
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 13–27
August 1–6, 2021. ©2021 Association for Computational Linguistics

13

LV-BERT: Exploiting Layer Variety for BERT
Weihao Yu

National University
of Singapore

weihaoyu6@gmail.com

Zihang Jiang
National University

of Singapore
jzihang@u.nus.edu

Fei Chen
Huawei Noah’s

Ark Lab
chen.f@huawei.com

Qibin Hou
National University

of Singapore
andrewhoux@gmail.com

Jiashi Feng
National University

of Singapore
elefjia@nus.edu.sg

Abstract
Modern pre-trained language models are
mostly built upon backbones stacking self-
attention and feed-forward layers in an in-
terleaved order. In this paper, beyond this
stereotyped layer pattern, we aim to improve
pre-trained models by exploiting layer vari-
ety from two aspects: the layer type set and
the layer order. Specifically, besides the origi-
nal self-attention and feed-forward layers, we
introduce convolution into the layer type set,
which is experimentally found beneficial to
pre-trained models. Furthermore, beyond the
original interleaved order, we explore more
layer orders to discover more powerful archi-
tectures. However, the introduced layer variety
leads to a large architecture space of more than
billions of candidates, while training a single
candidate model from scratch already requires
huge computation cost, making it not afford-
able to search such a space by directly training
large amounts of candidate models. To solve
this problem, we first pre-train a supernet from
which the weights of all candidate models can
be inherited, and then adopt an evolutionary
algorithm guided by pre-training accuracy to
find the optimal architecture. Extensive exper-
iments show that LV-BERT model obtained by
our method outperforms BERT and its variants
on various downstream tasks. For example,
LV-BERT-small achieves 78.8 on the GLUE
testing set, 1.8 higher than the strong baseline
ELECTRA-small. 1

1 Introduction

In recent years, pre-trained language models, such
as the representative BERT (Devlin et al., 2019)
and GPT-3 (Brown et al., 2020), have gained great
success in natural language processing tasks (Pe-
ters et al., 2018a; Radford et al., 2018; Yang et al.,
2019; Clark et al., 2020). The backbone architec-
tures of these models mostly adopt a stereotyped

1https://github.com/yuweihao/LV-BERT

Layer Variety

Layer Types

Layer Orders

Self-Attention
Feed-Forward
Convolution

Interleaved
Sandwich
Random
Searched

①
②
③
④
⑤
⑥
⑦

(a)

{①②} × ④ → BERT/ELECTRA {②③} × ④ → DynamicConv

{①②} × ⑤ → Sandwich {①②③} × ⑦ → LV-BERT

(b)

60 65 70 75 80 85
GLUE average acuracy on dev set

LV-BERT

Sandwich

DynamicConv

ELECTRA

BERT

81.8

78.6

64.4

80.4

75.1

(c)

Figure 1: (a) Illustration of layer variety. This concept
consists of two aspects: layer type and layer order. (b)
Different models represented by layer variety. (c) Per-
formance of different models with hidden size of 256
on GLUE (Wang et al., 2018) development set. Except
BERT pre-trained with the Masked Language Model-
ing objective (Devlin et al., 2019), the other models
are pre-trained with Replaced Token Detection objec-
tive (Clark et al., 2020) to save computation cost.

layer pattern, in which the self-attention and feed-
forward layers are arrayed in an interleaved order
(Vaswani et al., 2017). However, there is no evi-
dence supporting that this layer pattern is optimal
(Press et al., 2020). We then consider a straightfor-
ward and interesting question: Could we change
the layer pattern to improve pre-trained models?
We attempt to answer this question by exploiting
more layer variety from two aspects, as shown in
Figure 1(a): the layer type set and the layer order.

https://github.com/yuweihao/LV-BERT

14

We first consider the layer types. In previous
pre-trained language models, the most widely-used
layer set contains the self-attention layer for captur-
ing global information and the feed-forward layer
for non-linear transformation. However, some re-
cent works have unveiled that some self-attention
heads in pre-trained models tend to learn local de-
pendencies due to the inherent property of natural
language (Kovaleva et al., 2019; Brunner et al.,
2020; Jiang et al., 2020), incurring computation
redundancy for capturing local information. In
contrast, convolution is a local operator (LeCun
et al., 1998; Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015; He et al., 2016) and has shown
effectiveness on extracting local information for
language models (Zeng et al., 2014; Kim, 2014;
Kalchbrenner et al., 2014; Wu et al., 2018, 2019b;
Jiang et al., 2020). Thus, we propose to augment
the layer set by including convolution for local in-
formation extraction.

For layer orders, most of the existing pre-trained
models adopt an interleaved order to arrange the
different types of layers. Differently, Press et al.
(2020) presented the sandwich order, i.e., stacking
consecutive self-attention and feed-forward layers
at the bottom and top, respectively, while keep-
ing the interleaved order in the middle. It has
been shown that the sandwich order can bring im-
provement on language modeling task, indicating
the layer order contributes to model performance.
However, Press et al. (2020) did not show the gen-
eralization capability of this order to other tasks.
There is still a large room for exploring more ef-
fective orders for pre-trained models. We show
the different layer variety designs of existing mod-
els in Figure 1(b), including BERT (Devlin et al.,
2019)/ELECTRA (Clark et al., 2020), Dynamic-
Conv (Wu et al., 2018) and Sandwich (Press et al.,
2020). Their performance is summarized in Figure
1(c). It can be seen that layer variety significantly
influences model performance. We thus claim it is
necessary to investigate layer variety for promot-
ing pre-trained models. However, to perform such
investigation for a common model backbone, e.g.,
with 24 layers, we need to evaluate performance
of every candidate within an architecture space of
324 ≈ 2.8 × 1011 candidates. Pre-training a sin-
gle language model already needs to consume a
large amount of computation, e.g., 2400 P100 GPU
days for pre-training BERT (Lin et al., 2020). It is
barely affordable to pre-train such a large amount

of model candidates from scratch. To reduce the
computation cost, inspired by recent works on Neu-
ral Architecture Search (NAS) (Guo et al., 2020;
Cai et al., 2019), we construct a supernet according
to the layer variety discussed above and pre-train
it with Masked Language Modeling (MLM) (De-
vlin et al., 2019) objective. After obtaining the
pre-trained supernet, we develop an evolutionary
algorithm guided by MLM evaluation accuracy to
search an effective architecture with specific layer
variety. We call the resulted model LV-BERT. Ex-
tensive experiments show that LV-BERT outper-
forms BERT and its variants. The contributions of
our paper are two-fold. Firstly, to the best of our
knowledge, this work is the first to exploit layer
variety w.r.t. both layer types and orders for pre-
trained language models. We found convolutions
and layer orders both benefit pre-trained model
performance. We hope our observations would fa-
cilitate the development of pre-trained lauguage
models. Secondly, our obtained LV-BERT shows
superiority over BERT and its variants. For ex-
ample, LV-BERT-small achieves 79.8 on GLUE
testing set, 1.8 higher than the baseline ELECTRA-
small (Clark et al., 2020).

2 Related Work

Pre-trained Language Models Pre-trained lan-
guage models have achieved great success and pro-
moted the development of NLP techniques. Instead
of separate word representation (Mikolov et al.,
2013a,b), McCann et al. (2017) and Peters et al.
(2018b) propose CoVe and ELMo respectively
which both utilize LSTM (Hochreiter and Schmid-
huber, 1997) to generate contextualized word rep-
resentations. Later, Radford et al. (2018) introduce
GPT that changes the backbone to transformers
where self-attention and feed-forward layers are ar-
rayed interleavedly. They also propose generative
pre-training objectives. BERT (Devlin et al., 2019)
continues to use the same layer set and order for
backbone but employs different pre-training objec-
tives, i.e., Masked Language Modeling and Next
Sentence Prediction. Then more works introduce
new effective pre-training objectives, like General-
ized Autoregressive Pretraining (Yang et al., 2019),
Span Boundary Objective (Joshi et al., 2020) and
Replaced Token Detection (Clark et al., 2020). Be-
sides designing pre-training objectives, some other
works try to extend BERT by incorporating knowl-
edge (Zhang et al., 2019; Peters et al., 2019; Liu

15

et al., 2020; Xiong et al., 2020) or with multiple
languages (Huang et al., 2019; Conneau and Lam-
ple, 2019; Chi et al., 2019). These works utilize
the stereotyped layer pattern, which is unneces-
sarily optimal (Press et al., 2020), inspiring us to
further investigate more layer variety to improve
pre-trained models. To the best of our knowledge,
we are the first to exploit layer variety from both
the layer type set and the layer order for pre-trained
language models.

Neural Architecture Search Manually design-
ing neural architecture is a time-consuming and
error-prone process (Elsken et al., 2019). To solve
this, many neural architecture search algorithms
are proposed. Pioneering works utilize reinforce-
ment learning (Zoph and Le, 2017; Baker et al.,
2017) or evolutionary algorithm (Real et al., 2017)
to sample architecture candidates and train them
from scratch, which demand huge computation that
ordinary researchers can not afford. To reduce com-
putation cost, recent methods (Pham et al., 2018;
Liu et al., 2018; Xie et al., 2018; Brock et al., 2018;
Cai et al., 2018; Bender et al., 2018; Wu et al.,
2019a; Guo et al., 2020) adopt a weight sharing
strategy that a supernet subsuming all architectures
is trained only once and all architecture candidates
can inherit their weights from the supernet. De-
spite the boom of NAS research, most works focus
on computer vision tasks (Chen et al., 2019; Ghi-
asi et al., 2019; Liu et al., 2019a), while NAS on
NLP is not fully investigated. Recently, So et al.
(2019) and Wang et al. (2020) search architectures
of transformers for translation tasks. Chen et al.
(2020) leverage differentiable neural architecture to
automatically compress BERT with task-oriented
knowledge distillation for specific tasks. Zhu et al.
(2020) utilize architecture search to improve mod-
els based on pre-trained BERT for the relation clas-
sification task. However, these methods only focus
on specific tasks or the fine-tuning phase. Besides,
Khetan and Karnin (2020) employ pre-training loss
to help prune BERT, but their method can not find
new architectures. Different from them, our work
is the first to use NAS to help explore new architec-
tures in a pre-training scenario for general language
understanding.

3 Method

An overview of our approach is shown in Figure
2. We first define the layer variety to introduce a
large architecture search space, and then pre-train

a supernet subsuming all candidate architectures,
followed by an evolutionary algorithm guided by
pre-training MLM (Devlin et al., 2019) accuracy to
search an effective model. In what follows, we will
give detailed descriptions.

3.1 Layer Variety
As shown in Figure 1(a), the proposed layer variety
contains two aspects: layer type and layer order,
both of which are important for the performance of
pre-trained models but not exploited before.

Layer Type The layer type set of current BERT-
like models consists of self-attention for infor-
mation communication and feed-forward for non-
linear transformation. However, as a global opera-
tor, self-attention needs to take as input all tokens
to compute attention weights for each token, which
is inefficient in capturing local information (Wu
et al., 2019b; Jiang et al., 2020). We notice that
convolution (LeCun et al., 1998; Krizhevsky et al.,
2012), as a local operator, has been successfully
applied in language models (Zeng et al., 2014; Kim,
2014; Kalchbrenner et al., 2014; Wu et al., 2018,
2019b; Jiang et al., 2020). A typical example is the
dynamic convolution (Wu et al., 2018) for machine
translation, language modeling and summarization.
Therefore, we augment the layer type set by intro-
ducing dynamic convolution as a new layer type.
The layer set considered in this work thus contains
three types of layers,

Ltype = {LSA, LFF, LDC}, (1)

where the set elements denote self-attention, feed-
forward and dynamic convolution layers respec-
tively. See Appendix for more detailed formulation
description on them.

Layer Order The other variety aspect is layer
order. The most widely-used order for pre-trained
models is the interleaved order (Vaswani et al.,
2017; Devlin et al., 2019). For a model with 24
layers, the interleaved order can be expressed by
the following list,

[LSA
1 , LFF

2 , LSA
3 , LFF

4 , ..., LSA
23 , L

FF
24]. (2)

Similarly, the sandwich order (Press et al., 2020)
can be expressed as

[LSA
1 , LSA

2 , ..., LSA
5 ,

LSA
6 , LFF

7 , LSA
8 , LFF

9 , ..., LSA
18 , L

FF
19 ,

LFF
20 , LFF

21 , ..., LFF
24].

(3)

16

① Supernet

Evolutionary
Algorithm

Pre-training
Accuracy

Evaluation

④ Inherit
Weights

③

⑥

LV-BERT-small

② Pre-training

Step 1
...

Step Nmax

Word Embedding

Layer Normalization

Layer Type

Inactive Layer Type

⑧ Scale up
LV-BERT-medium/base

⑤

⑦

Figure 2: Overview on how to search LV-BERT. ¬ Construct a supernet with small hidden size by including all
types of layers at each layer. ­ Pre-train the supernet with Masked Language Modeling (MLM) objective (Devlin
et al., 2019) by only uniformly sampling one type of layer into training at each layer. ® Apply evolutionary
algorithm to produce candidate models. ¯ The candidate models inherit their weights from the supernet. ° The
candidate models with inherited weights are directly evaluated with pre-training MLM accuracy on validation set.
± The accuracy is used to guide the evolutionary algorithm for generating new candidate models. ² After T
iterations, the candidate with best pre-training accuracy is output as LV-BERT-small. ³ LV-BERT-small can be
scaled up to LV-BERT-medium/base with larger hidden size.

Beyond the above manually designed orders, we
take advantage of neural architecture search to iden-
tify more effective layer orders for pre-trained mod-
els. The order to be discovered can be expressed as

[L1, L2, ..., Li, ..., LN], (4)

where Li ∈ Ltype and N is the number of layers.
Here, N is set to 24, following common practice.

3.2 Supernet

The layer variety introduced above leads to a huge
architecture space of 324 ≈ 2.8 × 1011 candidate
models to be explored. Thus, it is not affordable
to pre-train every candidate model in the space
from scratch to evaluate their performance since
the pre-training procedure requires huge computa-
tions. To reduce the search computations, recent
NAS works (Pham et al., 2018; Guo et al., 2020;
Cai et al., 2019) exploit a weight sharing strategy.
It first trains a supernet subsuming all candidate
architectures, and then each candidate architecture
can inherit its weights from the trained supernet
to avoid training from scratch. Inspired by this
strategy, we construct a supernet where each layer
contains all types of layers, i.e., self-attention, feed-
forward, and dynamic convolution. The supernet

architecture can be expressed as

A = [{LSA
1 , LFF

1 , LDC
1 }, {LSA

2 , LFF
2 , LDC

2 }, ...,
{LSA

N , LFF
N , LDC

N }].
(5)

Masked Language Modeling (MLM) (Devlin et al.,
2019) is utilized as the pre-training objective to pre-
train the supernet since MLM accuracy can reflect
the model performance on downstream tasks (Lan
et al., 2020). Most weight sharing approaches on
NAS (Wu et al., 2019a; Liu et al., 2018) train and
optimize the full supernet: the output of each layer
is the weighted sum of all types of candidate layers.
However, it cannot guarantee the sampled single
type of layer also works (Guo et al., 2020).

To handle this issue, we propose to randomly
sample a submodel from the supernet to participate
in forward and backward propagation per training
step (Cai et al., 2018; Guo et al., 2020). The sam-
pled submodel architecture can be expressed as

a = [L1, L2, ..., Li, ..., LN], (6)

where Li ∈ Ltype ∼ U with uniform probability
distribution Pr = 1/3. In this pre-training method,
the optimized supernet weights can be expressed

17

Algorithm 1: Evolutionary Search Guided
by Pre-training MLM Accuracy
Input: WA: supernet weights; P :
population size; Dval: pre-training
validation set; T : # iteration; N cro: #
crossover; Nmut: # mutation; p: mutation
probability; k: # top candidates for
crossover and mutation

Output: a∗: the architecture with the best
pre-trianing MLM validation accuracy

S0 := Init(P); // Randomly generate P
architecture candidates

Stopk := ∅; // The set of top k candidates
for i = 1 : T do

SMLM
i−1 := ∅;

for a in Si−1 do
MLMa

val :=
Inference(N (a,WA(a)), Dval);

SMLM
i−1 := SMLM

i−1 ∪MLMa
val;

Stopk := Update(Stopk,Si−1, S
MLM
i−1);

Scro := Crossover(Stopk, N cro);
Smut := Mutation(Stopk, Nmut, p);
Si := Scro ∪ Smut;

return a∗ = argmaxa∈Stopk MLMa
val;

as

WA = argmin
W

Ea∼U(A)[Lpre−train(N (a,W (a)))],

(7)
where W (a) denotes the submodel weights inher-
ited from the supernet, N means the submodel
with specific architecture and weights, Lpre−train
denotes the pre-training MLM loss and a ∼ U(A)
means a is uniformly sampled from A.

3.3 Evolutionary Search

Inspired by the recent NAS works (Elsken et al.,
2019; Ren et al., 2020; Guo et al., 2020; Wang
et al., 2020), we adopt an evolutionary algorithm
(EA) to search the model. Previously Real et al.
(2017) utilized an evolutionary method in NAS but
they trained each candidate model from scratch
which is costly and inefficient. Instead, thanks to
the supernet mentioned above, we do not need to
train the candidate models from scratch since their
weights can be inherited from the supernet. Next
problem is how to select indicator of the candidate
models to guide the EA. Note that our goal is to
search a general pre-trained model to benefit a va-
riety of downstream tasks instead of a specific task.

Traditional NAS methods (Chen et al., 2020; Zhu
et al., 2020) use downstream task performance as
the objective to search for task-specific models. In-
stead, similar to the work by Khetan and Karnin
(2020) that utilize pre-training loss to prune BERT,
our method uses pre-training MLM accuracy to
search for a unified architecture that can generalize
well to different downstream tasks. Besides, us-
ing this accuracy, candidate models can be directly
evaluated on pre-training validation set without any
fine-tuning on specific tasks, which can help save
computations.

The detailed algorithm description is shown
in Algorithm 1. Crossover(Stopk, N cro) means
the procedure to generate N cro new candidate ar-
chitectures that two candidate architectures ran-
domly selected from top k candidate set Stopk

are crossed to produce a new one. Similarly,
Mutation(Stopk, Nmut, p) denotes the procedure
to generate Nmut new candidates that a random
candidate from Stopk mutates its every layer choice
with probability p to generate a new one. Finally,
the candidate architecture with highest pre-training
validation accuracy in Stopk is returned as LV-
BERT. The algorithm is set with population size P
of 50, search iteration number T of 20, crossover
number N cro of 25, mutation number Mmut of 25,
mutation probability p of 0.1, top candidate number
k of 10 for crossover and mutation.

4 Experiments

4.1 Datasets

Pre-training Datasets Devlin et al. (2019) pro-
pose WikiBooks corpus for training BERT includ-
ing English Wikipedia and BooksCorpus (Zhu
et al., 2015). However, BooksCorpus is no longer
publicly available. To ease reproduction, we train
models on OpenWebText (Gokaslan and Cohen,
2019) that is open-sourced and of similar size with
the corpus used by BERT. When pre-training the
supernet, we leave 2% data as our validation set for
evolutionary search.

Fine-tuning Datasets To compare our model
with other pre-trained models, we fine-tune LV-
BERT on GLUE (Wang et al., 2018), including
various tasks for general language understanding,
and SQuAD 1.1/2.0 (Rajpurkar et al., 2016, 2018)
for question answering. See Appendix for more
details of all tasks.

18

Model Layer Variety Params GLUE
DC SA FF Order Word Emb Backbone

BERT-small (Devlin et al., 2019) X X Interleaved

3.9M

9.5M 75.1
ELECTRA-small (Clark et al., 2020) X X Interleaved 9.5M 80.4
DynamicConv-small* (Wu et al., 2018) X X Interleaved 9.6M 64.4
Sandwich-small* (Press et al., 2020) X X Sandwich 9.5M 78.6

LV-BERT-small variants

X X Random

3.9M

9.5M 80.8
X X Randomly searched 9.8M 81.1
X X EA searched 10.3M 81.2

X X Random 9.6M 64.9
X X Randomly searched 9.6M 65.4
X X EA searched 9.6M 65.7
X X Random 6.4M 79.7
X X Randomly searched 6.4M 79.9
X X EA searched 6.4M 79.8
X X X Random 7.7M 80.6
X X X Randomly searched 8.8M 80.9

LV-BERT-small X X X EA searched 3.9M 8.5M 81.8

Table 1: Performance of the models with different layer types and orders on the GLUE development set. DC,
SA and FF denote dynamic convolution, self-attention and feed-forward layers respectively. For each design of
layer type set, “Random” means the best order among five randomly generated ones that are estimated by training
model from scratch. “Randomly searched” or “EA searched” are both based on the supernet. “Randomly searched”
denotes the orders searched at random while “EA searched” denotes ones searched by evolutionary algorithm. *
denotes the methods implemented by us for language pre-training. All models are pre-trained on OpenWebText by
1M steps with sequence length 128 using ELECTRA (Clark et al., 2020) pre-training objective except BERT-small
using MLM objective.

Model Size Params CoLA MPRC MNLI SST RTE QNLI QQP STS Avg.
Word Emb Backbone

ELECTRA (Clark et al., 2020) Small 3.9M 9.5M 56.8 87.4 78.9 88.3 68.5 87.9 88.3 86.8 80.4
Medium* 3.9M 21.3M 61.2 89.5 82.1 89.1 65.7 88.9 90.5 89.3 82.0
Base* 23.4M 85.0M 64.8 88.5 85.7 92.6 76.5 91.7 91.1 89.9 85.1

DynamicConv† (Wu et al., 2018) Small 3.9M 9.6M 60.2 69.2 56.6 85.6 49.5 68.0 82.1 44.1 64.4
Medium 3.9M 21.4M 61.5 67.9 55.7 85.9 49.1 68.3 83.3 51.6 65.4
Base 23.4M 85.2M 62.1 70.6 61.0 88.5 51.3 72.0 85.6 64.7 69.5

Sandwich† (Press et al., 2020) Small 3.9M 9.5M 53.2 87.1 77.5 88.1 63.9 86.4 88.3 84.6 78.6
Medium 3.9M 21.3M 55.6 86.2 81.5 90.3 63.0 88.9 89.6 86.6 80.2
Base 23.4M 85.0M 58.8 89.7 83.8 91.9 72.6 90.2 90.1 88.5 83.2

LV-BERT Small 3.9M 8.5M 62.3 86.9 81.1 89.9 69.0 88.9 89.3 87.4 81.8
Medium 3.9M 19.0M 64.4 88.0 82.4 90.5 68.6 89.4 90.1 89.7 82.9
Base 23.4M 75.7M 66.8 90.3 86.3 93.2 76.9 92.3 90.9 90.8 85.9

Table 2: Performance of different models in different sizes on GLUE development set. * denotes results obtained
by running official code. † denotes the methods implemented by us for language pre-training. All models are pre-
trained on OpenWebText by 1M steps with sequence length 128 using ELECTRA (Clark et al., 2020) pre-training
objective.

4.2 Implementation Details

Model Size Similar to Devlin et al. (2019), Clark
et al. (2020) and Jiang et al. (2020), we define dif-
ferent model sizes, i.e., “small”, “medium” and
“base”, with the same layer number of 24 but dif-
ferent hidden sizes of 256, 384, and 768, respec-
tively. The detailed hyperparameters are shown in
Appendix.

Pre-training Supernet To reduce training cost,
we construct the supernet only in small size. Since
the layer number of models in medium and base
sizes are the same as that of the small-sized one,

the obtained architecture of LV-BERT-small can
be easily scaled up to the ones of medium and
base sizes. We use Adam (Kingma and Ba, 2015)
to pre-train the supernet with MLM loss (Devlin
et al., 2019) , learning rate of 2e-4, batch size of
128, max sequence length of 128 and pre-training
step number of 2 million. See Appendix for more
details.

Evaluation Setup To compare with other pre-
trained models, we pre-train the searched LV-BERT
architecture for 1M steps from scratch on the Open-
WebText (Gokaslan and Cohen, 2019) using Re-

19

placed Token Detection (Clark et al., 2020) since
it can save computation cost. We fine-tune LV-
BERT on GLUE (Wang et al., 2018) and SQuAD
(Rajpurkar et al., 2016, 2018) downstream tasks
with most hyperparameters the same as those of
ELECTRA (Clark et al., 2020) for fair compari-
son. For GLUE tasks, the evaluation metrics are
Matthews correlation for CoLA, Spearman correla-
tion for STS, and accuracy for other tasks, which
are averaged to get GLUE score. We utilize eval-
uation metrics of Exact-Match (EM) and F1 for
SQuAD 1.1/2.0. Some of the fine-tuning datasets
are small, and consequently, the results may vary
substantially for different random seeds. Similar
to ELECTRA (Clark et al., 2020), we report the
median of 10 fine-tuning runs from the same pre-
trained model for each result. See Appendix for
more evaluation details.

4.3 Ablation Study

Layer Variety Various models are constructed
with different layer variety designs, and their re-
sults on GLUE development set are shown in Table
1. For the layer types, if only two layer types are
provided, selecting self-attention and feed-forward
yields the best result, which can always achieve
performance higher than 80 under different search
methods. With only dynamic convolution and feed-
forward, the performance drops dramatically to
around 65. Surprisingly, without feed-forward, the
layer set of dynamic convolution and self-attention
can still achieve relatively good score, near 80.
When using all the three layer types, we can ob-
tain the best 81.8 score, 1.4 higher than the strong
baseline ELECTRA (80.4) and 0.6 higher than the
model searched with only self-attention and feed-
forward (81.2). This indicates that it is effective
to augment the layer type set by including convo-
lution to extract local information for pre-trained
models.

For layer orders, with the same layer types, the
models with either EA or randomly searched or-
ders perform better than those with randomly sam-
pled orders, reflecting the importance of investi-
gating layer orders. For example, with the same
layer types of self-attention and feed-forward, the
EA searched model obtains 81.2 score, improving
BERT/ELECTRA by 6.1/0.8 as well as Sandwich
by 2.6.

Search Method Table 1 shows the results with
different search methods. “Random” means for

0 5 10 15 20
Search Iteration

56.8

57.0

57.2

57.4

57.6

M
LM

 V
al

id
at

io
n

Ac
cu

ra
cy

 (%
)

Random Search
Evolutionary Search

Figure 3: The pre-training MLM validation accuracy
comparison between random search and evolutionary
search with the layer set of all three types of layers.
Blue and yellow dots denote the accuracy of top 10 can-
didates for each method respectively, while the plots
mean their averages.

each design of layer type set, the order is the
best one among 5 randomly generated orders that
are estimated by training models from scratch.
“Randomly searched” and “EA searched” are both
supernet-based methods, in which the weights of
candidate models are inherited from the supernet.
“Randomly searched” produces candidate models at
random for estimation while “EA searched” gener-
ates candidate models with evolutionary algorithm
guided by the pre-training MLM accuracy. With
the same layer types, EA searched orders are gener-
ally better than randomly searched ones while the
randomly searched ones are generally better than
random ones. Figure 3 plots the pre-trianing MLM
evaluation accuracy over search iterations with both
random and evolutionary search methods. It shows
that the accuracy of evolutionary search is obvi-
ously higher than that of random search, demon-
strating the effectiveness of evolutionary search.

4.4 LV-BERT Architecture
As shown in Table 1, LV-BERT achieves the best
performance. Its architecture is

[LDC
1 , LDC

2 , LSA
3 , LFF

4 , LFF
5 , LSA

6 ,

LDC
7 , LFF

8 , LFF
9 , LSA

10 , L
DC
11 , LDC

12 ,

LSA
13 , L

FF
14 , L

DC
15 , LFF

16 , L
SA
17 , L

DC
18 ,

LFF
19 , L

DC
20 , LSA

21 , L
SA
22 , L

FF
23 , L

SA
24].

(8)

Pre-trained with MLM from scratch by 1M steps
(sequence length 128) on OpenWebText, LV-BERT-
small can achieve 61.2% MLM accuracy while
BERT-small is 60.4%. More specific architectures
of the models in Table 1 are listed in Appendix.

20

Model Train FLOPs Params CoLA MPRC MNLI SST RTE QNLI QQP STS Avg.
TinyBERT* (Jiao et al., 2020) 6.4e19+ (54x+) 15M 51.1 82.6 84.6 93.1 70.0 90.4 89.1 83.7 80.6
MobileBERT* (Sun et al., 2020) 6.4e19+ (54x+) 25M 51.1 84.5 84.3 92.6 70.4 91.6 88.3 84.8 81.0
ELECTRA-small (Clark et al., 2020) 1.4e18 (1.2x) 14M 54.6 83.7 79.7 89.1 60.8 87.7 88.0 80.2 78.0
GPT (Radford et al., 2018) 4.0e19 (33x) 117M 45.4 75.7 82.1 91.3 56.0 88.1 88.5 80.0 75.9
BERT-base (Devlin et al., 2019) 6.4e19 (54x) 110M 52.1 84.8 84.6 93.5 66.4 90.5 89.2 85.8 80.9
ELECTRA-base (Clark et al., 2020) 6.4e19 (54x) 110M 59.7 86.7 85.8 93.4 73.1 92.7 89.1 87.7 83.5
LV-BERT-small 1.2e18 (1x)† 13M 57.2 84.1 81.0 90.4 64.6 88.9 88.2 83.8 79.8
LV-BERT-medium 3.1e18 (2.6x)† 23M 60.1 85.0 82.0 91.4 67.6 89.7 88.9 85.9 81.3
LV-BERT-base 1.8e19 (15x)† 100M 64.0 87.9 86.4 94.7 77.0 92.6 89.5 88.8 85.1

Table 3: Performance of models with similar size on GLUE testing set. * denotes knowledge distillation methods
that rely on large pre-trained teacher models and are orthogonal to other methods. † We set the sequence length as
128 for pre-training to save computation although it hurts the performance.

Model Train FLOPs Params SQuAD 1.1 SQuAD 2.0
EM F1 EM F1

DistillBERT* (Sanh et al., 2019) 6.4e19+ (54x+) 52M 71.8 81.2 60.6 64.1
TinyBERT* (Jiao et al., 2020) 6.4e19+ (54x+) 15M 72.7 82.1 65.3 68.8
MobileBERT* (Sun et al., 2020) 6.4e19+ (54x+) 25M 83.4 90.3 77.6 80.2
ELECTRA-small† (Clark et al., 2020) 1.4e18 (1.2x) 14M 74.3 81.8 66.8 69.4
BERT-base (Devlin et al., 2019) 6.4e19 (54x) 110M 80.7 88.4 74.2 77.1
ELECTRA-base (Clark et al., 2020) 6.4e19 (54x) 110M 84.5 90.8 80.5 83.3
LV-BERT-small 1.2e18 (1x)‡ 13M 77.1 84.1 71.0 73.7
LV-BERT-medium 3.1e18 (2.6x)‡ 23M 79.6 86.4 74.9 77.5
LV-BERT-base 1.8e19 (15x)‡ 100M 84.8 90.8 80.9 83.7

Table 4: Performance of models with similar model size on SQuAD 1.1/2.0 development set. * denotes knowledge
distillation methods that rely on large pre-trained teacher models and are orthogonal to other methods. † denotes
results obtained by running official code. ‡ We set the sequence length as 128 for pre-training to save computation
although it hurts the performance.

When running the evolutionary method with dif-
ferent seeds, we see that the resulting models pre-
fer stacking dynamic convolutions at the bottom
two layers for extracting local information and
self-attention at the top layer to fuse the global
information. According to these observation, for
ELECTRA-small, if we replace the bottom two lay-
ers with dynamic convolutions or the top layer with
self-attention, the performance can be improved by
0.3 or 0.5 respectively on GLUE development set.
If we replace the bottom 8 layers with manually
designed ‘ccsfccsf’ (‘c’, ‘s’ and ‘f’ denote dynamic
convolution, self-attention and feed-forward layers,
respectively) and replace the top 8 layers with man-
ually designed ‘ssfsssfs’ together, we observe 0.7
performance improvement. These results show that
it is helpful to stack dynamic convolution at the
bottom and self-attention at the top.

4.5 Generalization to Larger Models

We only investigate layer variety and search mod-
els in a small-sized setting to save computation
cost. It is interesting to know whether the searched
models can be generalized to larger models with
large hidden size. The results are shown in Table

2. For larger model size “medium” and “base”,
LV-BERTs still outperform other baseline models,
demonstrating the good generalization in terms of
model size.

4.6 Comparison with State-of-the-arts

We compare LV-BERT with state-of-the-art pre-
trained models (Radford et al., 2018; Devlin et al.,
2019; Clark et al., 2020; Sanh et al., 2019; Jiao
et al., 2020; Sun et al., 2020) on GLUE testing
set and SQuAD 1.1/2.0 to show its advantages.
Although more pre-training data/steps and lager
model size can significantly help improve perfor-
mance (Yang et al., 2019; Liu et al., 2019b; Lan
et al., 2020), due to the computation resource limit,
we only pre-train our models in small/medium/base
sizes for 1M steps with OpenWebText (Gokaslan
and Cohen, 2019). We leave evaluating models
with more pre-training data/steps and larger model
size for future work. We also list some knowl-
edge distillation methods for comparison. How-
ever, note that these methods rely on a pre-trained
large teacher network and thus are orthogonal to
LV-BERT and other methods.

Table 3 presents the performance of LV-BERT

21

and other pre-trained models on GLUE testing
set. It shows that LV-BERT outperforms other
pre-trained models with similar model size. Re-
markably, LV-BERT-small/base achieve 79.8/85.1,
1.8/1.6 higher than strong baselines ELECTRA-
small/base. Even compared with knowledge distil-
lation based model MobileBERT (Sun et al., 2020),
LV-BERT-medium still outperforms it by 0.3.

Since there is nearly no single model submis-
sion on SQuAD leaderboard2, we only compare
LV-BERT with other pre-trained models on the
development sets. The results are shown in Ta-
ble 4. We find that LV-BERT-small outperforms
ELECTRA-small significantly, like F1 score 73.7
versus 69.4 on SQuAD 2.0. However, when we
generalize LV-BERT-small to base size, the gap
between LV-BERT and ELECTRA with base size
is narrower than that with small size. One reason
may be LV-BERT-small is searched by our method
while LV-BERT-base is only generalized from LV-
BERT-small with larger hidden size.

5 Conclusion

We are the first to exploit layer variety for im-
proving pre-trained language models, from two
aspects, i.e., layer types and layer orders. For layer
types, we augment the layer type set by including
convolution for local information extraction. For
layer orders, beyond the stereotyped interleaved
one, we explore more effective orders by using an
evolutionary based search algorithm. Experiment
results show our obtained model LV-BERT out-
performs BERT and its variants on various down-
stream tasks.

Acknowledgments

We would like to thank the anonymous reviewers
for their insightful comments and suggestions. This
research/project is supported by the National Re-
search Foundation, Singapore under its AI Singa-
pore Programme (AISG Award No: AISG-100E/-
2019-035). Jiashi Feng was partially supported by
MOE2017-T2-2-151, NUS ECRA FY17 P08 and
CRP20-2017-0006. The authors also thank Quan-
hong Fu and Jian Liang for the help to improve the
technical writing aspect of this paper. The computa-
tional work for this article was partially performed
on resources of the National Supercomputing Cen-
tre, Singapore (https://www.nscc.sg). Weihao Yu
would like to thank TPU Research Cloud (TRC)

2rajpurkar.github.io/SQuAD-explorer/

program and Google Cloud Research Credits Pro-
gram for the support of computational resources.

References
Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. 2017. Designing neural network architec-
tures using reinforcement learning. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph,
Vijay Vasudevan, and Quoc Le. 2018. Understand-
ing and simplifying one-shot architecture search.
In International Conference on Machine Learning,
pages 550–559.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing tex-
tual entailment challenge. In TAC.

Andrew Brock, Theodore Lim, James Millar Ritchie,
and Nicholas J Weston. 2018. Smash: One-shot
model architecture search through hypernetworks.
In 6th International Conference on Learning Repre-
sentations.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Gino Brunner, Yang Liu, Damian Pascual, Oliver
Richter, Massimiliano Ciaramita, and Roger Watten-
hofer. 2020. On identifiability in transformers. In
International Conference on Learning Representa-
tions.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. 2019. Once-for-all: Train one net-
work and specialize it for efficient deployment. In
International Conference on Learning Representa-
tions.

Han Cai, Ligeng Zhu, and Song Han. 2018. Proxy-
lessnas: Direct neural architecture search on target
task and hardware. In International Conference on
Learning Representations.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and

https://rajpurkar.github.io/SQuAD-explorer/
https://openreview.net/forum?id=S1c2cvqee
https://openreview.net/forum?id=S1c2cvqee
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=BJg1f6EFDB
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001

22

crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang,
Bofang Li, Bolin Ding, Hongbo Deng, Jun Huang,
Wei Lin, and Jingren Zhou. 2020. Adabert: Task-
adaptive BERT compression with differentiable neu-
ral architecture search. In Proceedings of the
Twenty-Ninth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2020, pages 2463–2469.
ijcai.org.

Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng
Meng, Chunhong Pan, and Jian Sun. 2019. Det-
nas: Neural architecture search on object detection.
arXiv preprint arXiv:1903.10979, 1(2):4–1.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2018. Quora question pairs.

Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-
Ling Mao, and Heyan Huang. 2019. Cross-lingual
natural language generation via pre-training. arXiv
preprint arXiv:1909.10481.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. In International Conference on Learning Rep-
resentations.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7057–7067.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In International conference on
machine learning, pages 933–941. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter,
et al. 2019. Neural architecture search: A survey.
J. Mach. Learn. Res., 20(55):1–21.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. 2019.
Nas-fpn: Learning scalable feature pyramid architec-
ture for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 7036–7045.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9. Association for Computa-
tional Linguistics.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus. http://Skylion007.github.io/
OpenWebTextCorpus.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. 2020. Sin-
gle path one-shot neural architecture search with uni-
form sampling. In European Conference on Com-
puter Vision, pages 544–560. Springer.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. 2017. Mo-
bilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint
arXiv:1704.04861.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2485–2494.

Zi-Hang Jiang, Weihao Yu, Daquan Zhou, Yunpeng
Chen, Jiashi Feng, and Shuicheng Yan. 2020. Con-
vbert: Improving bert with span-based dynamic con-
volution. Advances in Neural Information Process-
ing Systems, 33.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling BERT for natural lan-
guage understanding. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, EMNLP 2020, Online

https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372

23

Event, 16-20 November 2020, pages 4163–4174. As-
sociation for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
Spanbert: Improving pre-training by representing
and predicting spans. Trans. Assoc. Comput. Lin-
guistics, 8:64–77.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 655–
665, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Ashish Khetan and Zohar Karnin. 2020. schubert: Op-
timizing elements of bert. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2807–2818.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning.

Jiahuang Lin, Xin Li, and Gennady Pekhimenko.
2020. Multi-node bert-pretraining: Cost-efficient
approach. arXiv preprint arXiv:2008.00177.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff,
Hartwig Adam, Wei Hua, Alan L Yuille, and Li Fei-
Fei. 2019a. Auto-deeplab: Hierarchical neural ar-
chitecture search for semantic image segmentation.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 82–92.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2018. Darts: Differentiable architecture search. In
International Conference on Learning Representa-
tions.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert:
Enabling language representation with knowledge
graph. In AAAI, pages 2901–2908.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6294–6305.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018b. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Matthew E Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 43–54.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and
Jeff Dean. 2018. Efficient neural architecture search
via parameters sharing. In International Conference
on Machine Learning, pages 4095–4104.

https://transacl.org/ojs/index.php/tacl/article/view/1853
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

24

Ofir Press, Noah A. Smith, and Omer Levy. 2020. Im-
proving transformer models by reordering their sub-
layers. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 2996–
3005. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh
Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. 2017. Large-scale evolution
of image classifiers. In International Conference on
Machine Learning, pages 2902–2911.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao
Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang.
2020. A comprehensive survey of neural archi-
tecture search: Challenges and solutions. arXiv
preprint arXiv:2006.02903.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

David So, Quoc Le, and Chen Liang. 2019. The
evolved transformer. In International Conference on
Machine Learning, pages 5877–5886.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631–1642.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 2158–
2170. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information process-
ing systems, 30:5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020.
HAT: Hardware-aware transformers for efficient nat-
ural language processing. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7675–7688, Online. As-
sociation for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL-
HLT, pages 1112–1122, New Orleans, Louisiana.
Association for Computational Linguistics.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan
Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. 2019a. Fb-
net: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 10734–10742.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2018. Pay less attention with
lightweight and dynamic convolutions. In Interna-
tional Conference on Learning Representations.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song
Han. 2019b. Lite transformer with long-short range
attention. In International Conference on Learning
Representations.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
2018. Snas: stochastic neural architecture search.
In International Conference on Learning Represen-
tations.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In International Conference on Learning
Representations.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

https://www.aclweb.org/anthology/2020.acl-main.270/
https://www.aclweb.org/anthology/2020.acl-main.270/
https://www.aclweb.org/anthology/2020.acl-main.270/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/2020.acl-main.686
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH

25

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344, Dublin, Ireland. Dublin City Uni-
versity and Association for Computational Linguis-
tics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1441–
1451.

Wei Zhu, Xiaoling Wang, Xipeng Qiu, Yuan Ni, and
Guotong Xie. 2020. Autorc: Improving bert based
relation classification models via architecture search.
arXiv preprint arXiv:2009.10680.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

Barret Zoph and Quoc V. Le. 2017. Neural architec-
ture search with reinforcement learning. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

A Details about Layer Types

For a layer, assume its input is I ∈ Rs×c and out-
put is O ∈ Rs×c, where s is the sequence length
and c is the hidden size (channel dimension). For
simplicity, c takes the same value for the input and
output.

Self-Attention The self-Attention layer, also
known as multi-head self-attention (Vaswani et al.,
2017), transforms the input by three linear trans-
formations into the key K, query Q and value V
vectors respectively,

K = Reshape(IWK + bK)

Q = Reshape(IWQ + bQ)

V = Reshape(IWV + bV),

(9)

where K,Q, V ∈ Rh×s×d, WK,WQ,WV ∈
Rc×c, and bK, bQ, bV ∈ Rc. Notice that h× d = c
where h is the number of heads and d is the head
dimension.

The above K and Q are used to compute their
similarity matrix M which is then used to generate

new value V ′:

M = Softmax(KQ>/
√
d)

V ′ = Reshape(MV),
(10)

where M ∈ Rh×s×s and V ′ ∈ Rs×c. Finally, a
linear transformation is used to exchange informa-
tion between different heads, followed by shortcut
connection and layer normalization,

O = Norm(V ′WO + bO + I), (11)

where WO ∈ Rc×c and bO ∈ Rc.

Feed-Forward The feed-forward layer (Vaswani
et al., 2017) includes two linear transformations
with a non-linear activation, followed by a shortcut
connection and layer normalization,

N = GELU(IW1 + b1)

O = Norm(NW2 + b2 + I),
(12)

where W1 ∈ Rc×rc and W2 ∈ Rrc×c with a ratio r.
GELU(·) denotes the Gaussian Error Linear Unit
(Hendrycks and Gimpel, 2016).

Dynamic Convolution Dynamic convolution is
introduced by Wu et al. (2018) to replace self-
attention, which shows strong competitiveness in
the tasks of machine translation, language model-
ing and summarization. The dynamic convolution
first uses gated linear unit (GLU) (Dauphin et al.,
2017) to generate new representation,

V = GLU(I). (13)

Different from the vanilla dynamic convolution that
directly generates dynamic kernel from V ∈ Rs×c,
in this work, we supplement a separate convolu-
tion (Howard et al., 2017) with depthwise weights
WDep ∈ Rk×c (k is the convolution kernel size,
set as 9 in this paper) and pointwise weights
WPoi ∈ Rc×c to extract local information to help
the following kernel generation. Denoting the out-
put as S ∈ Rs×c, the separate convolution can be
formulated as

Si,: =

 k∑
j=1

WDep
j,: · Vi+j− k+1

2
,:

WPoi. (14)

Then the output of separate convolution is used to
generate dynamic kernels,

D = Softmax(Reshape(SWDyn)), (15)

https://www.aclweb.org/anthology/C14-1220
https://www.aclweb.org/anthology/C14-1220
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

26

where WDyn ∈ Rc×hk and D ∈ Rh×s×k. Then
lightweight convolution is applied to the reshaped
V ′ = Reshape(V) ∈ Rh×s×d. The output C ∈
Rh×s×d can be expressed as

Cp,i,: =

k∑
j=1

Dp,i,j · V ′p,i+j− k+1
2

,:
. (16)

Finally, C is reshaped to C ′ = Reshape(C) ∈
Rs×c and a linear transformer is applied to fuse the
information among multiple heads, followed by a
short connection and layer normalization,

O = Norm(C ′WOut + bOut + I), (17)

where WOut ∈ Rc×c and bOut ∈ Rc.

B Details about Datasets

B.1 GLUE Dataset
Introduced by Wang et al. (2018), General Lan-
guage Understanding Evaluation (GLUE) bench-
mark is a collection of nine tasks for natural lan-
guage understanding, where testing set labels are
hidden and predictions need to be submitted to the
evaluation server3. We provide details about the
GLUE tasks below.

CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2019) is a binary single-sentence
classification dataset for predicting whether an sen-
tence is grammatical or not. The samples are from
books and journal articles on linguistic theory.

MRPC The Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a dataset for the
task to predict whether two sentences are semanti-
cally equivalent or not. It is extracted from online
news sources with human annotations.

MNLI The Multi-Genre Natural Language Infer-
ence Corpus (Williams et al., 2018) is a dataset of
sentence pairs. Each pair has a premise sentence
and a hypothesis sentence, requiring models to pre-
dict its relationships containing ententailment, con-
tradiction or neutral. It is from ten distinct genres
of spoken and written English.

SST The Stanford Sentiment Treebank (Socher
et al., 2013) is a dataset for the task to predict
whether a sentence is positive or negative in sen-
timent. The dataset is from movie reviews with
human annotations.

3https://gluebenchmark.com

Hyperparameter Supernet Small Medium Base
Layer number 24 24 24 24
Word emb. size 128 128 128 768
Hidden size 256 256 384 768
FF inner hidden size 1024 1024 1536 3072
Generator size N/A 1/4 1/3 1/3
Head number 4 4 6 12
Head size 64 64 64 64
Learning rate 2e-4 5e-4 5e-4 2e-4
Learning rate decay Linear Linear Linear Linear
Warmup steps 10000 10000 10000 10000
Adam ε 1e-6 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999
Dropout 0.1 0.1 0.1 0.1
Batch size 128 128 128 256
Input sequence length 128 128 128 128

Table 5: Pre-training hyperparameters. Generator size
means the multiplier for hidden size, feed-forward in-
ner hidden size and head number to construct genera-
tor for Replaced Token Detection pre-trianing objective
(Clark et al., 2020).

Hyperparameter Value

Learning rate
3e-4 for small/medium size
1e-4 (except 2e-4 for SQuAD)
for base size

Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Layerwise LR decay 0.8 for every two layers
Learning rate decay Linear
Warmup fraction 0.1
Attention Dropout 0.1
Dropout 0.1
Weight eecay 0.01
Batch size 32

Train epochs
10 for RTE and STS,
2 for SQuAD,
and 3 for other tasks

Table 6: Fine-tuning hyperparameters.

RTE The Recognizing Textual Entailment (RTE)
dataset is for the task to determine whether the
relationship of a pair of premise and hypothesis
sentences is entailment. The dataset is from sev-
eral annual textual entailment challenges including
RTE1 (Dagan et al., 2005), RTE2 (Haim et al.,
2006), RTE3 (Giampiccolo et al., 2007), and RTE5
(Bentivogli et al., 2009).

QNLI Question Natural Language Inference is
a dataset converted from The Stanford Question
Answering Dataset (Rajpurkar et al., 2016). An ex-
ample is a pair of a context sentence and a question,
requiring to predict whether the context sentence
contains the answer to the given question.

QQP The Quora Question Pairs dataset (Chen
et al., 2018) is the dataset from Quora, requiring to

https://gluebenchmark.com

27

Model Layer Variety Architecture GLUE
DC SA FF Order

BERT-small X X Interleaved [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] 75.1
ELECTRA-small X X Interleaved [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2] 80.4
DynamicConv-small* X X Interleaved [0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2] 64.4
Sandwich-small* X X Sandwich [1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2] 78.6

LV-BERT-small variants

X X Random [1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1] 80.8
X X Randomly searched [1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1] 81.1
X X EA searched [1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2] 81.2

X X Random [2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0] 64.9
X X Randomly searched [2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2] 65.4
X X EA searched [0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2] 65.7
X X Random [0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1] 79.7
X X Randomly searched [0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0] 79.9
X X EA searched [0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1] 79.8
X X X Random [1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 2, 2, 2, 1, 0, 1, 0, 1, 0, 2, 2, 1] 80.6
X X X Randomly searched [1, 1, 0, 2, 0, 1, 2, 0, 2, 2, 1, 2, 0, 1, 2, 0, 2, 2, 0, 0, 1, 1, 2, 1] 80.9

LV-BERT-small X X X EA searched [0, 0, 1, 2, 2, 1, 0, 2, 2, 1, 0, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 1, 2, 1] 81.8

Table 7: Architectures of different models and their performance on GLUE development set. In Architecture
column, 0, 1, and 2 denote dynamic convolution, self-attention, and feed-forward layers respectively * denotes
methods implemented by us for language pre-training.

determine whether a pair of questions are semanti-
cally equivalent or not.

STS The Semantic Textual Similarity Bench-
mark (Cer et al., 2017) is a collection of sentence
pairs with human-annotated similarity score on a
1-5 scare.

WNLI Winograd NLI (Levesque et al., 2012)
is a small dataset for natural language inference.
However, there are issues with the construction of
this dataset4. Therefore, this dataset is exclude in
this paper for comparison as BERT (Devlin et al.,
2019) etc.

B.1.1 SQuAD dataset
The Stanford Question Answering Dataset
(SQuAD 1.1) (Rajpurkar et al., 2016) is a dataset
of more than 100K questions which all can be
answered by locating a span of text from the
corresponding context passage. Besides this data,
the upgraded version SQuAD 2.0 (Rajpurkar et al.,
2018) supplements it with over 50K unanswerable
questions.

C Pre-training Details

For supernet, We pre-train it for 2M steps with
hyperparameters listed in Table 5, using Masked
Language Modeling (MLM) pre-training objective
(Devlin et al., 2019). This objective masks 15%
input tokens that require the model to predict. The
reason to use this objective is that the MLM valida-

4https://gluebenchmark.com/faq

tion accuracy can reflect the performance of models
on downstream tasks (Lan et al., 2020).

For pre-training LV-BERTs and other compared
baselines like DynamicConv (Wu et al., 2018) and
Sandwich (Press et al., 2020) from scratch, we uti-
lize Replaced Token Detection (RTE) pre-training
objective (Clark et al., 2020). This objective em-
ploys a small generator to predict masked tokens
and utilize a larger discriminator to determine pre-
dicted tokens from the generator are the same as
original ones or not. RTE can help save compu-
tation cost but achieve good performance (Clark
et al., 2020). We pre-train the models for 1M steps,
mostly using the same hyperparameters as ELEC-
TRA (Clark et al., 2020). We set the pre-training
sequence length 128 that can help us save computa-
tion cost. For downstream task SQuAD 1.1/2.0 that
needs longer input sequence length, we pre-train
more 10% steps with the sequence length of 512
to learn the position embedding before fine-tuning.
The hyperparameters are listed in Table 5.

D Fine-tuning Details

For fine-tuning on downstream tasks, most of the
hyperparameters are the same as ELECTRA (Clark
et al., 2020). See Table 6.

E Searched Architectures

The different searched architectures are listed in
Table 7.

https://gluebenchmark.com/faq

