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Abstract

This work empirically explores effective ex-
ploiting of intermediate output from pre-
trained language models (PrLMs) for language
generation tasks. For this purpose, we propose
an improved method to integrate public check-
points of PrLMs for the most convenience
and perform extensive experiments on 6 differ-
ent kinds of PrLMs, including BERT, ELEC-
TRA, GPT2, Multi-lingual BERT, and XLM
RoBERTa. Evaluation with automatic met-
rics shows that our approach significantly im-
proves the generation quality on the generation
tasks, up to 1.8 BLEU points for neural ma-
chine translation (Korean-to-English, Korean-
to-Chinese) and 1.8 ROUGE points improve-
ments for text summarization.

1 Introduction

Pre-trained Language Models (PrLMs), such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and ELECTRA (Clark et al., 2020), have
thoroughly changed the landscape of state-of-the-
art performance on many Natural Language Un-
derstanding (NLU) tasks. Also, publicly released
checkpoints of the PrLMs allow natural language
processing (NLP) researchers to gain SOTA results
while saving vast compute and time resources. The
widely used method to exploit PrLM is fine-tuning.
However, for Natural Language Generation (NLG)
tasks, such methods do not get as much perfor-
mance gain as in the NLU task. Several previ-
ous studies proposed methods that better use prior
knowledge of the PrLM for NLG tasks (Yang et al.,
2020; Zhu et al., 2020; Chen et al., 2020). Expend-
ing the previous studies, in this paper, we propose
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an improved method that exploits the checkpoint
of the PrLM into the Transformer models (Vaswani
et al., 2017).

The existing methods for leveraging PrLM in
NLG tasks can be roughly classified into two cate-
gories: Reusing the PrLM as a starting point and In-
tegrating the intermediate output of the PrLM. The
former, the widely used in various NLP tasks, de-
notes to initialize the part of Transformer from the
PrLM for generation tasks (Clinchant et al., 2019;
Edunov et al., 2019; Rothe et al., 2020) or replace
the input embedding with the PrLM. The latter is
an approach that first extracts the contextualized
representation from a LM for an input sentence and
fuses it into a neural model (Yang et al., 2020; Zhu
et al., 2020; Chen et al., 2020). As our preliminary
experiment shows, we expand this approach and ex-
plore in many ways towards better performance. In
both of the preceding approaches, whether to freeze
or fine-tun the parameter of PrLM is also an im-
portant issue. For the former (Reusing the PrLM),
several works demonstrated that freezing the PrLM
at training time led to a significant performance
drop. Meanwhile, for the latter approach (Integrat-
ing the PrLM), prior studies adopted the whole
or half-freezing instead of fine-tuning the param-
eters of the PrLMs. Yang et al. (2020) suggested
that the reason why fine-tuning PrLM in neural
machine translation (NMT) does not work as well
as in other NLP tasks is due to the availability of
large training data and the high capacity of baseline
NMT models (i.e., Transformer), where excessive
fine-tuning leads to the catastrophic forgetting phe-
nomenon (Goodfellow et al., 2015). Also, Zhu et al.
(2020) shows that freezing the BERT in NMT is
better than fine-tuning with a large gap. This is
in line with our experimental results. Thus in this
empirical study, we freeze the parameters of the
PrLMs in our experiments.

This paper focuses on finding an effective
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Figure 1: The architecture of our proposed model.

method integrating the intermediate output into
the Transformer model to improve the generation
quality, unlike the widely used methods such as
initializing a part of Transformer and replacing the
input embedding with the PrLM. To this end, simi-
lar to Zhu et al. (2020), we insert PrLM-dedicated
modules that take the intermediate output from
the PrLM and make the extra flow for PrLM in
Transformer layers. This allows us to integrate
PrLM into the Transformer without considering
the PrLM’s configuration such as modeling, di-
mension and vocabulary. Based on extensive em-
pirical experiments, we finally adopt an improved
method that uses the Second-to-last (i.g., penulti-
mate) hidden state of the PrLM as the contextual-
ized representation and proceeds, in only Source-
side (Encoder), Summation of the source input
flow and the PrLM flow generated through the
PrLM-dedicated modules. In our experiments,
we use the publicly released checkpoints of 6 types
of PrLMs: BERT, DistilBERT, ELECTRA, GPT2,
Multilingual BERT, and XLM-RoBERTa. We re-
lease an implementation of our improved method
for Korean language generation tasks 1.

2 Model

We propose a modified Transformer-encoder that
effectively integrates publicly available check-
points of PrLMs. Figure 1 shows the architec-
ture of our proposed model. We add an extra

1https://github.com/tmtmaj/Exploiting-PrLM-for-NLG-
tasks

flow for PrLM through additional PrLM-dedicated
modules including PrLMAttn, Add&Norm, and
FFN. Specific mathematical formulations are left
at Appendix B. Given an input sequence xs =
{x1, ..., xN}, there is a PrLM-input sequence xp =
{xp1, ...x

p
M} of length M splited by the PrLM-

dedicated tokenizer. The PrLM-input sequence is
fed to the PrLM for generating the PrLM represen-
tation HP = PrLM(xp). Based on preliminary
experiment, we adopt the second-to-last hidden
state of the PrLM outputs as the contextualized rep-
resentation. In our proposed encoder, the PrLM
representation HP is merged with the source flow
to generate the output Hn

S of nth encoder layer:

Hn
S = (FlowP + FlowS) +AttnS , (1)

FlowP = FNN(AttnP +Hn−1
S ), (2)

AttnP = PrLMAttn(Hn−1
S , HP , HP ), (3)

FlowS = FNN(AttnS +Hn−1
S ), (4)

AttnS = Attn(Hn−1
S , Hn−1

S , Hn−1
S ), (5)

where PrLMAttn is the PrLM-dedicated attention
module that takes the previous hidden state Hn−1

S

as a query and the PrLM representation HP as
a key and a value and Attn is the original one.
We adopt the summation strategy for merging the
two different flows, and it gains better results than
previous works such as gate network (Yang et al.,
2020) and dropnet (Zhu et al., 2020).

3 Experiments

To demonstrate the effectiveness of the proposed
method, we perform extensive experiments on two
NMT and abstractive text summarization tasks. For
translation, we use BLEU (Papineni et al., 2002)
for the evaluation of translation quality, and for
text summarization, we report unigram and bi-
gram overlap (ROUGE-1 and ROUGE2) to assess
informativeness, and the longest common subse-
quence (ROUGE-L) to assess fluency with ROUGE
scores (Lin, 2004). All the model training is on
a single NVIDIA Tesla V100 GPU (16130MiB,
Google Colab).

3.1 Datasets and Experimental Setting

We evaluate our approach on language generation
tasks such as translation and text summarization.
For translation tasks, we use two machine transla-
tion datasets: AIHub Ko→En 2 (containing 1.6M

2http://www.aihub.or.kr/
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Systems Ko→Ch Ko→En

Transformer 30.35 (-) 41.19 (-)
(Zhu et al., 2020) 31.33 (+0.9) 41.97 (+0.7)
(Clinchant et al., 2019) 31.75 (+1.4) 41.55 (+0.4)

Korean-specific PrLM
+KoBERT 31.20 (+0.8) 42.17 (+0.9)
+HanBERT 31.39 (+0.9) 42.03 (+0.8)
+DistilKoBERT 30.94 (+0.5) 41.91 (+0.7)
+ELEC. small 31.51 (+1.1) 42.20 (+1.0)
+ELEC. base 32.17 (+1.8) 42.59 (+1.4)
+KoGPT2 30.38 (+0.0) 41.74 (+0.5)

Multi-language PrLM
+BERT cased 30.57 (+0.2) 41.17 (-0.0)
+BERT uncased 30.78 (+0.4) 41.22 (+0.0)
+RoBERTa base 31.09 (+0.7) 41.85 (+0.6)
+RoBERTa large 31.64 (+1.2) 42.01 (+0.8)

Table 1: Experimental results on translation tasks. Both
Clinchant et al. (2019) and Zhu et al. (2020) use ELEC-
TRA base.

training, 3K development and 3K test sentence
pairs) and Ko→Ch 3 (317K, 3K, 3K pairs). For
text summarization, we use a news document sum-
marization dataset (40K, 1K, 1K pairs) from two
institutes 4. In our experiment, we adopt a base
Transformer (Vaswani et al., 2017) as the base-
line model and use 6 different PrLMs: BERT, Dis-
tilBERT, ELECTRA, GPT2, Multi-lingual BERT,
and XLM-RoBERTa. More details about the set-
tings are included in Appendix A.

3.2 Experimental Results

Table 1 and 2 report the results of machine trans-
lation and abstractive text summarization task, re-
spectively. For the experimental results, we made
the following observation: (1) For all the tasks, our
proposed methods outperform the strong baseline
Transformer w.r.t BLEU (up to 1.8) and ROUGE
(up to 1.8). (2) For PrLMs, ELECTRA base
gains the most significant improvements. Note
that ELECTRA small is smaller in size than other
models, but it shows better performance. This
means that factors other than the size of the PrLM
have a greater influence on the generation quality.
(3) Another observation is that in most cases, using

3http://www.donga.com/ and
http://semanticweb.kaist.ac.kr

4https://corpus.korean.go.kr/ and
https://dacon.io/competitions/official/235673/overview/

Systems R-1 R-2 R-L 4

Transformer 46.32 29.56 37.88 -
Oracle 57.17 44.00 44.46 -

Korean-specific PrLM
+KoBERT 47.05 30.40 38.68 +0.8
+HanBERT 47.49 31.22 39.51 +1.5
+DistilKoBERT 46.64 29.86 38.43 +0.4
+ELEC. small 47.10 30.88 39.01 +1.1
+ELEC. base 47.90 31.44 39.91 +1.8
+KoGPT2 46.99 30.51 38.65 +0.8

Multi-language PrLM
+BERT cased 46.44 29.61 38.11 +0.1
+BERT uncased 46.92 29.80 38.40 +0.4
+RoB. base 47.01 30.55 38.89 +0.9
+RoB. large 46.77 30.31 38.66 +0.6

Table 2: Experimental results on summarization task.
4 denotes average improvements.

Korean-specific PrLMs leads to better performance
than using multi-language PrLMs.

4 Explorations for leveraging PrLM

Our proposed method for leveraging PrLM is to use
the Second-to-last hidden state of the PrLM as
the contextualized representation and proceeds, in
only Source-side (Encoder), Summation of the
source input flow and the PrLM flow after the FNN.
In this subsection, the setting is the default, and
we change only the target part of each experiment.
We conducted the following four analyses on the
Korean-Chinese and Korean-English datasets.

4.1 Which hidden state of the PrLM to
extract?

We evaluated the impact on how to extract the
contextualized representation from the PrLM. As
shown in Table 3a, using the second-to-last (i.g.,
penultimate) hidden state of the PrLM performs
the best. It has also been demonstrated in Yang
et al. (2020). Moreover, as another attempt, we dy-
namically extracted the hidden state of each layer
based on sentence embedding of nth layer, which
can be gained by averaging the PrLM layer (known
as PrLM embeddings, Dyn. [Aver] in Table 3a)
or using the output of the first token (the [CLS]
token, Dyn. [CLS]). However, they did not get a
big performance boost.
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Systems Ko→Ch Ko→En

Dyn. [CLS] 31.09 (+0.7) 41.44 (+0.3)
Dyn. [Aver] 31.17 (+0.8) 41.46 (+0.3)
Last 31.34 (+1.0) 41.99 (+0.8)
Second-to-Last 32.17 (+1.8) 42.59 (+1.4)
Third-to-Last 32.03 (+1.7) 42.53 (+1.3)

(a) Methods extracting PrLM output)

Systems Ko→Ch Ko→En

Direct 30.24 (-0.1) 40.88 (-0.3)
Summation 32.17 (+1.8) 42.59 (+1.4)
Average 31.48 (+1.1) 41.94 (+0.8)
Gate Network 31.99 (+1.6) 42.31 (+1.1)
Dropnet 31.64 (+1.3) 41.99 (+0.8)

(b) Merging strategies for PrLM.

Systems Ko→Ch Ko→En

SelfAttn 31.78 (+1.4) 42.03 (+0.8)
1st Add&Norm 31.68 (+1.3) 42.01 (+0.8)
FFN 32.17 (+1.8) 42.59 (+1.4)
2nd Add&Norm 32.01 (+1.7) 42.44 (+1.3)

(c) Merging positions for PrLM.

Systems Ko→Ch Ko→En

Both-sides 31.94 (+1.6) 42.23 (+1.0)
Source-side 32.17 (+1.8) 42.59 (+1.4)
Target-side 31.29 (+0.9) 41.98 (+0.8)

(d) Adding positions for PrLM.

Table 3: The explorations for leveraging PrLM.

4.2 How to merge the PrLM representation
with the source input flow?

We compared the impact of different merging strate-
gies for the contextualized representation of PrLM.
There are directly using the PrLM as the input
embedding (Direct in Table 3b) and four merg-
ing strategies such as Summation, Average, using
Gate Network (Yang et al., 2020), and using Drop-
net (Zhu et al., 2020) As shown in Table 3b, the
summation of the PrLM flow and the source input
flow got the better improvement over others, so
we adopted the Summation strategy in our experi-
ments.

4.3 Where do the PrLM merge with the
source input flow?

In the Table 3c, we analyzed where in the encoder
layer of Transformer it would be better to merge the
PrLM and source flows. There are four positions in
a Transformer-encoder layer: after Attn, after 1st

Add&Norm, after FFN, and after 2nd Add&Norm.
It is interesting to find that merging after FFN can
get the best performance. Another observation is
that merging the contextualized representation of
the PrLM before the Add&Norm (i.e., after Attn or
FFN) works better.

4.4 Where do the PrLM flow add?

We evaluated where to add the PrLM: source-side,
target-side, and both sides. As shown in the Ta-
ble 3d report the results. Among them, adding the
PrLM to only source-side (i.e., encoder) gained
the best result. Intuitively, since contextual repre-

Systems Ko→Ch

Transformer 30.35 (-)

Multi-PrLMs
+ELEC. base 32.17 (+1.8)
+ELEC. small, ELEC. base 32.11 (+1.7)
+KoBERT, ELEC. base 32.11 (+1.7)
+(Ko, Han)BERT, ELEC. base 32.19 (+1.8)

Table 4: Leveraging multi-LMs

sentation from the fixed PrLM contains univeral
information, not information for generation tasks,
combining it directly with the target context may
adversely affect performance improvement.

5 More analyses

5.1 Leveraging Multi-PrLMs

We assumed that because PrLMs were trained with
different datasets (size, domain) and diverse config-
urations, they would contain specific prior knowl-
edge. So, we tried to integrate two or more PrLMs
simultaneously (Multi-PrLMs) by adding more ex-
tra modules in each encoder layer. Contrary to
our expectations, as shown in Table 4, using Multi-
PrLMs cannot get a significant performance boost
over using single-PrLM.

5.2 Fine-tuning v.s. Freezing

We compared the impact of fine-tuning and freez-
ing the parameters of PrLM when using our method.
Table 5 shows the results. We can see that freez-
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Systems Ko→Ch Ko→En

Transformer 30.35 (-) 41.19 (-)

Freezing PrLM (Ours)
+ELEC. small 31.51 (+1.1) 42.20 (+1.0)
+ELEC. base 32.17 (+1.8) 42.59 (+1.4)

Fine-tuning PrLM
+ELEC. small 31.52 (+1.1) 41.98 (+0.8)
+ELEC. base 29.89 (-0.4) 38.92 (-2.3)

Table 5: Fine-tuning v.s. Freezing

Systems sentences/s tokens/s

Transformer 164.20 (-) 4.56k (-)

Our Systems
+ELEC. small 155.59 (-5%) 4.35k (-5%)
+ELEC. base 139.81 (-17%) 3.92k (-16%)

Table 6: Inference Speed on Ko→En NMT task

ing the parameters of PrLM gains more significant
improvement than fine-tuning. Another interest-
ing observation is that using the ELECTRA base
(112M parameters) when it is fine-tuning led to a
significant performance drop, especially for rela-
tively large corpus (Ko→En, 1.6M). It means that
catastrophic forgetting issue is more pronounced
in a resource-rich scenario and using large PrLM.
Additionally, tuning separate learning rates (Yang
et al., 2020) for the PrLM and the Transformer
model may lead to better performance but we leave
this to future work.

5.3 Inference Speed

We experimented with the inference speed of our
method. Since our method has to obtain the in-
termediate output of PrLM for an input sentence,
it takes more time in the inference process than
the baseline model. The experimental results are
shown in Table 6. Integrating PrLM into the Trans-
former model reduced the inference speed by about
5% (ELECTRA small, 14M parameters) to 17%
(ELECTRA base, 112M parameters). However,
considering the significant performance improve-
ment and the ease of application to any language,
it is acceptable of such extra cost.

6 Related Work

Previous studies relies on the structural compat-
ibility of Transformer and PrLM. For example,
Clinchant et al. (2019) presented initializing the
encoder of Transformer from BERT (fine-tuned or
fixed) and observed that freezing the PrLM causes
a considerable performance drop. Conneau and
Lample (2019) verified that initialization methods
with CLM or MLM trained on multi-lingual cor-
pora and showed such initialization are useful on
MT. Rothe et al. (2020) used the publicly available
PrLM checkpoints to initialize Transformer. While
the initialization method is useful to some extent,
there is a prerequisite for matching vocabulary and
model size/hyper-parameters to them of PrLM.

Zhu et al. (2020) proposed a new method that
extracts the last hidden state of BERT for an input
sentence and fuses it into the encoder and decoder
of the Transformer through an extra attention mod-
ule, and evaluated the effectiveness of their method
on supervised, semi-supervised and unsupervised
NMT. Yang et al. (2020) introduced a concerted
training framework with three techniques for fus-
ing PrLM and NMT model. Although they also
extract the hidden state of PrLM and integrate it
into NMT model, the NMT model must follow the
PrLM model’s configurations such as word seg-
mentation rule and vocabulary.

Our work is related to both Zhu et al. (2020) and
Yang et al. (2020) in the sense that we all aim to
extract the intermediate output of the PrLM and
integrate it into a neural model for better genera-
tion quality. As an extension of Zhu et al. (2020),
we propose an upgraded method adopted through
extensive empirical experiments. Our work differs
from Yang et al. (2020) in that we use the publicly
available checkpoints that have various configura-
tions and fix the PrLM at training time.

7 Conclusion

While most of the previous works on PrLM ad-
dress the integration of PrLMs with fine-tuning,
we propose an alternative in which a modified
Transformer-encoder takes the intermediate output
from PrLM to exploit its prior knowledge effec-
tively in a straightforward way. Our method does
not have to consider the PrLM’s configuration, such
as its model size, model dimension, and vocabu-
lary. Correspondingly, our approach and reported
empirical settings can be smoothly applied to any
languages using any checkpoints of PrLMs.
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A Experimental Settings

A.1 Model Setting

In our experiment, we use Transformer (Vaswani
et al., 2017) as the baseline model for NMT and
abstractive text summarization tasks. Additionally,
for NMT tasks, we compare our approach to the
following baselines:

• (Zhu et al., 2020): A method that inserts the
last-hidden state of fixed PrLM through PrLM-
dedicated attention module in Transformer-
encoder and decoder.

• (Clinchant et al., 2019) (Direct* in Table 1):
A method that replaces the input embedding
with the PrLM that is fine-tuned in training
time.

They all use ELECTRA base as the PrLM.

For the Transformer model, we use a base
Transformer configuration (Vaswani et al., 2017)
with an embedding size of 512, 6 encoder and de-
coder layers, 8 attention heads, shared source and
target embedding, the standard relu activation
function, and sinusoidal positional embedding. We
train with a batch size of 3500 tokens and optimize
the model parameters using Adam optimizer with a
learning rate 7e-4 β1= 0.9 and β2 = 0.98, learning
rate warm-up over the first 4000 steps. Addition-
ally, we apply label smoothing with a factor of
0.1. We average over the last 5 checkpoints and
run inference with a beam size of 5. All models
are trained for 50 epochs using the Torch-based
toolkit, Fairseq(-py) (Ott et al., 2019). For the
text summarization task, we reduce the number of
encoder and decoder layers to 4 and use Trigram
Blocking (Paulus et al., 2018) to reduce redundancy
during inference time. Other settings are the same
as above.

For all datasets, we first tokenize sentences us-
ing language-specific tokenizer such as KoNLPy5

for Korean, jieba6 for Chinese, and Moses (Koehn
et al., 2007) for English and then apply Byte-Pair
Encoding (Sennrich et al., 2016) to the tokenized
sentences with 32K merge-operations. Besides,
most of PrLMs have a limit for input sequence
length (e.g., 512), so we cut out the middle of some
long text for text summarization dataset as pro-
posed in Sun et al. (2019).

5https://konlpy.org/en/latest/
6https://github.com/fxsjy/jieba

A.2 Pre-trained Language Model Setting

In our experiments, we use 6 types of different
PrLMs including BERT (Devlin et al., 2019), Distil-
BERT (Sanh et al., 2019), ELECTRA (Clark et al.,
2020), GPT2 (Radford et al., 2018), multi-lingual
BERT, and XLM-RoBERTa (Conneau and Lample,
2019; Liu et al., 2019). Specifically, we use 10
different pre-trained checkpoints depending on the
model size, training data set, and training level:

1. KoBERT: a BERT with 768-hidden, 12-
layer, 12-heads, 8002-vocab, Korean dataset
(4GB), 92M parameters; https://github.

com/SKTBrain/KoBERT.git.
2. HanBERT: a BERT with 768-hidden, 12-

layer, 12-heads, 54000-vocab, Korean dataset
(70GB), 127M parameters; https://github.
com/tbai2019/HanBert-54k-N.git.

3. DistilKoBERT: a DistilBERT with 768-
hidden, 3-layer, 12-heads, 8002-vocab,
Korean dataset (10GB), 28M parameters;
https://huggingface.co/monologg/

distilkobert.
4. ELECTRA small: a ELECTRA with 256-

hidden, 12-layer, 4-heads, 35000-vocab,
Korean dataset (34GB), 14M parameters;
https://huggingface.co/monologg/

koelectra-small-v3-discriminator.
5. ELECTRA base: a ELECTRA with 768-

hidden, 12-layer, 12-heads, 35000-vocab,
Korean dataset (34GB), 112M parame-
ters; https://huggingface.co/monologg/

koelectra-base-v3-discriminator.
6. KoGPT2: a GPT2 with 768-hidden, 12-

layer, 12-heads, 50000-vocab, Korean dataset
(20GB), 125M parameters; https://github.
com/SKT-AI/KoGPT2.git.

7. Multi-lingual BERT cased: a BERT
with 768-hidden, 12-layer, 12-heads,
119547-vocab, 104 languages, 177M
parameters; https://huggingface.co/

bert-base-multilingual-cased.
8. Multi-lingual BERT uncased: a BERT

with 768-hidden, 12-layer, 12-heads,
105879-vocab, 102 languages, 167M
parameters; https://huggingface.co/

bert-base-multilingual-uncased.
9. XLM RoBERTa base: a BERT with

768-hidden, 12-layer, 12-heads, 250002-
vocab, 100 languages (2.5TB), 277M
parameters; https://huggingface.co/

xlm-roberta-base.

https://github.com/SKTBrain/KoBERT.git
https://github.com/SKTBrain/KoBERT.git
https://github.com/tbai2019/HanBert-54k-N.git
https://github.com/tbai2019/HanBert-54k-N.git
https://huggingface.co/monologg/distilkobert
https://huggingface.co/monologg/distilkobert
https://huggingface.co/monologg/koelectra-small-v3-discriminator
https://huggingface.co/monologg/koelectra-small-v3-discriminator
https://huggingface.co/monologg/koelectra-base-v3-discriminator
https://huggingface.co/monologg/koelectra-base-v3-discriminator
https://github.com/SKT-AI/KoGPT2.git
https://github.com/SKT-AI/KoGPT2.git
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/xlm-roberta-base
https://huggingface.co/xlm-roberta-base
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10. XLM RoBERTa large: a BERT
with 1024-hidden, 24-layer, 16-
heads, 250002-vocab, 100 languages
(2.5TB), 561M parameters; https:

//huggingface.co/xlm-roberta-large.

B Details of the Notations

Let Attn denote a multi-head attention module,
which takes three matrices containing a query ma-
trix Q, a key matrix K, and a value matrix V and
product an output matrix as follows:

Attn(Q,K, V ) = concat(head1, ..., headi)W
o,

(6)

headi = attn(Qi,Ki, Vi), (7)

attn(q, k, v) = softmax(
qW qkW k

√
dmodel

)vW v, (8)

where concat denotes a concatenation operation,
softmax denotes a softmax function, dmodel is the
dimension of the model, and W o,W q,W k,W v

are parameter matrices. FFN consists of two fully-
connected layers with a relu activation in between.

FFN = max(0, xW 1 + b1)W 2 + b2, (9)

where max(0, x) is relu activation function, and
W 1, b1,W 2, b2 are parameter matrices. Finally,
Attn and FFN are connected with Add&Norm,
which denotes a combination module containing
a residual connection (He et al., 2016) and a layer
normalization (Ba et al., 2016).

https://huggingface.co/xlm-roberta-large
https://huggingface.co/xlm-roberta-large

