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Abstract

Pre-trained transformer language models have
shown remarkable performance on a variety
of NLP tasks. However, recent research has
suggested that phrase-level representations in
these models reflect heavy influences of lexi-
cal content, but lack evidence of sophisticated,
compositional phrase information (Yu and Et-
tinger, 2020). Here we investigate the impact
of fine-tuning on the capacity of contextual-
ized embeddings to capture phrase meaning
information beyond lexical content. Specifi-
cally, we fine-tune models on an adversarial
paraphrase classification task with high lexical
overlap, and on a sentiment classification task.
After fine-tuning, we analyze phrasal represen-
tations in controlled settings following prior
work. We find that fine-tuning largely fails
to benefit compositionality in these represen-
tations, though training on sentiment yields a
small, localized benefit for certain models. In
follow-up analyses, we identify confounding
cues in the paraphrase dataset that may explain
the lack of composition benefits from that task,
and we discuss potential factors underlying the
localized benefits from sentiment training.

1 Introduction

Transformer language models like BERT (Devlin
et al., 2019), GPT (Radford et al., 2018, 2019) and
XLNet (Yang et al., 2019b), have improved the
state-of-art in many NLP tasks since their introduc-
tion. The versatility of these pre-trained models
suggests that they may acquire fairly robust linguis-
tic knowledge and capacity for natural language
“understanding”. However, an emerging body of
analysis demonstrates a level of superficiality in
these models’ handling of language (Niven and
Kao, 2019; Kim and Linzen, 2020; McCoy et al.,
2019; Ettinger, 2020; Yu and Ettinger, 2020).

In particular, although composition—a model’s
capacity to combine meaning units into more com-

plex units reflecting phrase meanings—is an indis-
pensable component of language understanding,
when testing for composition in pre-trained trans-
former representations, Yu and Ettinger (2020) re-
port that these representations reflect word content
of phrases, but don’t show signs of more sophisti-
cated humanlike composition beyond word content.
In the present paper we perform a direct follow-
up of that study, asking whether models will show
better evidence of composition after fine-tuning
on tasks that are good candidates for requiring
composition: 1) the Quora Question Pairs dataset
in Paraphrase Adversaries from Word Scrambling
(PAWS-QQP) (Zhang et al., 2019a), an adversar-
ial paraphrase dataset forcing models to classify
paraphrases with high lexical overlap, and 2) the
Stanford Sentiment Treebank (Socher et al., 2013),
a sentiment dataset with fine-grained phrase labels
to promote composition. We base our analysis on
the tests proposed by Yu and Ettinger (2020), which
rely on alignment with human judgments of phrase
pair similarities, and which leverage control of lexi-
cal overlap to target compositionality. We fine-tune
and evaluate the same models and representation
types tested in that paper, for optimal comparison.

We find that across the board, fine-tuning on
PAWS-QQP does not improve compositionality—
if anything, performance on composition metrics
tends to degrade. Composition performance also
remains low after training on SST, but we do see
some localized improvements for certain models.
Analyzing the PAWS-QQP dataset, we find reli-
able superficial cues to paraphrase labels (distance
of word swap), explaining in part why fine-tuning
on that task might fail to improve composition—
and reinforcing the need for caution in interpreting
difficulty of NLP tasks. We also discuss the con-
tribution of variation in size of labeled phrases in
SST, with respect to the benefits that result from
fine-tuning on that task. All experimental code and
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data are made available for further testing.1

2 Related work

Extensive work has studied the nature of learned
representations in NLP models (Adi et al., 2016;
Conneau et al., 2018; Ettinger et al., 2016; Dur-
rani et al., 2020). Our work builds in particular
on analysis of contextualized representations (Ba-
con and Regier, 2019; Tenney et al., 2019; Peters
et al., 2018; Hewitt and Manning, 2019; Klafka
and Ettinger, 2020; Toshniwal et al., 2020). Other
work that has focused on transformers, as we do,
has often focused on analyzing the attention mech-
anism (Vig and Belinkov, 2019; Clark et al., 2019),
learned parameters (Roberts et al., 2020; Radford
et al., 2019; Raffel et al., 2020) and redundancy
(Dalvi et al., 2020; Voita et al., 2019; Michel et al.,
2019). The evaluation that we use here follows
the paradigm of classification-based probing (Kim
et al., 2019; Wang et al., 2018; Zhang et al., 2019b;
Yang et al., 2019a) and correlation with similar-
ity judgments (Finkelstein et al., 2001; Gerz et al.,
2016; Hill et al., 2015; Conneau and Kiela, 2018).

The current paper also builds on work subject-
ing trained NLP models to adversarial inputs, to
highlight model weaknesses. One body of work
approaches the problem by applying heuristic rules
of perturbation to input sequences (Wallace et al.,
2019; Jia and Liang, 2017; Zhang et al., 2019a),
while another uses neural models to construct ad-
versarial examples (Li et al., 2020, 2018) or ma-
nipulate inputs in embedding space (Jin et al.,
2020). Our work also contributes to efforts to un-
derstand impacts and outcomes of the fine-tuning
process (Miaschi et al., 2020; Mosbach et al., 2020;
Wang et al., 2020; Perez-Mayos et al., 2021).

Phrase and sentence composition has drawn fre-
quent attention in analysis of neural models, often
focusing on analysis of internal representations and
downstream task behavior (Ettinger et al., 2018;
Conneau et al., 2019; Nandakumar et al., 2019;
McCoy et al., 2019; Yu and Ettinger, 2020; Bha-
thena et al., 2020; Mu and Andreas, 2020; Andreas,
2019). Some work investigates compositionality
via constructing linguistic (Keysers et al., 2019)
and non-linguistic (Liška et al., 2018; Hupkes et al.,
2018; Baan et al., 2019) synthetic datasets.

Most related to our work here is the finding of Yu

1Datasets and code available at
https://github.com/yulang/fine-tuning-and-composition-
in-transformers

and Ettinger (2020). They test for composition in
two-word phrase representations from transform-
ers, via similarity correlations and paraphrase de-
tection. They find that baseline performance on
these tasks is high, but once they control for amount
of word overlap, performance drops dramatically,
suggesting that observed correspondences rely on
word content rather than phrase composition. We
build directly on this work, testing whether these
patterns will still hold after fine-tuning on tasks
intended to encourage composition.

3 Fine-tuning Pre-trained Transformers

In response to the weaknesses observed by Yu and
Ettinger (2020), we select two different datasets
with promising characteristics for addressing these
weaknesses. We fine-tune on these tasks, then per-
form layer-wise testing on contextualized repre-
sentations from the fine-tuned models, comparing
against results on the pre-trained models. Here we
describe the two fine-tuning datasets.

3.1 PAWS: fine-tuning on high word overlap

The core of the Yu and Ettinger (2020) finding
is that model performance on the selected com-
position tests degrades significantly when cues of
lexical overlap are controlled. It stands to reason,
then, that a model trained to discern meaning dif-
ferences under conditions of high lexical overlap
may improve on these overlap-controlled compo-
sition tests. This drives our selection of the Para-
phrase Adversaries from Word Scrambling (PAWS)
dataset (Zhang et al., 2019b), which consists of sen-
tence pairs with high lexical overlap. The task is
formulated as binary classification of whether two
sentences are paraphrases or not. State-of-the-art
models achieve only < 40% accuracy before train-
ing on the dataset (Zhang et al., 2019a). Table 1
shows examples from this dataset. Due to the high
lexical overlap, we might expect that in order to
achieve non-trivial accuracy on this task, models
must attend to more sophisticated meaning infor-
mation than simple word content.

3.2 SST: fine-tuning on hierarchical labels

Another dataset that has been associated with train-
ing and evaluation of phrasal composition is the
Stanford Sentiment Treebank, which contains syn-
tactic phrases of various lengths, together with fine-
grained human-annotated sentiment labels for these
phrases. Because this dataset contains annotations
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Sentence 1 Sentence 2 Label
There are also specific discussions , public
profile debates and project discussions .

There are also public discussions , profile spe-
cific discussions , and project discussions .

0

She worked and lived in Stuttgart , Berlin (
Germany ) and in Vienna ( Austria ) .

She worked and lived in Germany ( Stuttgart ,
Berlin ) and in Vienna ( Austria ) .

1

Table 1: Example pairs from PAWS-QQP. Both positive and negative pairs have high bag-of-words overlap.

of composed phrases of various sizes, we can rea-
sonably expect that training on this dataset may fos-
ter an increased sensitivity to compositional phrase
meaning. We formulate the fine-tuning task as
a 5-class classification task following the setup
in Socher et al. (2013). The models are trained
to predict sentiment labels given phrases as input.

4 Representation evaluation

For optimal comparison of the effects of fine-tuning
on the above tasks, we replicate the tests, represen-
tation types, and models reported on by Yu and
Ettinger. Here we briefly describe these methods.
For more details on the evaluation dataset and task
setup, please refer to Yu and Ettinger (2020).

4.1 Evaluation tasks
Yu and Ettinger propose two analyses for measur-
ing composition: similarity correlations and para-
phrase classification. They focus on two-word
phrases, using the BiRD bigram relatedness dataset
(Asaadi et al., 2019) for similarity correlations, and
the PPDB 2.0 paraphrase database (Ganitkevitch
et al., 2013; Pavlick et al., 2015) for paraphrase
classification. BiRD contains 3,345 bigram pairs,
with source phrases paired with numerous target
phrases, and human-annotated similarity scores
ranging from 0 to 1. For similarity correlation,
Yu and Ettinger take layer-wise correlations be-
tween these human phrase similarity scores and
the cosine similarities of model representations for
the same phrases. For paraphrase classification,
Yu and Ettinger train a multi-layer perceptron clas-
sifier to label whether two phrase representations
are paraphrases, drawing their positive phrase pairs
from PPDB 2.0—which contains paraphrases with
scores generated by a regression model—and ran-
domly sampling negative pairs from the rest of the
dataset. We replicate all of these procedures.

For both task types, Yu and Ettinger compare be-
tween “uncontrolled” and “controlled” tests, with
the latter filtering the data to control word over-
lap within phrase pairs, such that amount of word
overlap between two phrases can no longer be used

as a cue for how similar the meanings are. It is
on these controlled settings that Yu and Ettinger
observe the significant drop in performance, sug-
gesting that model representations lack the compo-
sitional knowledge to discern phrase meaning be-
yond word content. Below we will report results for
both settings, with particular focus on controlled
settings.

4.2 Representation types

Following Yu and Ettinger, for each input phrase
we test as a potential representation 1) CLS to-
ken, 2) average of tokens within the phrase (Avg-
Phrase), 3) average of all input tokens (Avg-All),
4) embedding of the second word of the phrase,
intended to approximate the semantic head (Head-
Word), and 5) SEP token. We test each of these
representations at every layer of each model.2

5 Experimental setup

We fine-tune and analyze the same models that Yu
and Ettinger test in pre-trained form: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), Dis-
tilBERT (Sanh et al., 2019), XLNet (Yang et al.,
2019b) and XLM-RoBERTa (Conneau et al., 2019).
In each case, the pre-trained “base” version is used
as the starting point for fine-tuning. We use the
implementation of Wolf et al. (2019)3 based on
PyTorch (Paszke et al., 2019).

We fine-tune these models on the two datasets
described in Section 3. The Quora Question
Pairs dataset in Paraphrase Adversaries from Word
Scrambling (PAWS-QQP)4 consists of a training
set with 11,988 sentence pairs, and a dev/test set
with 677 sentence pairs. Tuning on PAWS-QQP
is formulated as binary classification. Sentences
are passed as input and models are trained to pre-

2Like Yu and Ettinger, we also test both phrase-only input
(encoder input consists only of two-word phrase plus spe-
cial CLS/SEP tokens), as well as inputs in which phrases are
embedded in sentence contexts.

3https://github.com/huggingface/
transformers

4https://github.com/
google-research-datasets/paws

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/google-research-datasets/paws
https://github.com/google-research-datasets/paws
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Figure 1: Similarity correlation on uncontrolled BiRD dataset, with phrase-only input. Columns correspond
to models, and rows correspond to representation types (“HT” = Head-token, “AP” = Avg-Phrase and “AA” =
Avg-All). For each model and representation type, the corresponding subplot shows correlations for pre-trained,
PAWS-tuned and SST-tuned settings, respectively. For each subplot, X-axis corresponds to layer index, and Y-axis
corresponds to correlation value. Layer 0 corresponds to input embeddings passed to the model.

dict whether the input sentences are paraphrases
or not. Models are trained on the training set, and
validated on the dev/test set for convergence.

The Stanford Sentiment Treebank (SST)5

(Socher et al., 2013) contains 215,154 phrases.
15% of the data is reserved for validation. The
fine-tuning task is formulated as 5-class classifica-
tion on sentiment labels, where models are given
phrases as input, and asked to predict sentiment. In
both tasks, we use the Adam optimizer (Kingma
and Ba, 2014) with default weight decay. We train
the models until convergence on the validation set.

The evaluation tasks consist of correlation analy-
sis and paraphrase classification. For correlation in
the uncontrolled setting, we use the complete BiRD
dataset, containing 3,345 phrase pairs.6 For the con-
trolled test, we filter the complete dataset following
the criteria in Yu and Ettinger (2020), resulting in
410 “AB-BA” mirror-image pairs with 100% word
overlap (e.g., law school / school law). For the
classification tasks, we use the preprocessed data
released by Yu and Ettinger (2020).7 We collect
12,036 source-target phrase pairs from the prepro-

5https://nlp.stanford.edu/sentiment/
treebank.html

6http://saifmohammad.com/WebPages/BiRD.
html

7https://github.com/yulang/
phrasal-composition-in-transformers

cessed dataset for our uncontrolled classification
setting, and for the controlled classification setting,
we collect 11,772 phrase pairs with exactly 50%
word overlap in each pair, following the procedure
from the original paper.

6 Results after fine-tuning

6.1 Full datasets

Figure 1 presents the original results from Yu and
Ettinger (2020) on pre-trained models, alongside
our new results after fine-tuning, on the full BiRD
dataset. Since this is prior to the control of word
overlap, these correlations can be expected to re-
flect effects of lexical content encoding, without yet
having isolated effects of composition. We find that
after fine-tuning on SST, most models and represen-
tation types show small improvements in peak cor-
relations across layers, while fine-tuning on PAWS
also yields improvements in peak correlations—
albeit even smaller—in models other than BERT
and XLM-RoBERTa. Overall, within a given
representation type, improvements are generally
stronger after fine-tuning on SST than on PAWS.
Between representation types, Avg-Phrase and Avg-
All remain consistently at the highest correlations
after fine-tuning. Additionally, we see that the de-
cline in correlation at later layers in pre-trained
BERT, RoBERTa and XLM-RoBERTa is mitigated

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html
http://saifmohammad.com/WebPages/BiRD.html
http://saifmohammad.com/WebPages/BiRD.html
https://github.com/yulang/phrasal-composition-in-transformers
https://github.com/yulang/phrasal-composition-in-transformers
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Figure 2: Similarity correlation on controlled BiRD dataset (AB-BA setting), with phrase-only input.

after fine-tuning. Model-wise, we see the most
significant improvements in the RoBERTa model,
for which the correlations become more consistent
across layers for most representation types. As
we discuss below, we take this as indication that
the fine-tuning promotes more robust retention of
word content information across layers, if not more
robust phrasal composition.

For the sake of space, we present the plots of
the uncontrolled paraphrase classification setting
in Figure 7 of the Appendix. The overall improve-
ments are even smaller than those seen in the corre-
lations, but we do see comparable patterns in these
paraphrase classification results, in particular with
SST showing slightly stronger benefits than PAWS.

6.2 Controlled datasets

Above we see small benefits of fine-tuning for
performance on the full, uncontrolled datasets.
However, the critical question for our purposes
is whether correlations also show improvements in
word-overlap controlled settings, which better iso-
late effects of composition. Figure 2 shows correla-
tions for all models on the controlled AB-BA (full
word overlap) correlation test. Figure 3 shows the
results for the controlled paraphrase classification
setting, where both paraphrase and non-paraphrase
pairs have exactly 50% word overlap.

The first comparison to note is between original
and controlled settings, which allows us to establish
the contributions of overlap information as opposed
to composition. Comparing between Figure 1 and

Figure 2, it is clear that fine-tuned models still show
substantial reduction in correlation when overlap
cues are removed. The same goes for Figure 3 (by
comparison to Figure 7 of the Appendix)—we see
that on the controlled dataset, accuracies hover just
above chance-level performance both before and
after fine-tuning, compared to over 90% accuracy
on the uncontrolled dataset. This gap in perfor-
mance between the original and controlled datasets
mirrors the findings of Yu and Ettinger (2020), and
suggests that even after fine-tuning, the majority of
correspondence between model phrase representa-
tions and human meaning similarity judgments can
be attributed to capturing of word content informa-
tion rather than phrasal composition.

The second key comparison is between pre-
trained and fine-tuned models within the overlap-
controlled settings. While the prior comparison
tells us that similarity correspondence is still domi-
nated by word content effects, this second compar-
ison can tell us whether fine-tuning shows at least
some boost in meaning composition relative to pre-
training. Comparing performance of pre-trained
and fine-tuned models in Figure 2, we see that fine-
tuning on PAWS-QQP actually slightly degrades
correlations at many layers for a majority of mod-
els and representation types—with improvements
largely restricted to XLM-RoBERTa and XLNet
(perhaps notably, mostly in cases where pre-trained
correlations are negative). This is despite the fact
that models achieve strong validation performance
on PAWS-QQP (as shown in Table 2), suggesting



2284

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6
Ac

cu
ra
cy

BERT

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

RoBERTa

0 1 2 3 4 5 60.4

0.5

0.6

DistilBERT

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

XLM-RoBERTa

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

CL
S

XLNet

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

Ac
cu
ra
cy

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

0 1 2 3 4 5 60.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

H
T

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

Ac
cu
ra
cy

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

0 1 2 3 4 5 60.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

SE
P

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

Ac
cu
ra
cy

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

0 1 2 3 4 5 60.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 1011120.4

0.5

0.6

AP

0 1 2 3 4 5 6 7 8 9 101112
Layer

0.4

0.5

0.6

Ac
cu
ra
cy

0 1 2 3 4 5 6 7 8 9 101112
Layer

0.4

0.5

0.6

0 1 2 3 4 5 6
Layer

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 101112
Layer

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 101112
Layer

0.4

0.5

0.6

AA

Pretrained PAWS-tuned SST-tuned

Figure 3: Paraphrase classification accuracy on controlled PPDB dataset (50% word overlap setting) with phrase-
only input. Y-axis range is smaller relative to Figure 7, to make changes from pre-training more visible.

that learning this task does little to improve compo-
sition. We will explore the reasons for this below.

In Figure 3, we see that fine-tuning also does
little to improve paraphrase classification accura-
cies in the controlled setting—though each model
shows slight improvement in peak accuracy across
layers and representation types (e.g., RoBERTa
shows ∼3% increase in peak accuracy with SST
tuning, and 2% with PAWS tuning). Even so, the
best accuracies across models continue to be only
marginally above chance. This, too, fails to provide
evidence of any substantial composition improve-
ment resulting from the fine-tuning process.

The story changes slightly when we turn to im-
pacts of SST fine-tuning on correlations in Figure
2. While all correlations remain low after SST fine-
tuning, we do see that correlations for BERT, XLM-
RoBERTa and XLNet show some non-trivial bene-
fits even in the controlled setting. In particular, SST
tuning consistently improves correlation among all
representation types in BERT (except for minor
degradation in later layers for Head-token), boost-
ing the highest correlation from ∼0.2 to ∼0.39.
Between representation types, the greatest change
is in the CLS token, with the most dramatic point
of improvement being an abrupt correlation peak
for CLS at BERT’s fourth layer. We will discuss
more below about this localized benefit.

A final important observation is that fine-tuning
on either dataset produces clear degradation in cor-
relations for all representation types in RoBERTa

Model Accuracy(%)
BERT 80.13

RoBERTa 90.81
DistilBERT 81.98

XLM-RoBERTa 91.18
XLNet 88.24

Linear CLF 71.34

Table 2: Accuracy of fine-tuned models on PAWS-QQP
dev/test set. Linear CLF is a baseline classifier with
relative swapping distance as the only input feature.

under the controlled setting, by contrast to the gen-
eral improvements seen for that and other models
in the uncontrolled setting. This suggests that at
least for that model, fine-tuning encourages reten-
tion or enhancement of lexical information, but
may degrade compositional phrase information.8

7 Analyzing impact of fine-tuning

The presented results suggest that despite com-
pelling reasons to think that fine-tuning on the se-
lected tasks may improve composition of phrase
meaning, these models mostly do not exhibit note-
worthy benefits from fine-tuning. In particular, fine-

8Following Yu and Ettinger (2020), in addition to phrase-
only inputs we also try embedding target phrases in sentence
contexts. Consistent with the findings of Yu and Ettinger
(2020), we see that presence of context words does boost over-
all correlation and accuracy, but does not alter the general
trends. Moreover, models still show relatively weak perfor-
mance on controlled tasks even with context available (see
Figure 8 and Figure 9 in the Appendix for details).
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Figure 4: Layer-wise correlation of BERT fine-tuned on phrases of different lengths in SST.
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Figure 5: Distribution of positive and negative predic-
tions made by tuned models. Last plot shows the statis-
tics in the PAWS-QQP dev/test set. X-axis corresponds
to relative swapping distance; Y-axis shows number of
samples in the specific relative swapping distance bin.

tuning on the PAWS-QQP dataset often degrades
performance on the controlled datasets taken to be
most indicative of compositionality. As for SST,
the benefits are minimal, but in localized cases like
BERT’s CLS token, we do see signs of improved
compositionality. In this section, we conduct fur-
ther analysis on the impacts of fine-tuning, and
discuss why tuned models behave as they do.

7.1 Failure of PAWS-QQP

Table 2 shows accuracy of fine-tuned models on
the dev/test set of PAWS-QQP.9 It is clear that the
models are learning to perform well on this dataset,
but our results above indicate that this does not
translate to improved composition sensitivity.

We explore the possibility that this discrepancy
may be caused by trivial cues arising during the

9The performance of BERT in the table is different from
previous work mainly due to the fact that models in Zhang et al.
(2019a) are tuned on concatenation of QQP and PAWS-QQP
datasets rather than PAWS-QQP only.

construction of the dataset, enabling models to in-
fer paraphrase labels without needing to improve
their understanding of the meaning of the sentence
pair (c.f., Poliak et al., 2018; Gururangan et al.,
2018). Sentence pairs in PAWS are generated via
word swapping and back translation to ensure high
bag-of-words overlap (Zhang et al., 2019a). We
hypothesize that models may be able to achieve
high performance in this task based on distance of
the word swap alone, without requiring any sophis-
ticated representation of sentence meaning.

To test this, given a sentence pair (s1, s2) with
word counts l1, l2, respectively, we define “relative
swapping distance” as

distrelative =
distswap

max(l1, l2)

where distswap is defined as the index difference
of the first swapping word in s1 and s2. For the
example shown in the first row of Table 1, the first
swapping word is “specific”, with distswap = 4.
Note that with this measure we focus on informa-
tion from one word swap only, while some pairs
in PAWS-QQP have multiple swapped words—so
in reality, swapping distance information may be
even stronger than our results below indicate.

In the last plot of Figure 5, we show an asso-
ciation between relative swapping distance and
paraphrase labels in the PAWS dev/test set: sen-
tence pairs with small swapping distance tend to
be positive samples, while large swapping distance
associates with negative labels. The other plots in
Figure 5 show distribution of positive and negative
predictions generated by each fine-tuned model
with respect to relative swapping distance. We see
a similar pattern, with models tending to generate
negative labels when swapping distance is larger.
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To verify the viability of this cue, we train a sim-
ple linear classifier on PAWS-QQP, with relative
swapping distance as the only input feature. The re-
sults are reported as “Linear CLF” in Table 2. Even
without access to the content of the sentences, we
see that this simple model is able to achieve non-
trivial and comparably good classification accuracy
on the dev/test set. The strong performance of the
linear classifier and the distribution of predictions
are consistent with the hypothesis that when we
tune on PAWS-QQP, rather than forcing models
to learn nuanced meaning in the absence of word
overlap cues, we may instead encourage models to
focus on lower-level information having little to do
with the sentence meaning, further degrading their
performance on the composition tasks.

7.2 Localized impacts of SST

Fine-tuning on sentiment shows a bit of a different
pattern—while it mostly shows only minor changes
from pre-training, and the correlations and classifi-
cation accuracies remain at decidedly low levels on
the controlled settings, we do see in certain mod-
els some distinctive changes in levels of similarity
correlation as a result of tuning on SST. Notably,
since these improvement patterns are seen in the
similarity correlations but not in the classification
accuracies, this suggests that these two tasks are
picking up on slightly different aspects of phrasal

compositionality. To investigate these effects fur-
ther, we focus our attention on BERT, which shows
the most distinctive improvement in correlations.

The obvious candidate for the source of the local-
ized SST benefit is the dataset’s inclusion of labeled
syntactic phrases of various sizes. The benefits
seen from SST tuning suggest that this may indeed
encourage models to gain some finer-grained sensi-
tivity to compositional impacts of phrase structure
(at least those relevant for sentiment). To examine
this further, we filter the SST dataset to subsets
with phrases of the same length, from 2 to 6 words,
and tune pre-trained BERT on each subset.

Figure 4 shows the correlations for BERT, fine-
tuned on each phrase length, on the overlap-
controlled BiRD dataset. We see that tuning
on the full dataset (mixed phrase lengths) gives
the strongest fourth-layer boost in CLS correla-
tion performance—but among the size subsets, a
semblance of the fourth-layer CLS peak is seen
across phrase lengths, with length-2 training yield-
ing the strongest peak, and length-6 training the
smallest. This suggests an amount of size-based
specialization—sentiment training on phrases of
(or closer to) two words has more positive im-
pact on similarity correlations for our two-word
phrases.10 However, we also see that phrases of

10Although subset size can potentially contribute to correla-
tion performance, we find that subset size does not correlate
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other sizes contribute non-trivially to the ultimate
correlation improvement observed from training on
the full dataset. This is consistent with the notion
that training on diverse phrase sizes encourages
fine-grained attention to compositionality, while
training on phrases of similar size may have slightly
more direct benefit.

Representation changes For further compari-
son of fine-tuning effects between tasks, we ana-
lyze changes in BERT representations at each layer
before and after the fine-tuning process. Figure 6
shows the average layer-wise representation sim-
ilarity between fine-tuned and pre-trained BERT
given identical input. We see substantial differ-
ences between tasks in terms of representation
changes: while SST fine-tuning produces signif-
icant changes across representations and layers,
PAWS fine-tuning leaves representations largely
unchanged (further supporting the notion that this
task can be solved fairly trivially). We also see that
after SST tuning, BERT’s CLS token shows robust
similarity to pre-trained representations until the
fifth layer, followed by a rapid drop in similarity.
This suggests that the fourth-layer correlation peak
may be enabled in part by retention of key informa-
tion from pre-training, combined with heightened
phrase sensitivity from fine-tuning. We leave in-
depth exploration of this dynamic for future work.

8 Discussion

The results of our experiments indicate that de-
spite the promise of PAWS-QQP and SST tasks
for improving models’ phrasal composition, fine-
tuning on these tasks falls far short of resolving
the composition weaknesses observed by Yu and
Ettinger (2020). The majority of correspondence
with human judgments can still be attributed to
word overlap effects—disappearing once overlap
is controlled—and improvements on the controlled
settings are absent, very small, or highly localized
to particular models, layers and representations.
This outcome aligns with the increasing body of
evidence that NLP datasets often do not require of
models the level of linguistic sophistication that we
might hope for—and in particular, our identifica-
tion of a strong spurious cue in the PAWS-QQP
dataset adds to the growing number of findings em-
phasizing that NLP datasets often have artifacts that

with the performance patterns we observe here. Phrase count
of each subset: length 2 - 11,499; length 3 - 11,779; length 4 -
15,050; length 5 - 11,816; length 6 - 9,935.

can inflate performance (Poliak et al., 2018; Guru-
rangan et al., 2018; Kaushik and Lipton, 2018).

We do see a ray of promise in the small, lo-
calized benefits for certain models from tuning on
SST. These improvements do not extend to all mod-
els, and are fairly small in the models that do see
benefits—but as we discuss above, it appears that
training on fine-grained syntactic phrase distinc-
tions may indeed confer some enhancement of com-
positional meaning in phrase representations—at
least when model conditions are amenable. Since
sentiment information constitutes only a very lim-
ited aspect of phrase meaning, we anticipate that
training on fine-grained phrase labels that reflect
richer and more diverse meaning information could
be a promising direction for promoting composi-
tion more robustly in these models.

9 Conclusions and future directions

We have tested effects of fine-tuning on phrase
meaning composition in transformer representa-
tions. Although we select tasks with promise to
address composition weaknesses and reliance on
word overlap, we find that representations in the
fine-tuned models show little improvement on con-
trolled composition tests, or show only very local-
ized improvements. Follow-up analyses suggest
that the PAWS-QQP dataset contains spurious cues
that undermine learning of sophisticated meaning
properties when training on that task. However,
results from SST tuning suggest that training on
labeled phrases of various sizes could prove effec-
tive for learning composition. Future work should
investigate how model properties interact with fine-
tuning to produce improvements in particular mod-
els and layers—and should move toward phrase-
level training with meaning-rich annotations, which
we predict will be a promising direction for improv-
ing models’ phrase meaning composition.
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Figure 7: Paraphrase classification accuracy on uncontrolled PPDB dataset, with phrase-only input. Columns
correspond to models, and rows correspond to representation types (“HT” = Head-Token, “AP” = Avg-Phrase and
“AA” = Avg-All). For each model and representation type, the corresponding subplot shows accuracies for pre-
trained, PAWS-tuned and SST-tuned settings, respectively. For each subplot, X-axis corresponds to layer index,
and Y-axis corresponds to accuracy value. Layer 0 corresponds to input embeddings passed to the model.
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Figure 8: Similarity correlation on full BiRD dataset with phrases embedded in context sentence (context-available
input).
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Figure 9: Similarity correlation on controlled BiRD dataset (AB-BA setting) with phrases embedded in context
sentence (context-available input).


