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Abstract

Existing pre-trained models for knowledge-
graph-to-text (KG-to-text) generation simply
fine-tune text-to-text pre-trained models such
as BART or T5 on KG-to-text datasets,
which largely ignore the graph structure dur-
ing encoding and lack elaborate pre-training
tasks to explicitly model graph-text align-
ments. To tackle these problems, we propose a
graph-text joint representation learning model
called JointGT. During encoding, we devise
a structure-aware semantic aggregation mod-
ule which is plugged into each Transformer
layer to preserve the graph structure. Fur-
thermore, we propose three new pre-training
tasks to explicitly enhance the graph-text align-
ment including respective text / graph recon-
struction, and graph-text alignment in the em-
bedding space via Optimal Transport. Exper-
iments show that JointGT obtains new state-
of-the-art performance on various KG-to-text
datasets1.

1 Introduction

Knowledge-graph-to-text (KG-to-text) generation
aims to generate high-quality texts which are con-
sistent with input graphs (Gardent et al., 2017).
This task requires to simultaneously encode the
graph structure and the content, and effectively
leverage the input graphs in the decoding process
(Zhao et al., 2020). As a major natural language
generation (NLG) task that connects knowledge
graphs and texts, this task can further promote the
applicability of knowledge graphs in more realis-
tic NLG scenarios, such as knowledge-grounded
dialogue generation (Zhou et al., 2018a) and story
generation (Guan et al., 2019; Ji et al., 2020).

Due to the limited amount of graph-text paral-
lel data, it’s hard for typical neural text generation

∗ Corresponding author
1The data, codes, and model parameters are available at

https://github.com/thu-coai/JointGT.

models to learn the alignments between source enti-
ties / relations and target tokens from scratch (Guo
et al., 2020; Fu et al., 2020). Recent work resorts to
constructing general-purpose pre-trained language
models for KG-to-text generation. The most com-
mon and simple way is to linearize input graphs
into text sequences, and directly fine-tune text-
to-text Transformer-based pre-trained models like
GPT (Radford et al., 2018, 2019), BART (Lewis
et al., 2020) or T5 (Raffel et al., 2020) on KG-to-
text datasets (Ribeiro et al., 2020a; Kale and Ras-
togi, 2020). Benefiting from self-supervised pre-
training on large-scale unlabelled text corpora, pre-
trained language models can generate high-quality
texts via simply fine-tuning, and outperform other
models with sophisticated structures.

Despite the superior performance of fine-tuning
pre-trained models on KG-to-text datasets, we ar-
gue that building pre-trained models for KG-to-
text generation still faces two major challenges:
1) Structural information loss during encoding.
Most of the existing pre-trained models capture
contextual information via bidirectional Transform-
ers (Devlin et al., 2019), which include full atten-
tion connections. This model structure may neglect
the structural information when encoding knowl-
edge graphs since the relation between each pair of
input entities is not explicitly considered (Zhu et al.,
2019). 2) Absence of explicit graph-text align-
ments. Existing work on pre-trained models for
text generation commonly adopts auto-encoding
or auto-regressive text reconstruction to learn text-
text alignments, which encodes the corrupted text
sequence and decodes the original sequence (Lewis
et al., 2020; Raffel et al., 2020). Since knowledge
graphs may possess more complex structures than
text sequences, it’s hard to explicitly learn graph-
text alignments by directly using the pre-training
tasks based on text reconstruction.

Thus, we propose a graph-text joint represen-

https://github.com/thu-coai/JointGT
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tation learning framework called JointGT to deal
with the above challenges. Firstly, to alleviate the
structural information loss during encoding, we de-
vise a simple structure-aware semantic aggregation
module at each Transformer layer to aggregate con-
textual information following the graph structure.
Secondly, we propose three pre-training tasks in-
cluding graph enhanced text reconstruction, text
enhanced graph reconstruction, and graph-text em-
bedding alignment to explicitly build the connec-
tion between knowledge graphs and text sequences.
The first two tasks are expected to enhance the
graph-text alignment in the discrete vocabulary
space, where our model is required to predict the
masked information of graphs / texts based on the
observed information of texts / graphs. And the
third task is designed to model the graph-text align-
ment in the continuous embedding space via Opti-
mal Transport (Peyré and Cuturi, 2019) to match
the hidden representations of graphs and texts. Our
contributions are as follows:

• We propose a novel pre-trained model called
JointGT for KG-to-text generation tasks. This
model adopts a structure-aware semantic ag-
gregation module to model the structure of
an input graph at each Transformer layer, and
utilizes three pre-training tasks to explicitly
learn graph-text alignments in the discrete and
continuous spaces.

• We conduct experiments on the datasets of
KG-to-text generation including WebNLG,
WebQuestions and PathQuestions. Results
show that JointGT achieves new state-of-the-
art performance on KG-to-text generation.

2 Related Work

KG-to-Text Generation
Recent studies on KG-to-text generation tasks
mainly fall into three aspects: 1) Encoder mod-
ification: To alleviate the structural information
loss of sequence encoders with the input of lin-
earized graphs (Gardent et al., 2017; Trisedya
et al., 2018; Moryossef et al., 2019), researchers
focus on more complex encoder structures for
better graph representations, such as graph neu-
ral networks (Marcheggiani and Perez-Beltrachini,
2018; Ribeiro et al., 2020b) and graph Trans-
formers (Koncel-Kedziorski et al., 2019; Schmitt
et al., 2020a). 2) Unsupervised training: re-
searchers devise unsupervised training objectives

to jointly learn the tasks of graph-to-text and text-
to-graph conversion with non-parallel graph-text
data (Schmitt et al., 2020b; Guo et al., 2020; Jin
et al., 2020). 3) Building pre-trained models: With
the development of pre-trained NLG models such
as GPT (Radford et al., 2018, 2019), BART (Lewis
et al., 2020) and T5 (Raffel et al., 2020), recent
work directly fine-tunes these models on graph-to-
text datasets and reports impressive performance
(Ribeiro et al., 2020a; Kale and Rastogi, 2020;
Chen et al., 2020b; Mager et al., 2020).

Compared with the existing work on pre-trained
models for KG-to-text generation, our model uti-
lizes pre-training methods to explicitly learn graph-
text alignments instead of directly fine-tuning text-
to-text pre-trained models on KG-to-text datasets.
KG-Enhanced Pre-Trained Models
Another line of related studies is pre-trained mod-
els enhanced by knowledge graphs for natural lan-
guage understanding (NLU). The motivation of
these models is to incorporate knowledge graphs
into pre-trained models to facilitate the understand-
ing of entities and relations in natural language.
Early work including ERNIE (Zhang et al., 2019)
and KnowBERT (Peters et al., 2019) directly uses
fixed entity embeddings based on TransE (Bordes
et al., 2013) or word vectors (Mikolov et al., 2013)
during pre-training. Recent work like KEPLER
(Wang et al., 2021) and JAKET (Yu et al., 2020)
resorts to jointly pre-training graph-text representa-
tions. Specifically, they encode the textual descrip-
tions of entities with pre-trained language mod-
els as entity embeddings and jointly optimize the
knowledge embedding objective and the masked
language modeling objective.

In comparison, our model focuses on joint pre-
training methods on knowledge graph encoding and
sequence decoding in KG-to-text generation tasks,
rather than considering graph-text joint encoding
methods in NLU tasks.

3 Method

3.1 Task Definition and Model Overview

Given a knowledge graph G = (V, E) where
V = {e1, e2, · · · , e|V|} denotes the entity set
and E = (rij)|V|×|V| indicates the relations con-
necting the entities, and its linearized version
Glinear = (w1, w2, · · · , wm) which consists of m
tokens, our goal is to generate a text sequence
X = (x1, x2, · · · , xn) which is consistent with
the input graph.
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Our model is built on pre-trained encoder-
decoder models like BART (Lewis et al., 2020)
and T5 (Raffel et al., 2020). First of all, we
follow the existing work (Chen et al., 2020b) to
linearize knowledge graphs in the form of triple
lists (as shown in Figure 1), and devise a sim-
ple structure-aware semantic aggregation module
which is plugged into each Transformer layer of
the encoder to preserve the structural information
of input graphs (§3.2). Then, we propose three
pre-training tasks including graph / text reconstruc-
tion in the discrete vocabulary space and graph-
text matching in the continuous embedding space,
which enable our model to jointly learn the repre-
sentations of knowledge graphs and texts (§3.3).

𝒢𝑙𝑖𝑛𝑒𝑎𝑟
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Figure 1: Illustration of linearizing knowledge graphs
into text sequences. The special tokens <H>, <R>
and <T> mean the head entity, relation and tail entity
in the knowledge triples, respectively.
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Figure 2: Structure-aware semantic aggregation mod-
ule at each layer of the Transformer encoder. This mod-
ule contains a pooling layer to obtain the contextual
semantic representations of entities (zli) and relations
(qlij) from the output of the vanilla self-attention layer
(hl

i), a structure-aware self-attention layer to aggregate
the entity representations (z̃li) based on the graph struc-
ture, and a residual layer to fuse the contextual and
structural representations (h̃l

i).

To simultaneously leverage the contextual repre-
sentation from pre-trained models and preserve the
structural information, we devise a structure-aware
semantic aggregation module in the Transformer
encoder. Assume that the input of our encoder dur-
ing pre-training is the linearized graph Glinear and
the corresponding text sequence X (which may be
corrupted or empty in some pre-training tasks), the
self-attention layer in the l-th Transformer layer
can be formulated as follows2:

hl
i =

m+n∑
j=1

αl
ij(h

l−1
j W V )

αl
ij =

exp(tlij)∑m+n
p=1 exp(tlip)

(1)

tlij =

(
hl−1
i WQ

)(
hl−1
j WK

)>
√
dk

i = 1, 2, · · · ,m+ n

where WQ,WK ,W V are the model parameters
and dk denotes the dimension of query / key / value
vectors. The fully-connected attention captures rich
contextual semantic relationship among the entities,
relations and the tokens of text sequences, but is
not sufficient to encode the structural information
of input graphs. Thus, we devise a structure-aware
semantic aggregation module on top of vanilla self-
attention, as shown in Figure 2. First of all, we
utilize a mean pooling layer3 to obtain the repre-
sentation of each entity and relation from the output
of the vanilla self-attention layer:

zli =pooling({hl
p|p ∈ P(ei), 1 ≤ p ≤ m})

qlij =pooling({hl
p|p ∈ P(rij), 1 ≤ p ≤ m})

i = 1, · · · , |V|; j = 1, · · · , |V| (2)

where P(ei)/P(rij) means the set of positions oc-
cupied by ei / rij in the linearized graph. Note
that qlij will be set to an all-zero vector if there
is no relation between ei and ej . Then we update
entity representations with a structure-aware self-

2We take a single attention head as an example in this
section. In practice, we use our proposed method in the multi-
head attention.

3We find that there is no significant difference in the model
performance between mean pooling and other aggregation
functions like max pooling.
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Figure 3: Overview of our proposed pre-training tasks: (a) Graph enhanced text reconstruction: reconstructing the
text sequence given the complete graph. (b) Text enhanced graph reconstruction: predicting the masked entities and
relations of the corrupted graph conditioned on the complete text. (c) Graph-text embedding alignment: matching
the embedding vectors of the knowledge graph and the text via Optimal Transport. The special token <SEP> is to
separate the linearized graph and the text, while <M> denotes the placeholder for masked tokens.

attention layer (Shaw et al., 2018):

z̃li =

|V|∑
j=1

βlij(z
l
jW

V S + qlijW
V R)

βlij =
exp(ulij)∑|V|
p=1 exp(ulip)

(3)

ulij =

(
zliW

QS
) (
zljW

KS + qlijW
KR
)>

√
dk

i = 1, 2, · · · , |V|

where WQS ,WKS ,W V S ,WKR,W V R are the
weight matrices in the structure-aware self-
attention. This layer integrates the contextual
semantic representation of entities and relations
based on the graph structure, thereby injecting the
structural information into the vanilla Transformer
layer. Finally, we use a residual layer to fuse se-
mantic and structural representations of entities,
and obtain the hidden states for the following com-
putation:

h̃l
i =

{
hl
i + z̃lj , i ∈ P(ej)

hl
i, otherwise.

(4)

i = 1, · · · ,m+ n; j = 1, · · · , |V|

Compared with existing structure-aware Trans-
former encoders (Zhu et al., 2019; Song et al.,
2020) that either use the entity and relation em-
beddings from an external knowledge embedding
model or directly learn them as model parameters,

our encoder obtains the entity and relation embed-
dings via contextual semantic representations. This
design fully employs the effective contextual rep-
resentations from the existing pre-trained models
while preserving the structural information, and
enables our model to generalize to new entities and
relations better when fine-tuned to the datasets with
a different knowledge graph.

3.3 Pre-Training Task
Given the input graph G and its corresponding text
sequence X , the goal of our pre-training task is
to jointly learn the graph encoder and sequence
decoder to enhance graph-text alignments, which
can benefit the downstream tasks of KG-to-text
generation. We devise three pre-training tasks to
explicitly learn graph-text alignments in both dis-
crete and continuous spaces.

3.3.1 Graph Enhanced Text Reconstruction
The purpose of graph enhanced text reconstruction
is to recover the masked text sequence based on
the complete knowledge graph, as shown in Fig-
ure 3. Assume that X̂ denotes the masked text
sequence, we can formulate the loss function of
this pre-training task as follows:

Ltext = − logP (X|G, X̂)

= −
n∑

i=1

logP (xi|G, X̂, x<i) (5)

To construct X̂ , we masked the entity words
with a probability of 40% and other words with
20% since entity words are more important in the
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task of KG-to-text generation. We also follow the
existing work (Lewis et al., 2020) to merge the
consecutive mask tokens into one mask token to
increase the difficulty of text reconstruction. This
task enables our model to utilize the knowledge
graph to reconstruct the corrupted text sequence,
which explores the connection between them in the
discrete vocabulary space.

3.3.2 Text Enhanced Graph Reconstruction
As shown in Figure 3, this pre-training task aims
to recover the corrupted graph according to the
information of the text sequence. Given the cor-
rupted knowledge graph Ĝ with masked entities
and relations, and the complete text sequence X ,
the loss function is to recover the masked entities
and relations in the linearized knowledge graph:

Lgraph = − logP (G|Ĝ, X)

= −
m∑
i=1

Mi logP (wi|Ĝ, X) (6)

where Mi denotes an indicator function and equals
1 if and only if wi is masked. We empirically set
the masking probability of entities / relations as
40% / 20%. This task explicitly exerts the impact
of the text on the graph reconstruction, thereby
guiding the encoder to focus more on the entities
and relations that may appear in the text.

3.3.3 Graph-Text Embedding Alignment
This pre-training task is devised to encourage the
graph-text alignment in the embedding space. We
use Optimal Transport (OT), which is commonly
used in the cross-domain alignment (Chen et al.,
2020a), to calculate the minimum cost of trans-
porting the graph representation from the encoder
to the text representation from the decoder (and
vice versa). As shown in Figure 3, the input of the
encoder is the linearized knowledge graph Glinear
while the input of the decoder is the text sequence
X . Assume that HL = (hL

1 ,h
L
2 , · · · ,hL

m) indi-
cates the final hidden states of the encoder, we can
similarly acquire the entity and relation representa-
tions via mean pooling:

zLi =pooling({hL
p |p ∈ P(ei), 1 ≤ p ≤ m})

qLij =pooling({hL
p |p ∈ P(rij), 1 ≤ p ≤ m})

i = 1, · · · , |V|; j = 1, · · · , |V| (7)

Let Gseq = V ∪ E = (g1, g2, · · · , g|V|+|E|) denotes
the sequence of all the entities and relations in

G, we can directly obtain the contextual embed-
ding vectors HG = (hG1 , · · · ,h

G
|V|+|E|) for each

entity and relation from Equation 7. We can also
acquire the embedding vectors of X from the de-
coder’s final hidden states, which is denoted by
S = (s1, s2, · · · , sn).

To model the alignment between graphs and
texts in the embedding space, we regard Gseq as
a discrete distribution µ =

∑|V|+|E|
i=1 aiδgi and X

as υ =
∑n

j=1 bjδxj , where a = {ai}|V|+|E|i=1 and

b = {bj}nj=1 satisfy
∑|V|+|E|

i=1 ai =
∑n

j=1 bj = 1,
and δgi / δxj indicates the Dirac function centered
on gi / xj . Then, we utilize the OT distance be-
tween µ and υ as the loss function, which is de-
fined as the solution of the following problem:

LOT = min
T∈Π(a,b)

|V|+|E|∑
i=1

n∑
j=1

Tij · d(gi, xj) (8)

Π(a, b) = {T ∈ R(|V|+|E|)×n
+ |T · 1n = a,

T> · 1|V|+|E| = b}

where T denotes a transport plan, 1|V|+|E| / 1n indi-
cates the (|V|+ |E|) / n -dimensional all-one vector
respectively, and d(gi, xj) is the cost function of
transporting gi to xj . We follow the existing work
(Chen et al., 2020c) to adopt the cosine distance
between the contextual embedding vectors of gi
and xj as the cost function, which is defined as

d(gi, xj) = 1 − hGi sj
‖hGi ‖2‖sj‖2

. Since the exact min-

imization over T is computationally intractable,
we utilize IPOT algorithm (Xie et al., 2019) to ap-
proximate the OT distance and iteratively obtain
the solution of T (more details are provided in the
Appendix A). After solving T , LOT can serve as
an alignment loss to optimize the model parame-
ters. This task builds the connection between the
contextual embedding vectors of knowledge graphs
and texts, and explicitly promotes the graph-text
alignment in the continuous space.

4 Experiment

4.1 Pre-training Dataset and Implementation

We used KGTEXT (Chen et al., 2020b) as our pre-
training dataset. This dataset contains 7M graph-
text data pairs, where texts are crawled from En-
glish Wikidump4 and the corresponding knowledge
graphs are acquired by querying WikiData with the

4https://dumps.wikimedia.org

https://dumps.wikimedia.org
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Dataset #Param WebNLG(U) WebNLG(C) WebQuestions PathQuestions
Model BLEU METEOR ROUGE BLEU METEOR ROUGE BLEU METEOR ROUGE BLEU METEOR ROUGE
SOTA-NPT - 61.00† 42.00† 71.00† 48.00† 36.00† 65.00† 29.45‡ 30.96‡ 55.45‡ 61.48‡ 44.57‡ 77.72‡

KGPT 177M 64.11] 46.30] 74.57] - - - - - - - - -
BART 140M 64.55 46.51 75.13 56.65 44.51 70.94 29.61 31.48 55.42 63.74 47.23 77.76
T5 220M 64.42 46.58 74.77 58.66 46.04 73.06 28.78 30.55 55.12 58.95 44.72 76.58

JointGT (BART) 160M 65.92 47.15 76.10** 58.55 45.01 72.31 30.02* 32.05** 55.60 65.89** 48.25** 78.87**
JointGT (T5) 265M 66.14** 47.25** 75.91 61.01** 46.32** 73.57** 28.95 31.29 54.47 60.45 45.38 77.59

Table 1: Results on WebNLG, WebQuestions and PathQuestions. SOTA-NPT indicates the state-of-the-art per-
formance from the baselines without pre-training. #Param means the number of model parameters. The results
marked with †, ‡ and ] are re-printed from Shimorina and Gardent (2018), Chen et al. (2020d) and Chen et al.
(2020b), respectively. - means that the results are not reported in the corresponding references. * indicates that our
model significantly outperforms BART and T5 on the corresponding datasets (t-test, p < 0.05), while ** means
p < 0.01.

Wikipedia hyperlinks of entities in the sentences.
The detailed statistics of KGTEXT are shown in
Table 2.

Dataset #Ent #Rel #Instances #Triples Length(Train / Valid / Test)
KGTEXT 1.8M 1,210 6.98M / 10K / 10K 27.2 20.2
WebNLG(U) 3,114 373 34,352 / 4,316 / 4,224 2.9 22.7
WebNLG(C) 3,129 373 34,536 / 4,217 / 4,148 2.9 19.8
WebQuestions 25,703 672 18,989 / 2,000 / 2,000 5.8 15.0
PathQuestions 7,250 378 9,793 / 1,000 / 1,000 2.7 14.0

Table 2: Statistics of pre-training and fine-tuning
datasets, including the total number of entities and rela-
tions, the data split, the average number of triples, and
the average length of texts.

Since our model can adapt to Transformer-based
pre-trained models with the encoder-decoder frame-
work, we chose BART (Lewis et al., 2020) and T5
(Raffel et al., 2020) as the base model in this pa-
per, which are denoted by JointGT (BART) and
JointGT (T5), respectively. The hyper-parameters
of the Transformer blocks were the same as BART-
base and T5-base because of the limited compu-
tational resources. We initialized our model pa-
rameters with the pre-trained checkpoint of BART-
base / T5-base except for the structure-aware se-
mantic aggregation module, which was randomly
initialized. We followed BART / T5 to use Byte-
Pair Encoding (BPE) vocabulary (Radford et al.,
2019) with the size of 50,265 / WordPiece vocab-
ulary (Kudo and Richardson, 2018) with the size
of 32,000. The batch size was 42 / 32 for JointGT
(BART) / JointGT (T5). The maximum length of
linearized input graphs was 600, while the maxi-
mum length of text sequences was 64. We adopted
Adam (Kingma and Ba, 2015) as the optimizer and
set the learning rate to be 3e-5. The warmup ratio
was 0.1. JointGT was pre-trained on KGTEXT for
1 epoch with the proposed pre-training tasks. It
took 44 / 69 hours for JointGT (BART) / JointGT
(T5) on 3 NVIDIA Quadro RTX 6000 GPUs.

4.2 Fine-Tuning Settings

We adopted WebNLG, WebQuestions and Path
Questions as the benchmark datasets during fine-
tuning, and provided the statistics in Table 2.
WebNLG: This dataset aims to convert RDF triples
into a textual description. We followed the exist-
ing work (Chen et al., 2020b) to use the version of
2.0 (Shimorina and Gardent, 2018). This dataset
contains two official data splits: the traditional split
(Unconstrained) which guarantees that there is no
overlap of input graphs among train / validation /
test sets, and a more challenging split (Constrained)
where the non-overlap constraint is applied to the
triples of input graphs. We denoted these two data
splits as WebNLG(U) and WebNLG(C) in our pa-
per. We followed the preprocessing steps of the
existing work (Chen et al., 2020b) to replace the
underlines in the entities and relations with spaces,
and split the entities and relations in a camel case
into multiple words.
WebQuestions: This dataset (Yih et al., 2016; Tal-
mor and Berant, 2018) is the benchmark for ques-
tion generation over knowledge bases (KBQG),
whose purpose is to generate natural language ques-
tions about the corresponding knowledge graphs
(Serban et al., 2016). It is constructed from two
question answering datasets, i.e., WebQuestionsSP
(Yih et al., 2016) and ComplexWebQuestions (Tal-
mor and Berant, 2018). These two datasets contain
natural language questions, SPARQL queries and
answer entities. We converted the SPARQL query
to return a subgraph, and used the same prepro-
cessing steps and data splits as the existing work
(Kumar et al., 2019; Chen et al., 2020d).
PathQuestions: Similar to WebQuestions, the
PathQuestions dataset is also the benchmark for
KBQG, which is constructed from a question an-
swering dataset (Zhou et al., 2018b). The main
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Model Fluency
κ

Adequacy
κWin (%) Lose (%) Tie (%) Win (%) Lose (%) Tie (%)

JointGT (BART) vs. BART 29.0* 19.7 51.3 0.413 26.3** 16.0 57.7 0.517
JointGT (T5) vs. T5 23.7 18.7 57.6 0.405 22.7* 16.3 61.0 0.424

Table 3: Human evaluation on WebNLG(U). The scores indicate the percentages of win, lose and tie when JointGT
is compared with other baselines. κ is Fleiss’ Kappa (all indicate moderate agreement). The scores marked with *
mean p < 0.05 while ** means p < 0.01 in sign test.

difference is that the knowledge graph in PathQues-
tions is a 2-hop / 3-hop path between two entities.
We used the same preprocessing steps and data
splits as the existing work (Kumar et al., 2019;
Chen et al., 2020d).

More detailed fine-tuning settings including the
search space and the best assignment of hyper-
parameters on the downstream datasets are reported
in the Appendix B.

4.3 Baselines
We chose the following two categories of models
as our baselines:
Pre-Trained Models: We adopted KGPT (Chen
et al., 2020b), BART (Lewis et al., 2020) and T5
(Raffel et al., 2020) as the pre-trained baselines.
KGPT is a pre-trained model for KG-to-text gener-
ation, which utilizes the same pre-training dataset
as our model and directly uses KG-to-text genera-
tion as the pre-training task. BART and T5, as the
state-of-the-art pre-trained models for text genera-
tion, can be applied to KG-to-text generation with
the input of linearized knowledge graphs and the
output of text sequences (Ribeiro et al., 2020a).
Task-Specific Models without Pre-Training: We
also chose the state-of-the-art task-specific mod-
els without pre-training for each dataset as our
baselines, including Seq2Seq with copying or
delexicalisation (Shimorina and Gardent, 2018) for
WebNLG v2.0, and G2S (Chen et al., 2020d) for
WebQuestions and PathQuestions.

We directly re-printed the results of baselines if
they use the same datasets as ours. Otherwise, we
implemented the baselines based on the codes and
model parameters released by the original papers.
We reported all the results of our implemented mod-
els with the mean values over 5 runs.

4.4 Automatic Evaluation
We followed the existing work (Shimorina and Gar-
dent, 2018; Chen et al., 2020d) to use BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005) and ROUGE-L (Lin, 2004) as our automatic
metrics. The main results on WebNLG, WebQues-

tions and PathQuestions are shown in Table 1. We
can observe that JointGT based on BART / T5 can
outperform vanilla BART / T5 on most of the met-
rics, respectively, and obtain the state-of-the-art
performance on all the datasets. This indicates that
our method can promote graph-text alignments and
further enhance the performance of the state-of-the-
art pre-trained models on KG-to-text datasets.

4.5 Human Evaluation

To further evaluate the quality of generated re-
sults, we conducted human evaluation on the
WebNLG(U) dataset. We followed the existing
work (Ferreira et al., 2019; Ribeiro et al., 2020b) to
select two criteria: fluency (whether a sentence is
grammatically fluent) and adequacy (whether a sen-
tence clearly describes the knowledge graph). We
randomly sampled 100 knowledge graphs from the
test set, and collected the generated results from our
models and the most competitive baseline models
(i.e., BART and T5). We used the pairwise com-
parison between BART / T5 and JointGT (BART)
/ JointGT (T5). Specifically, for each pair of gen-
erated texts (one from JointGT and the other from
the corresponding baseline, given the same input
knowledge graph), three annotators were hired to
label which text is better (i.e., win, lose or tie) in
terms of the metrics mentioned above. Note that
the two metrics were evaluated independently.

Results in Table 3 show that JointGT can beat
the corresponding baselines in both fluency and ad-
equacy. Especially for adequacy, our model can sig-
nificantly outperform BART / T5, which indicates
that our model equipped with the structure-aware
encoder and well-designed pre-training tasks can
generate high-quality texts to describe knowledge
graphs more clearly. To evaluate the agreement
among different annotators, we calculated Fleiss’
Kappa (Fleiss, 1971) for each pairwise compari-
son, where the results in Table 3 show moderate
agreement (0.4 ≤ κ ≤ 0.6).
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4.6 Ablation Study
4.6.1 Encoder Structure
To investigate the effect of our proposed structure-
aware semantic aggregation module, we fixed the
pre-training tasks and compared our encoder with
two Transformer-based encoders commonly used
in the existing work:
SeqEnc: This sequence encoder takes linearized
graphs as input and ignores structural information
(Ribeiro et al., 2020a; Kale and Rastogi, 2020).
RelEnc: This relation-aware encoder regards the
entity sequence as input and leverages the relation
embedding into the self-attention layer. Both the
entity and relation embedding vectors are directly
learned as model parameters (Shaw et al., 2018;
Zhu et al., 2019; Song et al., 2020).

Model #Param BLEU METEOR ROUGE
JointGT (BART) 160M 65.92 47.15 76.10
w/ SeqEnc 140M 64.82 46.87 75.37
w/ RelEnc 160M 65.17 47.07 75.69

Table 4: Ablation test of different encoder structures on
WebNLG(U), including our encoder, sequence encoder
(SeqEnc) and relation-aware encoder (RelEnc).

Note that we only chose the encoder structures
that can directly adapt to BART / T5 for fair com-
parison5. Results in Table 4 show that our encoder
structure can perform better than the other base-
lines. Compared with the relation-aware encoder
which can also capture the structural information of
knowledge graphs, our model fully utilizes the ef-
fective contextual semantic representation to initial-
ize the entity / relation representation at each Trans-
former layer instead of directly using the learnable
entity / relation embedding vectors. This design
equips JointGT with better generalization ability
during fine-tuning, thereby enhancing our perfor-
mance on downstream datasets.

Model #Triples
1-3 4-7

JointGT (BART) 71.24 61.36
w/ SeqEnc 70.83 (-0.41) 60.11 (-1.25)
w/ RelEnc 70.98 (-0.26) 60.58 (-0.78)

Table 5: BLEU scores of three encoders on the test set
of WebNLG(U) with different numbers of input triples.

To further demonstrate the effectiveness of our
encoder, we divided the test set of WebNLG(U)

5We observed a significant performance drop if we used
the encoders which are incompatible with BART / T5 (such as
graph neural networks) because we had to randomly initialize
the parameters of them during pre-training.

into two subsets according to the number of triples
in knowledge graphs, and compared the perfor-
mance of three encoders. Results in Table 5 show
that the improvement margin between our encoder
and other encoders is more evident when the num-
ber of input triples is large, which indicates that
our model can facilitate the encoding of knowledge
graphs with more complex structures.

4.6.2 Pre-Training Task

Model BLEU METEOR ROUGE
JointGT (BART) 65.92 47.15 76.10
w/o TextRecon 64.22 46.56 74.96
w/o GraphRecon 65.37 47.09 75.97
w/o OT 65.03 47.09 75.83
w/ BARTPretrain 64.60 46.78 75.74
w/ KGPTPretrain 65.14 46.94 75.72

Table 6: Ablation test of three pre-training tasks on
WebNLG(U), including text / graph reconstruction and
graph-text alignments via OT. BARTPretrain / KGPT-
Pretrain means using the pre-training tasks of BART /
KGPT instead of our tasks on KGTEXT.

To study the effect of three pre-training tasks, we
maintained the encoder structure and removed each
task respectively to test the performance. We also
replaced all our pre-training tasks with the tasks of
the existing work for comparison:
BARTPretrain: The pre-training tasks of BART
including text infilling and sentence permutation
(Lewis et al., 2020). Since these tasks cannot be
applied to graph data, we only used these tasks on
the text data of the pre-training dataset.
KGPTPretrain: The pre-training task of KGPT,
i.e., KG-to-text generation on the pre-training
dataset (Chen et al., 2020b).

Results in Table 6 show that each of our pre-
training tasks contributes to the model performance.
Compared with the other two tasks, graph enhanced
text reconstruction plays a more important role in
the task of KG-to-text generation, which directly
supervises the decoder with the conditional genera-
tion loss. We also observe an apparent performance
drop if we replace our pre-training tasks with those
proposed by the existing work, thereby indicating
the effectiveness of our pre-training tasks to pro-
mote KG-to-text generation.

4.7 Few-Shot Learning
To further analyze whether our pre-training tasks
can learn a good graph-text joint representation
that benefits the downstream KG-to-text generation
tasks, we considered the few-shot setting where
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Acharya Institute 
of Technologywas given the 'technical 

campus' status by

All India Council for 
Technical Education
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BART: The Acharya Institute of Technology is located in the state of Karnataka which has 
Telangana to its northeast and the Arabian Sea to its west . The Institute was given the 'Technical 
Campus ' status by the All India Council for Technical Education in Mumbai . The International 
Tennis Federation governs tennis . [sports offered]

T5: The Acharya Institute of Technology is located in Karnataka , India . It was given the 'Technical 
Campus ' status by the All India Council for Technical Education in Mumbai . The Institute is 
affiliated with the International Tennis Federation . The Arabian Sea is to the west of Karnataka 
and Telangana is northeast of the state . Tennis is one of the sports offered by the Institute . 
[sports governing body]

JointGT (BART): The Acharya Institute of Technology is located in the state of Karnataka which 
has Telangana to its northeast and the Arabian Sea to its west . The Institute was given the 
'Technical Campus ' status by the All India Council for Technical Education in Mumbai . One of the 
sports offered at the Institute is tennis which is governed by the International Tennis Federation .

JointGT (T5): The Acharya Institute of Technology is located in the state of Karnataka . 
Karnataka has Telangana to its northeast and the Arabian Sea to its west . The Institute was 
given the 'Technical Campus ' status by the All India Council for Technical Education in Mumbai . 
The Institute offers tennis which is governed by the International Tennis Federation .

Figure 4: Generated results on WebNLG(U). We highlight the missing and unfaithful parts of each text in red and
blue, respectively.

Model Data Proportion
0.5% 1% 5% 10%

BART 33.92 39.08 52.24 56.58
JointGT (BART) 37.18 42.26 54.41 57.73
w/ BARTPretrain 32.63 37.11 52.91 56.81
w/ KGPTPretrain 35.33 40.72 53.08 57.18

Table 7: BLEU scores of the models with correpond-
ing pre-training tasks trained on different proportions
of WebNLG(U).

only a few training instances were used during fine-
tuning. We still fixed our model structure and com-
pared our pre-training tasks with the tasks of BART
and KGPT mentioned in §4.6.2.

Results in Table 7 show that our pre-training
tasks can perform better than other tasks, especially
when the amount of training data is small. This
indicates that our proposed tasks can capture the
graph-text alignments during pre-training, thereby
making our model generalizable to the downstream
KG-to-text datasets better with only a few training
samples.

4.8 Case Study
To intuitively show the generation quality of our
model, we provided some generated cases in Fig-
ure 4. We observe that JointGT can generate high-
quality texts that describe the knowledge graph
more completely and faithfully. For example, in
the generated case on WebNLG(U), both BART
and T5 fail to cover all the input triples, where
BART misses the triple (Acharya Institute of Tech-
nology, sports offer, Tennis) and T5 misses (Tennis,
sports governing body, International Tennis Feder-
ation). Also, T5 generates non-existing facts that
are unfaithful to the knowledge graph. Equipped
with the structure-aware Transformer encoder and
the well-designed pre-training tasks to learn graph-

text alignments, JointGT (BART) and JointGT (T5)
can generate descriptions which include all the in-
put triples and express the relation between each
pair of entities more faithfully.

5 Conclusion

We propose a novel graph-text joint representa-
tion learning model called JointGT for KG-to-text
generation. This model plugs a simple structure-
aware semantic aggregation module into the vanilla
Transformer layer to preserve the structure of input
graphs, and utilizes three pre-training tasks to learn
graph-text alignments in the discrete vocabulary
space and continuous embedding space. Experi-
ments show that JointGT can outperform state-of-
the-art pre-trained NLG models on various datasets
of KG-to-text generation.
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A IPOT Algorithm

Inexact Proximal point method for Optimal
Transport (IPOT) is an effective iterative method
to approximate OT distance and compute the trans-
port plan T (Xie et al., 2019). Given the sequence
of entities and relations in the knowledge graph
Gseq = (g1, · · · , g|V|+|E|) with its corresponding
embedding vectorsHG = (hG1 , · · · ,h

G
|V|+|E|), and

Algorithm 1 IPOT Algorithm

Require:
Gseq = {gi}|V|+|E|i=1 , X = {xj}nj=1, and their

embedding vectors HG = {hGi }
|V|+|E|
i=1 , S =

{sj}nj=1

Generalized stepsize: 1/β
1: σ = 1

n1n, T (1) = 1|V|+|E|1
>
n

2: Cij = d(gi, xj) = 1− hGi sj
‖hGi ‖2‖sj‖2

3: Aij = e
−

Cij
β

4: for t = 1 to N do
5: Q = A� T (t)

6: for k = 1 to K do
7: δ = 1

(|V|+|E|)Qσ ,σ = 1
nQ>δ

8: end for
9: T (t+1) = diag(δ)Qdiag(σ)

10: end for
11: return T

the text sequence X = (x1, · · · , xn) with its em-
bedding vectors S = (s1, · · · , sn), the implemen-
tation of IPOT algorithm to calculate T is shown
in Algorithm 1.

In the algorithm of IPOT, � denotes Hadamard
product. β, K and N are all hyper-parameters. We
followed the existing work (Chen et al., 2020a) to
set β = 1.0, K = 1 and N = 10.

B Hyper-Parameter Setting

Hyper-parameter Search Space
Masking Probability choice[20%,30%,40%](entity / relation / word)

Learning Rate choice[2e-5,3e-5,5e-5]
Training Epoch choice[1,2]
Warmup Ratio choice[0,0.1]

Batch Size choice[32,36,42]
Input Length 600

Output Length 64
Maximum Gradient Norm 1.0

Optimizer Adam
Epsilon (for Adam) 1e-8

Table 8: Hyper-parameter search space of JointGT dur-
ing pre-training. choice indicates that the listed num-
bers will be chosen with the same probability.

We provided the detailed settings of hyper-
parameters during pre-training and fine-tuning.
The settings include hyper-parameter search space
and best assignments. Note that we used Hug-
gingface’s Transformers6 to implement our models.

6https://github.com/huggingface/
transformers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Hyper-parameter Search Space
Learning Rate choice[2e-5,3e-5,5e-5,1e-4]

Training Epoch choice[20,30,40]
Warmup Step uniform-integer[0,total step*0.2]

Batch Size choice[24,32]
Input Length choice[128,256]

Output Length choice[64,128]
Beam Size choice[2,3,5]

Length Penalty choice[1.0,3.0,5.0]
Maximum Gradient Norm 1.0

Optimizer Adam
Epsilon (for Adam) 1e-8

Table 9: Hyper-parameter search space of JointGT dur-
ing fine-tuning. uniform-integer means the integers in
the interval can be selected uniformly. In the search
space of warmup step, total step denotes the total train-
ing steps on the corresponding datasets.

Thus all the hyper-parameters reported in our paper
were consistent with the codes of Huggingface’s
Transformers.

Model JointGT (BART)
Dataset WebNLG(U) WebNLG(C) WebQuestions PathQuestions
Learning Rate 2e-5 2e-5 2e-5 5e-5
Training Epoch 40 20 30 40
Warmup Step 1,600 0 3,400 1,100
Batch Size 32 32 32 32
Input Length 256 256 256 128
Output Length 128 128 128 64
Beam Size 5 5 5 5
Length Penalty 1.0 1.0 5.0 1.0

Model JointGT (T5)
Dataset WebNLG(U) WebNLG(C) WebQuestions PathQuestions
Learning Rate 5e-5 3e-5 1e-4 2e-5
Training Epoch 30 30 40 30
Warmup Step 1,600 1,200 2,300 900
Batch Size 24 32 32 32
Input Length 256 256 256 128
Output Length 128 128 64 64
Beam Size 5 5 5 2
Length Penalty 1.0 1.0 5.0 1.0

Table 10: Best assignments of hyper-parameters on the
downstream datasets.

We presented the hyper-parameter search space
during pre-training in Table 8. The number of
hyper-parameter search trials was 10. Manual
search was adopted to select hyper-parameters, and
the selection criterion was BLEU on the validation
set when we fine-tuned the pre-trained model on
WebNLG(U). The best assignment of pre-training
was described in our main content.

We also provided the detailed settings of hyper-
parameters during fine-tuning on the downstream
datasets, including the hyper-parameter search
space in Table 9 and the best assignments in Table
10. The number of hyper-parameter search trials
was 20. BLEU was adopted as our criterion in the
manual search on all the downstream tasks.


