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Abstract

Fake news with textual and visual contents has
a better story-telling ability than text-only con-
tents, and can be spread quickly with social
media. People can be easily deceived by such
fake news, and traditional expert identification
is labor-intensive. Therefore, automatic detec-
tion of multimodal fake news has become a
new hot-spot issue. A shortcoming of exist-
ing approaches is their inability to fuse multi-
modality features effectively. They simply
concatenate unimodal features without consid-
ering inter-modality relations. Inspired by the
way people read news with image and text,
we propose a novel Multimodal Co-Attention
Networks (MCAN) to better fuse textual and
visual features for fake news detection. Ex-
tensive experiments conducted on two real-
world datasets demonstrate that MCAN can
learn inter-dependencies among multimodal
features and outperforms state-of-the-art meth-
ods.

1 Introduction

The rapid growth of social media has created fer-
tile soil for the emergence and fast spread of fake
news (Zhao et al., 2015), resulting in serious conse-
quences. For example, during the U.S. 2016 pres-
idential election, the most popular fake news was
more widely spread than the most popular authen-
tic news on Facebook, which confused people and
broke the authenticity balance of the news ecosys-
tem (Shu et al., 2017). To mitigate the negative
effects caused by fake news, it is crucial to detect
fake news on social media automatically.

Tweets with images are getting popular on social
media recently, which have richer information and
attract more viewers than tweets with only texts
(Jin et al., 2017). Fake news also makes full use of
this advantage to draw and mislead readers. Figure
1 shows three examples of fake news from Twitter.
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Sharks in the mall! After 
the hurricane sandy!

Lenticular Clouds over 
Mount Fuji.

Woman, 36, gives birth 
to 14 children from 14 
different fathers.

Figure 1: Some fake news from Twitter.

In the left example, both text and image indicate
it is likely to be fake. The text of the middle one
provides little evidence that it is fake news, but the
image is obviously forged. In the right example, the
image seems normal, while the textual contents in-
dicate that it is probably fake. A hypothesis drawn
from these examples is that combining text and the
attached image is more conducive to detecting fake
news.

Recent works have a growing interest in using
multimodal (text + image) information to detect
fake news. Jin et al.(2017) utilize local attention
mechanisms to fuse features of image, text, and
social context. Some studies explore to learn the
joint representations of text and image, based on
auxiliary adversarial networks (Wang et al., 2018)
and variational autoencoders (Khattar et al., 2019).
Nevertheless, they are not fine-grained enough in
feature extraction and feature fusion. First, some
studies require labor-intensive extra information,
such as social context (Jin et al., 2017) and event
category (Wang et al., 2018), to help detect fake
news, which increases the cost of the detection.
Second, except for texts in tweets, the methods
mentioned above all focus on characteristics of im-
ages at the semantic level (e.g., emotional provoca-
tions), which can be reflected in the spatial domain.
However, these methods ignore the individual in-
formation of fake images at the physical level, e.g.,
re-compression artifacts, which is reflected in the
frequency domain (Qi et al., 2019). Third, some
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models (Wang et al., 2018; Khattar et al., 2019) ob-
tain fused representations by simply concatenating
multi-modality features. Although leverages local
attention mechanism, the attention values of att-
RNN (Jin et al., 2017) are only obtained from joint
textual-social representations, which cannot reflect
the similarity between textual-social representa-
tions and visual representations. Intuitively, when
people judge news credibility with text and image,
they often observe image first and then read text
(Wang et al., 2020). This process may be repeated
several times. In this process, people understand
image according to the textual information, and
understand text according to the associated image
information. So the information of one modality is
conditionally fused with that of another modality
for once or multiple times. Intuitively, there are
inter-modality attention relations between image
and text. However, existing state-of-the-art meth-
ods are weak to fuse multimodal features due to
their neglect of inter-modality interactions.

To address the aforementioned challenges, we
propose the Multimodal Co-Attention Networks
(MCAN) for fake news detection by considering
multimodal features. In our proposed model, we
first extract spatial-domain features and frequency-
domain features from image, as well as textual
features from text. Then we develop a novel fusion
approach with multiple co-attention layers to learn
inter-modality relations, which fuses visual fea-
tures first, and then the textual features. The fused
representation obtained from the last co-attention
layer is used for fake news detection.

The contributions of this paper can be summa-
rized as follows: (1) We propose a novel end-to-end
approach to detect fake news on social media only
using the text and the attached image, without any
extra information and auxiliary tasks. (2) The pro-
posed MCAN model stacks multiple co-attention
layers to fuse the multimodal features, which can
learn inter-dependencies among them. (3) Our
MCAN model is a general framework for fake news
detection, and the components of MCAN are flexi-
ble. The sub-networks used to extract multimodal
features can be replaced by different models. More-
over, the modular fusion process of MCAN allows
our model to handle more modalities conveniently.
(4) We evaluate MCAN on two large scale real-
world datasets. The results demonstrate that our
model outperforms the state-of-the-art models.

The rest of the paper is organized as follows:

In Section 2, we summary previous related work
on fake news detection. In Section 3, we detail
our proposed model. The datasets, baselines, and
experiment results are presented in Section 4. We
conclude the study in Section 5.

2 Related Work

Following the previous work (Ruchansky et al.,
2017; Shu et al., 2017), we specify that fake news
is the news that is intentionally fabricated and
can be verified as false. Existing methods for fake
news detection can be divided into unimodal ap-
proaches and multimodal approaches.

2.1 Unimodal Fake News Detection.

Textual features are extracted from text content,
including statistical features, such as the number
of paragraphs in the text (Volkova et al., 2017),
the percentage of negative words (Potthast et al.,
2017; Bond et al., 2017), the number of punctuation
and emojis (Castillo et al., 2011), and semantic
features, such as writing styles (Chen et al., 2015)
and language styles (Feng et al., 2012). However,
these features are hand-designed, bringing bias and
design difficulty. To address this problem, many
studies use deep learning technologies, such as
RNN (Ma et al., 2016), CNN (Yu et al., 2017), and
GAN (Ma et al., 2019), to identify fake news. Their
results show that deep learning methods perform
better.

Visual features are important for news verifi-
cation (Jin et al., 2016; Shu et al., 2017), such as
clarity score (Jin et al., 2016), the number of im-
ages (Wu et al., 2015; Jin et al., 2016). However,
these features are manually crafted and just learn
simple patterns, hardly applying to real images. Qi
et al. (2019) design a CNN-based model to capture
image patterns, but their model only works in the
case of large samples. So the applicable scope is
very limited.

Social context features are born in the social
connection between users and tweets, such as user
profile and the number of posts. Liu et al. (2018)
use user profiles on the news propagation path
to determine the truth of the news. Some other
works model propagation patterns as tree structures
based on kernel methods (Wu et al., 2015; Ma et al.,
2017). However, social context features are hand-
crafted, incomplete, and unstructured.

The above work embodies the limitations of uni-
modal features in detecting fake news. In this paper,
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Figure 2: The architecture of our MCAN model.

we consider multiple modalities simultaneously
when detecting fake news.

2.2 Multimodal Fake News Detection.
Recent works explore to fuse multimodal features.
Jin et al. (2017) use local attention mechanism
to fuse textual, visual, and social context features.
Wang et al. (2018) learn event-invariant features
by an aided adversarial network. Khattar et al.
(2019) utilize autoencoders coupled with a detector
to learn the shared representation of the text and
the attached image. However, they ignore the char-
acteristics of fake images at physical level (e.g., re-
compression artifacts), and the fused features they
learned lack correlations across multiple modali-
ties.

To overcome the limitations of existing works,
we propose MCAN to learn inter-dependencies
among modalities. We extract spatial-domain and
frequency-domain features of image, and textual
features. Then we fuse them through a deep co-
attention model inspired by a realistic scenario.

3 Methodology

3.1 Model Overview
Our model aims to learn multimodal fusion repre-
sentations by considering dependencies across the
modalities. As shown in Figure 2, the proposed
model has three major procedures: feature extrac-
tion, feature fusion, and fake news detection.

Given news with text and image, we first utilize
three different sub-models to extract features from
spatial domain, frequency domain, and text. Then
the multi-modality features are fused through a
deep co-attention model, which consists of multiple

co-attention layers. At last, the output of the co-
attention model is used for judging the truth of the
input news.

3.2 Feature Extraction

…
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Figure 3: The detailed architecture of feature extraction
in frequency domain.

Spatial-Domain Feature. To learn the semantic-
level characteristics of the given image, we employ
the VGG-19 network (Simonyan and Zisserman,
2014) to extract visual features from spatial domain.
After the second of the last layer of VGG-19, we
add a fully connected layer (denoted as “s-fc” in
Figure 2) with ReLU activation function to generate
a d × 1 dimensional feature representation of the
input image in spatial domain, which is denoted as
RS ∈ Rd×1.

Frequency-Domain Feature. Fake-news im-
ages are often re-compressed images or tampered
images that show periodicity in frequency domain
(Qi et al., 2019), which can be easily captured by
CNNs. Thus we design a CNN-based sub-network
to extract features from frequency domain, as in
Figure 3. The image is transformed from spatial
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domain to frequency domain through discrete co-
sine transform (DCT) as in Qi et al. (2019). After
that, we obtain 64 vectors H0, H1, . . . ,H63, which
are then sampled to the fixed size 250. For parallel
computation, we pick 64 250-dimensional vectors
into a matrix HF ∈ R(64×250), which is fed to the
CNN-based network later. The CNN-based sub-
network consists of a major network along with
multi-branch networks. The earlier parts of the ma-
jor network have three convolutional blocks and a
max-pooling layer. The multi-branch networks are
the same as architectures in Inception V3 (Szegedy
et al., 2016). The last parts of the major network are
a max-pooling layer followed by a convolutional
block. Each convolutional block is comprised of
a two-dimensional convolutional layer with batch
normalization and ReLU activation function. After
adding a fully connected layer with ReLU activa-
tion function (denoted as “f-fc” in Figure 2), we
obtain the feature representation of the image in
frequency domain RF ∈ Rd×1.

Textual Feature. The text content of the tweet
is a sequential list of words denoted as T =
[T1, T2, . . . , Tn], where n is the number of words
in a tweet, and each word Ti ∈ T is tokenized by a
pre-prepared vocabulary (Devlin et al., 2018). Re-
cently, the BERT model (Devlin et al., 2018) which
is pre-trained on a large language corpus, has been
proven to perform very well in multiple natural
language processing tasks. Thus we utilize BERT
to obtain the aggregate sequence representation as
textual features we desired. The textual feature is
then resized to be a d × 1 dimensional represen-
tation (denoted as RT ) by a fully connected layer
with ReLU activation function.

3.3 Feature Fusion
Intuitively, people often look at the image first and
then read the text when reading the news with im-
age and text. This process may be repeated sev-
eral times, continuously fusing image and text in-
formation. Therefore, we develop a novel fusion
approach to simulate this process. Before present-
ing the fusing process, we first introduce its ba-
sic unit, the co-attention (CA) block. We achieve
feature fusion by cascaded stacking multiple CA
layers, which consists of two parallelly connected
CA blocks.

Co-attention block. Co-attention block (Lu
et al., 2019) is a variant of the standard multi-head
self-attention (MSA) block (Vaswani et al., 2017),

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

𝐕𝐊𝐐

(a) Self-attention block

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

𝐕𝐊𝐐

(b) Co-attention block

Figure 4: Illustration of the self-attention block and the
co-attention block.

which can capture global dependencies of all po-
sitions in a sequence and is widely used in NLP
and VQA tasks (Nguyen and Okatani, 2018; Gao
et al., 2019). The MSA block showed in Figure 4(a)
consists of a multi-headed self-attention function
and a fully connected feed-forward network, both
wrapped a residual connection followed by layer
normalization. The input of MSA is first used to
compute (d × 1)-dimensional queries, keys, and
values packed into matrixes Q, K, V , respectively.
The similarity of the dot product between Q and
K determines the attention distribution on the V .
Multi-head attention function with m heads has
m self-attention functions in parallel. For the i-th
head, the inputs are transformed from Q, K, and
V as follow:

Qi = QWQ
i , Ki = KWK

i , Vi = VW V
i (1)

where WQ
i ,WK

i ,W V
i ∈ R1×dh are the projection

matrices for the i-th head, dh = d/m is the dimen-
sionality of the output feature of each head.

The calculation process of multi-head self-
attention function can be presented as follows:

MA(Q,K, V ) = hWO (2)

h = h1⊕h2⊕...⊕ hm

hi = A(Qi,Ki, Vi) = softmax(
QiK

T
i√

dh
)Vi

where WO ∈ Rmdh×1, ⊕ denotes concatenation
of vectors.

The fully connected feed-forward network con-
sists of two linear transformations with a ReLU
activation function in between,

FFN(x) = max(0, xW1)W2 (3)
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where the dimensionality of input and output is
d× 1, and the inner-layer dimensionality is dff .

The co-attention block (denoted as ”Co-Attn”) is
extended from the MSA block, as shown in Figure
4(b). For a Co-Attn block, the queries are from one
modality while keys and values are from another
modality. Especially, the query matrice is used as
a residual item after the multi-head attention sub-
layer. The rest architectures are the same as MSA.
The Co-Attn block produces an attention-pooled
feature for one modality conditioned on another
modality. If Q comes from text and k and V come
from the attached image, the attention value calcu-
lated using Q and K can be used as a measure of
the similarity between the text and image, and then
weights the image. Just like humans, after reading
the text, they will pay more attention to the areas
in the image that are similar to the text. We believe
that co-attention can simulate this process and learn
inter-dependencies between different features.

Co-attention layer. We obtain a CA layer by
connecting two Co-Attn blocks in parallel, as
shown in Figure 2. Giving two Co-Attn blocks
different features, the CA layer computes queries,
keys, and values for each Co-Attn block as in a
MSA block. Then the keys and values of one Co-
Attn block are passed as input to another Co-Attn
block. The outputs of two Co-Attn blocks are con-
catenated together and then fed into a fully con-
nected layer to get the fused representation. The
CA layer models dense interactions between input
modalities by exchanging their information.

Multiple co-attention stacking. In order to fuse
multimodal features deeply, we stack 4 CA layers
in depth. The fusion process is progressive, and
the output of each CA layer is one of the inputs of
the next layer (see Figure 2). We first fuse spatial-
domain representation RS and frequency-domain
representation RF in first CA layer and obtain R

(1)
C .

Then RF are enhanced to fuse with R
(1)
C in the sec-

ond CA layer which outputs R(2)
C . In the third and

fourth layers, the inputs are the output of the previ-
ous layer and text representation RT , and outputs
are R

(3)
C and R

(4)
C , respectively. The output vector

of each CA layer is d-dimensional.The calculation
processes are formulated as follows. Due to the
page limit, we only show the calculation processes
in the first CA layer and skip the repeated calcula-

tion details of other layers.

RCS←F
= RS + MA(RS , RF , RF ) (4)

R
C
′
S←F

= RCS←F
+ FFN(RCS←F

)) (5)

RCF←S
= RF + MA(RF , RS , RS) (6)

R
C
′
F←S

= RCF←S
+ FFN(RCF←S

) (7)

R
(1)
C = (R

C
′
S←F
⊕R

C
′
F←S

)W
(1)
C (8)

where R
C
′
S←F
∈ Rd is the attention-pooled feature

for spatial domain conditioned on frequency do-
main, R

C
′
F←S
∈ Rd is the attention-pooled feature

for frequency domain conditioned on spatial do-
main, and W

(1)
C ∈ R2d×d is the projection matrice

of the first CA layer. R(1)
C is transformed to be a

(d × 1)-dimensional representation before being
input to the next CA layer. Specifically, the first
and the third CA layers share parameters, and the
second and the fourth CA layers share parameters.

3.4 Model Learning

We have obtained the multimodal feature represen-
tation R

(4)
C fused features of text, spatial domain,

and frequency domain. Let f = R
(4)
C , which is

used to predict. The output of the proposed MCAN
is the probability of a tweet being fake:

ŷ = softmax (max(0, fWf )Ws) (9)

where Wf is parameters of the fully connected
layer, and Ws is parameters of the linear layer in
the softmax layer. The loss function is devised to
minimize the cross-entropy value:

L (Θ) = −y log (ŷ)− (1− y) log (1− ŷ) (10)

where y is the ground truth, with 1 representing
fake news and 0 representing real news, and Θ
denotes all learnable parameters in the proposed
model.

4 Experiments

4.1 Datasets

To evaluate the effectiveness of the proposed
MCAN, we conduct experiments on two public
real-world datasets, which are collected from Twit-
ter and Weibo, respectively. The Twitter dataset
was released for Verifying Multimedia Use task
at MediaEval (Boididou et al., 2016). The Weibo
dataset is collected by Jin et al. (2017). In the
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Twitter Weibo
# of fake news 8199 4211
# of real news 6681 3639
# of images 512 7850

Table 1: Statistics of two datasets.

Weibo dataset, the real news is verified by an au-
thoritative news agency in China, Xinhua News
Agency. The fake news is verified by the official
rumor debunking system of Weibo. The tweets in
each dataset contain texts, attached images/videos,
and social context information. In this work, we
focus on text and image information. So we re-
move the tweets with videos and the tweets without
texts or images. In Twitter dataset, 512 images are
shared by the remaining data. When preprocessing
the Weibo dataset, the steps we used are similar to
that in the work (Jin et al., 2017). We keep the same
data split scheme as the benchmark on these two
datasets. The detailed statistics of the two datasets
are listed in Table 1.

4.2 Experimental Settings

The max length of the text is 25 on Twitter and
160 on Weibo. The hidden size of ”s-fc”, ”f-fc”
and ”t-fc” are 256. We set d=256, m = 4, and dff
= 512. The hidden size of ”p-fc” is 35. The pa-
rameters of VGG-19 and BERT are frozen when
training on Twitter dataset due to overfitting, but
not on Weibo dataset. The BERT model used on
Twitter dataset is multilingual cased BERT-based
model and the one used on Weibo dataset is Chi-
nese BERT-based model. Our proposed model is
trained for 100 epochs with early stopping. We
use Adam (Kingma and Ba, 2014) and AdaBelief
(Zhuang et al., 2020) as optimizers on Twitter and
Weibo datasets, respectively, to seek the optimal
parameters of our model. The optimal hyperparam-
eters of our model are determined by grid searching,
and the selection criterion is accuracy. The hyper-
parameters of baselines are the same as those in
respective studies.

4.3 Baselines

To validate the effectiveness of MCAN, we choose
two categories of baseline models: unimodal mod-
els and multimodal models, which are listed as
follows: (1) Text: a BERT model coupled with the
decision network in MCAN, using textual informa-
tion. (2) Spatial: a model consists of a VGG-19

model and the decision network of MCAN, utiliz-
ing image information in spatial domain. (3) Freq:
proposed MCAN only has the part of dealing with
frequency-domain features. (4) VQA (Antol et al.,
2015): a model aims to answer questions accord-
ing to the given images. For fair comparisons, we
use a one-layer LSTM. (5) NeuralTalk (Vinyals
et al., 2014): a deep recurrent framework for image
caption. The joint representation of image and text
is obtained by averaging the output of RNN at each
timestep. (6) att-RNN (Jin et al., 2017): att-RNN
utilizes local attention to fuse textual, visual, and
social context features. For a fair comparison, we
remove the part dealing with social context infor-
mation. (7) EANN (Wang et al., 2018): A neural
network based on the adversarial idea to remove
the event-specific features. In EANN, event iden-
tification is an auxiliary task, and event labels are
not in original datasets. For a fair comparison,
we removed the event discriminator. (8) MVAE
(Khattar et al., 2019): MVAE learns shared rep-
resentations of text and image using a variational
autoencoder coupled with a binary classifier. We
use the same model as in the original work (Khattar
et al., 2019). (9) MCAN-A: MCAN without the
part of fusing multimodal features. Spatial-domain
features, frequency-domain features, and textual
features are simply concatenated for prediction.

4.4 Performance Comparison

Table 2 shows the results of baselines and our pro-
posed model on two datasets. We can observe that
the proposed MCAN outperforms all the baselines
over all metrics across two datasets.

There are many similar trends on the two
datasets. MCAN-A performs better than unimodal
models, which indicates that adding features usu-
ally improves model performance, but it is not
always positively correlated. For example, Text
on Weibo dataset is better than MCAN-A. After
adding the process of multimodal fusion, our pro-
posed MCAN beats MCAN-A and other multi-
modal models, which embodies our proposed fea-
ture fusion method is indeed better than the simple
concatenation method.

There are also some differences on the two
datasets. The performance of Text (BERT) and
Spatial (VGG-19) on Weibo dataset is much better
than that on Twitter dataset. The reason is related
to the dataset itself. On Weibo dataset, the average
length of a tweet is about 10 times of that of a tweet
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Dataset Method Accuracy Fake News Real News
Precision Recall F1 Precision Recall F1

Twitter

Text 0.633 0.656 0.762 0.705 0.587 0.459 0.515
Spatial 0.671 0.841 0.527 0.648 0.574 0.864 0.69
Freq 0.665 0.733 0.656 0.692 0.592 0.677 0.631
VQA 0.631 0.765 0.509 0.611 0.55 0.794 0.65
NeuralTalk 0.610 0.728 0.504 0.595 0.534 0.752 0.625
att-RNN 0.664 0.749 0.615 0.676 0.589 0.728 0.651
EANN 0.648 0.81 0.498 0.617 0.584 0.759 0.66
MVAE 0.745 0.801 0.719 0.758 0.689 0.777 0.73
MCAN-A 0.737 0.840 0.671 0.746 0.65 0.827 0.727
MCAN 0.809 0.889 0.765 0.822 0.732 0.871 0.795

Weibo

Text 0.876 0.885 0.871 0.878 0.865 0.878 0.871
Spatial 0.857 0.85 0.877 0.863 0.863 0.834 0.848
Freq 0.717 0.728 0.724 0.726 0.706 0.710 0.708
VQA 0.736 0.797 0.634 0.706 0.695 0.838 0.76
NeuralTalk 0.726 0.794 0.713 0.692 0.684 0.840 0.754
att-RNN 0.772 0.854 0.656 0.742 0.72 0.889 0.795
EANN 0.782 0.827 0.697 0.756 0.752 0.863 0.804
MVAE 0.824 0.854 0.769 0.809 0.802 0.875 0.837
MCAN-A 0.869 0.868 0.879 0.874 0.869 0.857 0.863
MCAN 0.899 0.913 0.889 0.901 0.884 0.909 0.897

Table 2: The results of different methods on two datasets

on Twitter dataset, which probably makes BERT
perform better on Weibo dataset. Moreover, more
than 70% of tweets on Twitter dataset are related
to a single event. Thus, the training samples of
BERT and VGG-19 are too similar, resulting in
poor performance of model generalization. This is
the reason why we fine-tuned BERT and VGG-19
on Weibo dataset but not on Twitter dataset. They
are easy to overfit on Twitter dataset. But Weibo
dataset has no such imbalanced issue.

On Weibo dataset, the accuracy of fine-tuned
BERT and VGG-19 all exceed 85%. In this case,
our proposed MCAN further improves the accuracy
to close to 90% with the help of cascaded way of
stacking CA layers. Comparing with the situation
on Twitter dataset, we can find that our model per-
forms better in the face of weak unimodal features.
In our MCAN model, the representation ability
of features can be greatly improved by effectively
fusing other features.

4.5 Ablation Analysis

Quantitative Analysis. To evaluate the effective-
ness of each component of the proposed MCAN,
we remove each one from the entire model for
comparison. “ALL” denotes the entire model
MCAN with all components, including spatial-
domain representation (S), textual representation
(T), frequency-domain representation (F), and co-
attention layers (A). After removing each one of

them, we obtain the sub-models “-S”, “-T”, “-F”
and “-A”, respectively. “-F-A” denotes the reduced
MCAN without both frequency-domain representa-
tion and co-attention layers. The results are exhib-
ited in Figure 5.

Figure 5: MCAN ablation analysis in Accuracy.

We can see that every component plays a signifi-
cant role in improving the performance of MCAN.
MCAN beats MCAN-F, which reveals that the fre-
quency domain information is indeed helpful to
detect fake news. On Twitter dataset, the contribu-
tion of textual representations to the entire model
is less than that of visual representations, while
the situation on Weibo dataset is opposite. This is
still due to the imbalanced issue and the less av-
erage length of a tweet on Twitter dataset, which
decrease the performance of the textual represen-
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tation. Besides, on Weibo dataset, removing one
or two components, the performance of MCAN
does not drop significantly as on Twitter dataset.
This benefits from balanced data distribution and
the stability of fine-tuned BERT and VGG-19, as
mentioned in Section 4.4.

(a) MCAN-A

(b) MCAN

Figure 6: Visualizations of learned latent feature repre-
sentations.

Qualitative Analysis. To illustrate the effective-
ness of co-attention layers in MCAN, we quali-
tatively visualize the joint representation of three
modalities learned by MCAN-A and the fused rep-
resentation R

(4)
C learned by MCAN on Weibo test-

ing set with t-SNE (Maaten and Hinton, 2008), as
shown in Figure 6. The label of each tweet is real
or fake.

From Figure 6, we can observe that the separabil-
ity of the feature representation learned by MCAN
is much better than its reduced model MCAN-A.
MCAN-A can learn discriminable features, but
many features are still easily misclassified, showing

in Figure 6(a). On the contrary, the features learned
by MCAN are more discriminable with a more sig-
nificant segregated area between two types of sam-
ples, as exhibited in Figure 6(b). This is attributed
to the cascaded way of stacking co-attention layers
in MCAN, which fuses the characteristics of mul-
tiple modalities deeply and boosts to distinguish
fake news and real news.

From the above phenomena, we can conclude
that the proposed method MCAN learns better and
more distinctive feature representations with the co-
attention layers, thus achieving better performance.

4.6 Case Studies

To further illustrate the importance of multimodal
features for fake news detection, we compare the
results reported by MCAN and unimodal models
(Text and Spatial) and exhibit some fake news cor-
rectly captured by MCAN but missed by unimodal
models.

Before washed away by flood, an 
Indian man calmly gave the last 
gesture to a photographer.  

A group of dolphins brought a dog 
that fell into a canal to safe area.

Figure 7: Some fake news detected by MCAN but
missed by Text on the Weibo dataset.

Figure 7 shows two top-confident tweets suc-
cessfully detected by MCAN but missed by text-
only MCAN. The textual contents of the two exam-
ples can provide little evidence that it is fake news.
However, the two attached images seem forged
pictures.

The water mantis lives in sewers. 
Its head has two to three times the 
poison of pufferfish and has no 
antidote.   

Several urban management officers 
are frantically plundering street-
side property worth more than 100 
million yuan.

Figure 8: Some fake news detected by MCAN but
missed by Spatial on the Weibo dataset.
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In Figure 8, the two examples are detected by
MCAN but missed by Spatial. The attached images
in two examples look normal. However, the words
in the tweet seem exaggerated and unbelievable. It
is challenging for spatial-domain-only MCAN to
detect, but with multimodal features, our MCAN
model identifies them correctly.

These comparative cases prove that when a
single-modal model, whether a text-based model or
an image-based model, cannot correctly distinguish
fake news, the proposed MCAN using multimodal
features can give high confidence.

5 Conclusions

In this work, we propose a novel Multimodal Co-
Attention Networks (MCAN) to tackle the chal-
lenge of fusing multimodal (textual and visual) fea-
tures for fake news detection. We utilize three
different sub-networks to extract features from text,
spatial domain, and frequency domain, respectively.
Then the three features are deeply fused by stack-
ing co-attention layers, which is inspired by human
behavior. When people read news with image, im-
age and text are read once or multiple times, and
continuously fused in brain. Experiments on two
public benchmark datasets for fake news detection
validate the effectiveness of MCAN, and the re-
sults show that MCAN outperforms the current
state-of-the-art methods. In the future, we plan to
extend the co-attention based fusion approach in
MCAN to other fake news research, such as fake
news diffusion.
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