might not always be optimal for differ-
entiation. Thus we need auxiliary OOD utterances
to explicitly shape the energy gap between IND
and OOD utterances during the training stage (Liu
et al., 2020). This poses a new challenge in that
the variety of possible OOD utterances is almost
infinite. It is impossible to sample all of them to
create the gap. Zheng et al. (2019) demonstrate
that OOD utterances akin to IND utterances, such
as sharing the same phrases or patterns, are more ef-
fective, whereas these high-quality OOD utterances
are difficult and expensive to collect in practice.

To tackle this problem, we propose a data
manipulation framework GOT to generate high-
quality OOD utterances as well as importance
weights. GOT generates OOD utterances by per-
turbing IND utterances locally, which allows the
generated utterances to be closer to IND. Specifi-
cally, GOT contains three modules: (1) a locating
module to locate intent-related words in IND utter-
ances; (2) a generating module to generate OOD
utterances by replacing intent-related words with
desirable candidate words, evaluated in two aspects:
whether the candidate word is suitable given the
context, and whether the candidate word is irrele-
vant to IND; (3) a weighting module to reduce the
weights of potential harmful generated utterances.
Figure 1 illustrates the overall process of GOT. Ex-
periments show that the generated weighted OOD
utterances can further improve the performance of
the energy-based detector in unknown intent de-
tection. Our code and data will be available at:
https://github.com/yawenouyang/GOT.

To summarize, the key contributions of the paper
are as follows:

• We propose using energy scores for unknown in-
tent detection. We conduct experiments on real-
world datasets including CLINC150 and SNIPS
to show that the energy score can achieve compa-
rable performance as strong baselines.

• We put forward a new framework GOT to gen-
erate high-quality OOD utterances and reweight
them. We demonstrate that GOT can further im-
prove the performance of the energy score by
explicitly shaping the energy gap and achieves
state-of-the-art results.

• We show the generality of GOT by applying
generated weighted OOD utterances to fine-tune
the softmax-based detector, and the fine-tuned
softmax-based detector can also yield significant
improvements.

2 Related Work

Lane et al., 2006, Manevitz and Yousef, 2007
and Dai et al., 2007 address OOD detection for
the text-mining task. Recently, this problem has
attracted growing attention from researchers (Tur
et al., 2014; Fei and Liu, 2016; Fei et al., 2016;
Ryu et al., 2017; Shu et al., 2017). Hendrycks and
Gimpel (2017) present a simple baseline that uti-
lizes the softmax confidence score to detect OOD
inputs. Shu et al. (2017) create a binary classi-
fier and calculate the confidence threshold for each
class. Some distance-based methods (Oh et al.,
2018; Lin and Xu, 2019; Yan et al., 2020) are also
used to detect unknown intents as OOD utterances
highly deviate from IND utterances in their local
neighborhood. Simultaneously, with the advance-
ment of deep generative models, learning such a
model to approximate the distribution of training
data is possible. However, Ren et al. (2019) find
that likelihood scores derived from these models
can be confounded by background components,
and propose a likelihood ratio method to alleviate
this issue. Gangal et al. (2019) reformulate and
apply this method to unknown intent detection.

Different from these methods, we introduce the
energy score for this task. Liu et al. (2020) prove
that the energy score is theoretically aligned with
the density of the input, and can be derived from
any classifier without re-training, hence desirable
for our task. We further propose a data manipu-
lation framework to generate high-quality OOD
utterances to shape the energy gap between IND
and OOD utterances.

Note that there are some related works that also
generate OOD samples to improve OOD detection
performance. Lee et al. (2017) generate OOD sam-
ples with Generative Adversarial Network (GAN)
(Goodfellow et al., 2014), and Zheng et al. (2019)
explore this method for unknown intent detection.
However, there are two major distinctions between
our study and these works. First, they generate
OOD utterances according to continuous latent
variables, which cannot be easily interpreted. In
contrast, our framework generates utterances by
performing local replacements to IND utterances,

https://github.com/yawenouyang/GOT
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which is more interpretable to human. Second, our
framework additionally contains a weighting mod-
ule to reform the generated utterances. Our work is
also inspired by Cai et al. (2020), which proposes
a framework to augment the IND data, while our
framework aims to generate OOD data.

3 Preliminary

In this section, we formalize unknown intent detec-
tion task. Then we introduce the energy score, and
its superiority and limitations for this task.

3.1 Problem Formulation

Given a training dataset Dtrain
in = {(u(i), y(i))}Ni=1

where u(i) is an utterance and y(i) ∈ Yin =
{y1, y2, ..., yK} is its intent label. In testing, given
an utterance, unknown intent detection aims to de-
tect whether its intent belongs to existing intents
Yin. In general, unknown intent detection is an
OOD detection task. The essence of all methods is
to learn a score function that maps each utterance
u to a single scalar that is distinguishable between
IND and OOD utterances.

3.2 Energy-based OOD Detection

An energy-based model (LeCun et al., 2006) builds
an energy function E(u) that maps an input u to
a scalar called energy score (i.e., E : RD → R).
Using the energy function, probability density p(u)
can be expressed as:

p(u) =
exp(−E(u)/T )

Z
, (1)

where Z =
∫
u exp(−E(u)/T ) is the normalizing

constant also known as the partition function and
T is the temperature parameter. Take the logarithm
of both side of (1), we can get the equation:

log p(u) = −E(u)/T − logZ. (2)

Since Z is constant for all input u, we can ignore
the last term logZ and find that the energy func-
tion −E(u) is in fact linearly aligned with the log
likelihood function, which is desirable for OOD
detection (Liu et al., 2020).

The energy-based model has a connection with
a softmax-based classifier. For a classification
problem with K classes, a parametric function f
maps each input u to K real-valued numbers (i.e.,
f : RD → RK), known as logits. Logits are used

to parameterize a categorical distribution using a
softmax function:

p(y|u) = exp[fy(u)/T ]∑
y′ exp[fy′(u)/T ]

, (3)

where fy(u) indicates the yth index of f(u), i.e.,
the logit corresponding the yth class label. And
these logits can be reused to define an energy func-
tion without changing function f (Liu et al., 2020;
Grathwohl et al., 2020):

E(u) = −T · log
∑
y′

exp [fy′(u)/T ]. (4)

According to the above, a classifier can be reinter-
preted as an energy-based model. It also means the
energy score can be derived from any classifier.

Due to its consistency with density and accessi-
bility, we introduce the energy score for unknown
intent detection, and utterances with higher energy
scores can be viewed as OOD. Mathematically, the
energy-based detector G can be described as:

G(u; δ, E) =

{
IND E(u) ≤ δ,
OOD E(u) > δ,

(5)

where δ is the threshold.
Although the energy score can be easily com-

puted from the classifier, the energy gap between
IND and OOD samples might not always be opti-
mal for differentiation. To solve this problem, Liu
et al. (2020) propose an energy-bounded learning
objective to further widen the energy gap. Specif-
ically, the training objective of the classifier com-
bines the standard cross-entropy loss with a regu-
larization loss:

L = E(u,y)∼Dtrain
in

[− logFy(u)] + λ · Lenergy,
(6)

where F (u) is the softmax output, λ is the auxiliary
loss weight. The regularization loss is defined in
terms of energy:

Lenergy = E(u,y)∼Dtrain
in

(max(0, E(u)−min))
2

+ Eû∼Dtrain
out

(max(0,mout − E(û)))2, (7)

which utilizes both labeled IND data Dtrain
in and

auxiliary unlabeled OOD data Dtrain
out . This term

differentiates the energy scores between IND and
OOD samples by using two squared hinge loss with
the margin hyper-parameters min and mout.
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Ideally, one has to sample all types of OOD ut-
terances to create the gap, which is impossible in
practice. Zheng et al. (2019) demonstrate that
OOD utterances akin to IND utterances could be
more effective, but more difficult to collect. To ad-
dress this problem, we propose a data manipulation
framework, which can generate these high-quality
OOD utterances and assign each generated utter-
ance an importance weight to reduce the impact of
potential bad generation.

4 Approach

In this section, we will introduce our data manip-
ulation framework GOT in detail. GOT aims to
generate high-quality OOD utterances by replacing
intent-related words in IND utterances, and then
assign a weight to each generated OOD utterance.
Eventually, the weighted OOD utterances can be
used to shape the energy gap.

4.1 Locating Module

Since not all words in utterances are meaningful,
such as stop words, when generating OOD utter-
ances, replacing these words may not change the
intent. It is more efficient and effective to replace
those intent-related words. Hence, we design an
intent-related score function S to measure how a
word w related to an intent y:

S(w, y) =
∑

u∈Dtrain
y

∑
wj∈u

I(wj = w)[log p(wj |w<j , y)

− log p(wj |w<j)], (8)

whereDtrain
y is the subset ofDtrain

in , which contains
utterances with intent y, I is the indicator function,
wj is the jth word in u, and w<j = w1, ..., wj−1.

Given w and y, the intent-related score function
is the sum of the log-likelihood ratios for all w in
Dtrain
y . If w is related to y, w tends to occur more

frequently in Dtrain
y than other words. For each

occurrence of w, i.e., wj equals w, p(w|w<j , y)
should be higher than p(w|w<j) as the former is
additionally conditioned on the related y, while the
latter is not, hence resulting in a higher S(w, y).
In contrast, if w is not related to y, p(w|w<j , y) is
much less likely to be higher than p(w|w<j), or w
tends to have a lower frequency in Dtrain

y , hence
S(w, y) is likely to be small. Therefore, S(w, y)
can serve as a valid score function to measure how
a word w is related to an intent y.

Figure 2: A class-conditional language model to esti-
mate p(wj |w<j , y).

With the help of S, given an utterance to be
replaced and its intent label, the locating module
calculates the intent-related score for each word in
this utterance, and a word with a higher score (i.e.,
larger than a given threshold) can be viewed as an
intent-related word.

Implementation: We use two generative mod-
els to estimate p(wj |w<j , y) and p(wj |w<j) sep-
arately. Specifically, we train a class-conditional
language model (Yogatama et al., 2017) withDtrain

in

to estimate p(wj |w<j , y), shown in Figure 2. To
predict the word wj , we can combine the hidden
state hj with the intent embedding from a learnable
label embedding matrix Ey, then pass it through
a fully connected (FC) layer and a softmax layer
to estimate the word distribution. In the training
process, the input is the utterance with its intent
from Dtrain

in , and the training objective is to maxi-
mize the conditional likelihood of utterances. To
estimate p(wj |w<j), we directly use pre-trained
GPT-2 (Radford et al., 2019) without tuning. Note
that the whole training process only needs Dtrain

in ,
and does not need auxiliary supervised data.

4.2 Generating Module
After detecting intent-related words in the utterance
u, for each of the intent-related words wt, the gen-
erating module aims to generate the replacement
words from the vocabulary set to replace wt and
obtain OOD utterances. We design a candidate
score function Q to measure the desirability of the
candidate word c:

Q(c;u, wt) = log p(c|w<t,w>t)

− log
∑
y∈Yin

p(c|w<t, y)p(y). (9)

The first term of the right hand side is the log-
likelihood of c conditioned on the context of wt;
the higher it is, the more suitable c is given the
context. The second term of the right hand side
is the negative log of the average likelihoods of c
conditioned on the IND label and previous context;
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the higher it is, the less relevant c is to IND utter-
ances. Therefore, if c has a higher candidate score,
that means it fits the context well and has a low
density under the IND utterance distribution, thus
can be selected as the replacement word to replace
wt. The resulting generated OOD utterance is:

û = {w<t, c,w>t}. (10)

Implementation: Similar with the locating mod-
ule, we also do not need auxiliary supervised
data to train the generating module. We use
the same class-conditional language model men-
tioned in Section 4.1 to estimate p(c|w<t, y).
p(y) is the training set label ratios. To estimate
p(c|w<t,w>t), we use pre-trained BERT (Devlin
et al., 2018) without tuning.

4.3 Weighting Module

Since we cannot ensure the generation process
is perfect, given a generated OOD utterance set
Dgen

out = {û(i)}Mi=1, there might be some unfavor-
able utterances that are useless or even harmful
for tuning the classifier. To fit these utterances,
the generalization ability of the classifier will de-
crease. The weighting module aims to assign these
utterances small weights.

We first use Equation 6 as the loss function to
train a classifier by takingDgen

out asDtrain
out . Then we

calculate the influence value φ ∈ R (Wang et al.,
2020) for each generated utterance û. The influ-
ence value approximates the influence of removing
this utterance on the loss at validation samples. An
utterance with positive φ implies that its removal
will reduce the validation loss and strengthen the
classifier’s generalization ability, thus we should
assign it a small weight. * In particular, given φ,
we calculate weight α as follows:

α =
1

1 + e
γφ

maxφ −minφ

, (11)

where γ ∈ R+ is used to make the weight distri-
bution flat or steep, maxφ and minφ are the maxi-
mum and minimum influence value of utterances
in Dgen

out .

Implementation: We still do not need auxiliary
supervised data for this module. The validation
loss is the cross-entropy loss on the validation set.

*Details about how to calculate the influence can be found
in (Koh and Liang, 2017; Wang et al., 2020).

Algorithm 1 Data Manipulation Process
Input: Training set Dtrain

in , intent-related score function S,
candidate score function Q, intent-related word threshold
ε, candidate number K, weight term γ

Output: Generated weighted OOD utterances set Dgw
out

1: Dgen
out = {} # generated OOD utterances without weights

2: for (u, y) ∈ Dtrain
in do

3: for wj ∈ u do
4: if S(wj , y) > ε then
5: C = top−Kc Q(c;u,wj)
6: for c ∈ C do
7: û = {w<j , c,w>j}
8: Add û into Dgen

out

9: end for
10: end if
11: end for
12: end for
13: Dgw

out = {} # generated weighted OOD utterances
14: for û ∈ Dgen

out do
15: Calculate the weight α by Equation 11
16: Add (û, α) into Dgw

out

17: end for
18: return Dgw

out

4.4 Overall Data Manipulation Process
We summarize the process of GOT in Algorithm
1. Line 4 shows that wj can be viewed as an intent-
related word for y if S(wj , y) is greater than the
intent-related word threshold ε. Line 5 shows that
we generate K replacement words with the top-K
Q(c;u, wt).

4.5 Shape the energy gap with GOT
After obtaining weighted OOD utterances set Dgw

out,
we can explicitly shape the energy gap with them,
resulting in IND utterances with smaller energy
scores and OOD utterances with higher energy
scores. Specifically, we redefine the regulariza-
tion loss in Equation 6 as follows and use it to
re-train the classifier:

Lenergy = E(u,y)∼Dtrain
in

(max(0, E(u)−min))
2

+ E(û,α)∼Dgw
out
α(max(0,mout − E(û)))2. (12)

In the testing process, we can calculate the en-
ergy score for the utterance by Equation 4, and
identify whether it is OOD by Equation 5.

5 Experimental Setup

5.1 Datasets
To evaluate the effectiveness of the energy score
and our proposed framework, we conducted exper-
iments on two public datasets:

• CLINC150† (Larson et al., 2019): this dataset
†https://github.com/clinc/oos-eval
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Statistic CLINC150 SNIPS

Train 15000 9385
validation 3000 500
Test-IND 4500 486
Test-OOD 1000 214
Test-IND: Test-OOD 4.5: 1 2.3: 1
Number of IND classes 150 5

Table 1: Statistics of CLINC150 and SNIPS datasets.

covers 150 intent classes over ten domains. It sup-
ports some OOD utterances that do not fall into
any of the system’s supported intents to avoid
splitting unknown intents manually.

• SNIPS‡ (Coucke et al., 2018): this dataset is
a personal voice assistant dataset that contains
seven intent classes. SNIPS does not explicitly
include OOD utterances. We kept two classes
SearchCreativeWork and SearchScreeningEvent
as unknown intents.

Table 1 provides summary statistics about these
two datasets. Note that the training set and valida-
tion set do not include OOD utterances.

5.2 Metrics
We used four common metrics for OOD detection
to measure the performance. AUROC (Davis and
Goadrich, 2006), AUPR In and AUPR Out (Man-
ning et al., 1999) are threshold-independent per-
formance evaluations and higher values are better.
FPR95 is the false positive rate (FPR) when the
true positive rate (TPR) is 95%, and lower values
are better.

Considering the smaller proportion of OOD ut-
terances in the test set on two datasets, AUPR Out
is more informative here.

5.3 Baselines
We introduce the following classifier-based meth-
ods as baselines:

• MSP (Hendrycks and Gimpel, 2017) trains a clas-
sifier with IND utterances and uses the softmax
confidence score to detect OOD utterances.

• DOC (Shu et al., 2017) trains a binary classifier
for each IND intent and uses maximum binary
classifier output to detect OOD utterances.

• Mahalanobis (Lee et al., 2018) trains a classifier
with softmax loss and uses Mahalanobis distance

‡https://github.com/snipsco/nlu-benchmark

of the input to the nearest class-conditional Gaus-
sian distribution to detect OOD utterances.

• LMCL (Lin and Xu, 2019) uses LOF (Bre-
unig et al., 2000) in the utterance representation
learned by a classifier. In training, they replace
the softmax loss with LMCL (Wang et al., 2018).

• SEG (Yan et al., 2020) also uses LOF in the
utterance representation. In training, they use
semantic-enhanced large margin Gaussian mix-
ture loss.

5.4 Implementation Details
For a fair comparison, all classifiers used in the
above methods and ours are pre-trained BERT (De-
vlin et al., 2018) with a multi-layer perceptron
(MLP). We select parameter values based on valida-
tion accuracy. For energy score, we follow Liu et al.
(2020) to set T as 1, λ as 0.1, min as -8 and mout

as -5. For influence value, we focus on changes
on MLP parameters and use stochastic estimation
(Koh and Liang, 2017) with the scaling term 1000
and the damping term 0.003. For LMCL imple-
mentation, we set nearest neighbor number as 20,
scaling factor s as 30 and cosine margin m as 0.35,
which is recommended by Lin and Xu (2019). For
SEG, we follow Yan et al. (2020) to set margin as
1 and trade-off parameter as 0.5.

For our framework, we set candidate number
K as 2, weight term γ as 20. In particular, for
CLINC150, we set threshold ε as 150 and gener-
ate 100 weighted utterances for each intent. For
SNIPS, we set threshold ε as 1500 and generate
1800 weighted utterances for each intent. The dif-
ference in settings between two datasets is due to
the different sizes of per intent in the training set.

6 Results and Analysis

In this part, we will show the results of different
methods on two datasets and offer some further
analysis.

6.1 Overall Results
As shown in Table 2, we can observe that:

• The energy score can achieve comparable results
on two datasets. Note that on SNIPS dataset,
the advantages of the energy score are not as
obvious. The reason is that SNIPS dataset is
not as challenging as CLINC150 dataset, most
methods can achieve good results, such as AUPR
out is greater than 0.9.
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Method CLINC150 SNIPS
AUROC ↑ FPR95↓ AUPR In↑ AUPR Out↑ AUROC ↑ FPR95↓ AUPR In↑ AUPR Out↑

MSP 0.955 0.164 0.990 0.814 0.951 0.370 0.970 0.922
DOC 0.943 0.221 0.985 0.790 0.938 0.493 0.956 0.910
Mahalanobis 0.969 0.118 0.993 0.871 0.979 0.088 0.989 0.964
LMCL 0.962 0.124 0.992 0.810 0.976 0.087 0.987 0.960
SEG 0.959 0.152 0.991 0.823 0.974 0.074 0.986 0.948
Energy 0.967 0.143 0.991 0.897 0.944 0.497 0.964 0.924
Energy + GOT 0.973 0.114 0.993 0.914 0.989 0.039 0.995 0.972
Energy + GOT w/o weighting 0.972 0.123 0.992 0.909 0.979 0.083 0.989 0.969

Table 2: AUROC, FPR95, AUPR In, AUPR Out on CLINC150, SNIPS datasets. Best results are in bold. All
results are averaged across five seeds.
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Figure 3: Effect of the auxiliary loss weight (left) and
the number of generated weighted OOD utterances per
intent (right).

• Energy + GOT achieves better results on two
datasets as compared to the raw energy score.
It indicates that our generated weighted OOD
utterances can effectively shape the energy gap,
resulting in more distinguishable between IND
and OOD utterances.

• We also report ablation study results. “w/o
weighting” is the energy score tuned by OOD
utterances without reweighting. We can see
that there is a decrease in performance on both
datasets, which shows the advantage of the
weighting module (p-value < 0.005).

6.2 Effect of Hyper-parameters
During the training process, we find that the
method performance is sensitive to two hyper-
parameters: auxiliary loss weight λ and the number
of generated weighted OOD utterances per intent.
We conduct two experiments to demonstrate their
effects separately. We choose CLINC150 dataset
as it is more challenging as mentioned before.

Auxiliary Loss Weight: We set the auxiliary
loss weight λ from 0 to 0.5 with an interval of
0.1 to observe its impact.

Results are shown in Figure 3 (left). With
the increase of auxiliary loss weight, the perfor-
mance increases first and then decreases. λ = 0.1

Method AUROC ↑ FPR95↓ AUPR In↑ AUPR Out↑
Energy 0.967 0.143 0.991 0.897
Energy + Wiki 0.961 0.170 0.988 0.889

Table 3: Effect of using Wikipedia sentences to shape
the energy gap.

Method AUROC ↑ FPR95↓ AUPR In↑ AUPR Out↑
MSP 0.955 0.164 0.990 0.814
MSP + GOT 0.972 0.118 0.993 0.903

Table 4: Effect of using GOT to fine-tune the softmax-
based detector.

achieves the highest AUPR Out 0.914 and outper-
forms λ = 0 with an improvement of 1.7% (AUPR
Out). The results suggest that although shaping
the energy gap can improve the performance, there
exists a trade-off between optimizing the regular-
ization loss and optimizing cross-entropy loss.

Number of OOD Utterances: we compare the
performance of generated weighted utterance num-
bers for each intent by adjusting the number from
0 to 100 with an interval of 20.

Results are shown in Figure 3 (right). As a
whole, AUPR Out increases as more OOD utter-
ances are incorporated into training. We can see
that the performance is also improved even with a
small generated number, which indicates the neces-
sity of explicitly shaping the energy gap.

6.3 Compare with Wikipedia Sentences
An easy way to obtain OOD utterances is from
the Wikipedia corpus. We investigate the effect of
regarding Wikipedia sentences as OOD utterances
to shape the energy gap on CLINC150 dataset. The
Wikipedia sentences are from Larson et al. (2019)
and the number is 14750.

As shown in Table 3, we can observe that these
sentences cannot improve the performance and
even have a negative effect (We experimented with
several hyper-parameters, this is the best result we
could get). After observing these Wikipedia sen-
tences, we find that they have little relevance to
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Intent IND utterance and intent-related word [w] Replacement word Weight

Insurance i need to know more about my health [plan] problems 0.50
what [benefits] are provided by my insurance services 0.19

Credit Limit Change can i get a higher limit on my american express [card] ticket 0.46
can you [increase] how much i can spend on my visa guess 0.54

Reminder can you list each item on my [reminder] list contacts 0.50
what’s on the [reminder] list agenda 0.78

Redeem Rewards walk me through the process of cashing in on [credit] card points those 0.22
i have credit card [points] but don’t know how to use them privileges 0.50

Table 5: Weighted OOD utterances generated by GOT on CLINC150 dataset.
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Figure 4: Histogram of the softmax confidence score
from MSP (left) and MSP + GOT (right).

IND utterances. Therefore, simply using Wikipedia
sentences is unrepresentative and ineffective for
shaping the energy gap.

6.4 GOT for Softmax-based Detector

As mentioned in Section 1, when using the
softmax-based detector, OOD inputs may also re-
ceive a high softmax confidence score. To tackle
this problem, Lee et al. (2017) replace the cross en-
tropy loss with the confidence loss. The confidence
loss adds the Kullback-Leibler loss (KL loss) on
the original cross entropy loss, which forces OOD
inputs less confident by making their predictive
distribution to be closer to uniform.

To verify the generality of GOT, we directly use
the generated weighted OOD utterances to fine-
tune the softmax-based detector with the confi-
dence loss. The results are shown in Table 4. Our
MSP + GOT has a significant improvement and
outperforms MSP by 8.9% (AUPR Out). Figure
4 provides an intuitive presentation. The softmax
confidence scores of OOD from MSP form smooth
distributions (see Figure 4 (left)). In contrast, the
softmax confidence scores of OOD from MSP +
GOT concentrate on small values (see Figure 4
(right)). Overall the softmax confidence score is
more distinguishable between IND and OOD after
tuning by GOT.

6.5 Case Study for GOT

We sample some intents and showcase generated
weighted OOD utterances in Table 5. We can ob-
serve that intent-related words that located by our
locating module are diverse, containing not only
words appeared in the intent label. The replace-
ment word fits the context well, and the intent of
the generated utterance is exactly changed in most
conditions. Admittedly, GOT may have a bad gen-
eration, like replace “benefits” with “services” in
the second utterance, which leads the generated ut-
terance is still in-domain. Fortunately, the weight-
ing module assigns these utterances a lower weight
to reduce their potential harm.

7 Conclusion and Future Work

In this paper, we propose using energy scores for
unknown intent detection and provide empirical
evidence that the energy-based detector is compa-
rable to strong baselines. To shape the energy gap,
we propose a data manipulation framework GOT to
generate high-quality OOD utterances and assign
their importance weights. We show that the energy-
based detector tuned by GOT can achieve state-
of-the-art results. We further employ generated
weighted utterances to fine-tune the softmax-based
detector and also achieve improvements.

In the future, we will explore more operations,
such as insertion, drop, etc., to enhance the diver-
sity of generated utterances.
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