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Abstract

Chinese spelling correction (CSC) is an im-

portant yet challenging task. Existing state-of-

the-art methods either only use a pre-trained

language model or incorporate phonological

information as external knowledge. In this

paper, we propose a novel end-to-end CSC

model that integrates phonetic features into

language model by leveraging the powerful

pre-training and fine-tuning method. Instead

of conventionally masking words with a spe-

cial token in training language model, we re-

place words with phonetic features and their

sound-alike words. We further propose an

adaptive weighted objective to jointly train er-

ror detection and correction in a unified frame-

work. Experimental results show that our

model achieves significant improvements on

SIGHAN datasets and outperforms the previ-

ous state-of-the-art methods.

1 Introduction

Spelling errors are common in practice and the

errors will be enlarged in the downstream tasks.

Therefore, Spelling correction is important to many

NLP applications such as search optimization (Mar-

tins and Silva, 2004; Gao et al., 2010), machine

translation (Belinkov and Bisk, 2017), part-of-

speech tagging (Van Rooy and Schäfer, 2002; Sak-

aguchi et al., 2012), etc. Spelling correction re-

quires a comprehensive grasp of word similarity,

language modeling and reasoning, making it one

of the most challenging tasks in NLP.

In this paper, we focus on Chinese spelling

correction (CSC). Unlike alphabetic languages,

Chinese characters cannot be typed without the

help of input systems, such as Chinese Pinyin (a

pronunciation-based input method) or automatic

speech recognition (ASR). Thus typos of similarly

pronounced characters occur quite often in Chinese

text. According to Liu et al. (2010), 83% of Chi-

nese spelling errors on the Internet results from
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Wrong:

ta de yu shuo de hen hao

He of language speak very good

Correct:

ta de yu shuo de hen hao

He German language speak very good

Predict without

phonetic features:

ta ying yu shuo de hen hao

He English language speak very good

Figure 1: An example of CSC. Each row contains three

lines, Chinese pinyin, Chinese character, and gloss.

The Chinese character “德(de, German) is incorrectly

typed as its homophone “的(de, of)”. The CSC model

produces a fluent but incorrect sentence by replacing

the character with “英(ying, English)”, without consid-

ering the phonetic similarity.

phonologically similar characters. As illustrated

in Figure 1, the character “德(de, German)” is in-

correctly typed as one of its homophone1 “的(de,

of)”.

Traditional methods of CSC firstly detect mis-

spelled characters and generate candidates via a

language model, and then use a phonetic model or

rules to filter wrong candidates (Chang, 1995; Chen

et al., 2013; Dong et al., 2016). To improve CSC

performance, studies mainly focus on two issues:

1) how to improve the language model (Wu et al.,

2010; Dong et al., 2016; Zhang et al., 2020) and 2)

how to utilize external knowledge of phonological

similarity (Jia et al., 2013; Yu and Li, 2014; Wang

et al., 2018; Cheng et al., 2020). The language

model is used to generate fluent sentences and the

phonetic features can prevent the model from pro-

ducing predictions whose pronunciation deviates

from that of the original word. As illustrated in Fig.

1, the original Wrong sentence contains an incor-

rect word “的(de, of)”. The CSC model produces

a fluent but incorrect sentence by replacing “的(de,

1In this paper, we ignore the tone of Pinyin, and use homo-
phone to refer to characters with the same pinyin spellings.
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of)” with “英(ying, English)”. However, the pro-

nunciations of these two words are totally different,

because the model ignores phonetic features.

Recent studies tackle the issue using deep neural

networks. Hong et al. (2019) used a pre-trained

language model BERT (Devlin et al., 2019) to gen-

erate candidates and train a classifier with phonetic

features to select the final correction. Wang et al.

(2019) considered CSC as a sequence-to-sequence

task and generated candidates from a confusion set
2 instead of the entire vocabulary. These methods

take phonetic information as external knowledge

but the discrete candidate selection obstructs the

language model from learning directly via back-

propagation. Zhang et al. (2020) proposed an end-

to-end CSC model by modifying the mask mech-

anism of BERT. However, they did not use any

phonological information, which is important for

exploring words similarity.

In this paper, we propose a novel end-to-end

model for Chinese spelling correction. The model

incorporates the phonetic information into lan-

guage model and leverages the pre-training and

fine-tuning framework. Concretely, we first mod-

ify the learning task of pre-trained masked lan-

guage model (Devlin et al., 2019). Rather than

replacing characters with an indiscriminate sym-

bol “[MASK]”, we mask characters with pinyin or

similar pronounced characters. This enables the

language model to explore the similarity between

characters and pinyin. Then we fine-tune on error

correction data with a model of two networks, a de-

tection network predicts the probability of spelling

error for each word, and a correction network gener-

ates correction by fusing the word embedding and

pinyin embedding with the probabilities as input.

We jointly optimize the detection and correction

networks in a unified framework.

The contributions of this paper are summarized

as follows:

• We propose a novel end-to-end CSC model

that incorporates phonetic features into lan-

guage representation. The model encodes

the Chinese characters and Pinyin tokens in a

shared space.

• The integration of phonological information

greatly facilitates CSC. Experimental results

on the benchmark SIGHAN datasets show that

2Confusion set is a set of similar characters.

our method significantly outperforms the pre-

vious state-of-the-art methods.

2 Related work

Earier work on CSC follows the pipeline of er-

ror detection, candidate generation, and candidate

selection (Wu et al., 2010; Jia et al., 2013; Chen

et al., 2013; Chiu et al., 2013; Liu et al., 2013; Xin

et al., 2014; Yu and Li, 2014; Dong et al., 2016;

Wang et al., 2018). These methods mainly employ

unsupervised language models and rules to select

candidates.

With the development of end-to-end networks,

some work proposed to optimize the error correc-

tion performance directly as a sequence-labeling

task with conditional random fields (CRF) (Wu

et al., 2018) and recurrent neural networks (RNN)

(Zheng et al., 2016; Yang et al., 2017). Wang et al.

(2019) used a sequence-to-sequence framework

with copy mechanism to copy the correction re-

sults directly from a prepared confusion set for the

erroneous words. Cheng et al. (2020) built a graph

convolution network (GCN) on top of BERT (De-

vlin et al., 2019) and the graph was constructed

from a confusion set. Zhang et al. (2020) proposed

a soft-masked BERT model that first predicts the

probability of spelling error for each word, and

then uses the probabilities to perform a soft-masked

word embedding for correction. However, they did

not use any phonetic information.

Our work is most related to Zhang et al. (2020),

but with some important differences. We will fur-

ther discuss this in Section 3.4.

3 Methods

Formally, the Chinese spelling correction task is to

map a sequence xw = (xw1
, xw2

, ..., xwN
) which

may contain spelling errors to another correct se-

quence ŷ = (ŷ1, ŷ2, ..., ŷN ), where both xwi
and

ŷi (1 ≤ i ≤ N) are Chinese characters.

We propose an end-to-end CSC model which

consists of two components, detection and correc-

tion. The detection module takes xw as input and

predicts the probability of spelling error for each

character. The correction model takes the combina-

tion of the embedding of xw and its corresponding

pinyin sequence xp = (xp1 , xp2 , ..., xpN ) as input

and predicts the correct sequence y. We propose a

method to fuse xw and xp embeddings using the

probability of spelling error as weights.

Following the pre-train and fine-tune framework,
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Detection

Module

Correction

Module

ta de yu shuo de hen hao

+
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…

…
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……Embedding

ta   de  yu shuo de hen  hao

Figure 2: Illustration of our CSC model. Given the in-

put word sequence xw, the detection module first pre-

dicts the probability of error perr for all the characters.

Then the correction module combines the word embed-

ding ew and pinyin embedding ep to an embedding fu-

sion em and send it to generate the final correction y.

The parameters of the Embedding, Encoder, and fcrt
are initialized by a pre-trained language model with

phonetic features. The structure and parameters of the

two encoders are identical.

we first pre-train a masked language model, MLM-

phonetics, by learning to predict characters from

similarly pronounced characters and pinyin. Then

in fine-tuning, we jointly optimize the the detection

and correction modules.

In this section, we first introduce the model ar-

chitecture (Sec. 3.1), the optimization method (Sec.

3.2) , and the pre-training of MLM-phonetics (Sec.

3.3), then summarize the novelty of our method

(Sec. 3.4).

3.1 Model Architecture

Fig. 2 shows our model architecture, the lower

is the error detection module and the upper is the

correction module. Both are built upon transformer.

Detection Module Given a source sequence

xw = (xw1
, xw2

, ..., xwN
), the goal of the de-

tection module is to check whether a character

xwi
(1 ≤ i ≤ N) is correct or not. For this labelling

problem, we use class 1 and 0 to label misspelled

characters and correct characters, respectively.

We formalize the detection module as follows:

yd = softmax(fdet(E(ew))) (1)

where ew = (ew1
, ew2

, ..., ewN
) is the word em-

bedding of xw, E is a pre-trained encoder and

fdet is a fully-connected layer that maps the sen-

tence representation to a binary sequence yd =
(yd1 , yd2 , ..., ydN ), ydi ∈ {0, 1}.

We use perri to denote the probability that char-

acter xwi
is erroneous:

perri = p(ydi = 1|xw; θd) (2)

where θd is the parameters of error detection mod-

ule.

Correction Module The goal of the correction

module is to generate correct characters based on

the output of the detection module.

We not only use the word embeddings for input,

but also use the pinyin embeddings to integrate the

phonetic information. Concretely, we first generate

the pinyin sequence xp using the PyPinyin3 tool,

get the pinyin embedding ep from the embedding

layer, and fuse it with the word embedding ew by

linear combination:

em = (1− perr) · ew + perr · ep (3)

This combination uses the spelling error proba-

bility predicted by the detection module as weights

to balance the importance of the semantic feature

(character embedding) and phonetic feature (pinyin

embedding). We introduce two special cases: If

perri = 0, indicating the character xwi
is detected

to be correct, and the model uses only its word

embedding in em. If perri = 1, meaning that the

character is detected to be erroneous, and the model

uses its pinyin embedding.

Finally, the correction results y is predicted

through a fully-conntected layer fcrt:

y = softmax(fcrt(E(em))) (4)

Note that, the parameters of the embedding,

the encoder E and the correction network fcrt
are initialized by MLM-phonetics. In the pre-

training, MLM-phonetics is trained to reconstruct

the correct characters from their commonly con-

fused counterparts and their pinyin, thus it can be

transformed with the fused embedding.

3https://pypi.org/project/pypinyin/



2253

3.2 Jointly Fine-tuning

There are two objectives for our model: to train the

detection parameters fdet and to adjust the detec-

tion and correction modules to achieve an optimal

balance. We jointly optimize the detection loss Ld

and the correction loss Lc that:

Ld = -
∑

i

log p(ŷdi |xw; θd) (5)

Lc = -
∑

i

p(ydi |xw; θd) · log p(ŷi|em; θc) (6)

where θd and θc is the parameter of the detection

and correction module, respectively. ŷdi is the

ground-truth detection result and ydi is the pre-

diction by the detection module, both of them is a

binary value of 0 or 1.

In particular, the correction loss is the negative

log likelihood weighted by the probability of the

detection result, p(ydi |xw; θd) ∈ (0.5, 1]. This is

to distinguish between the responsibilities of the

two tasks. When the detection module gives a

low-confidence prediction, that is, p(ydi |xw; θd)
approaches 0.5, em fuses the semantic features and

phonetic features with similar weights. But we

hope that the detection module could provide clear

judgement of right or wrong, i.e., p(ydi |xw; θd)
approaches to 1, so that em can be dominated by

either semantic features or phonetic features. In

such case, the correction of error words will not be

interfered by the semantic features in em, and vice

versa. Therefore, we penalize the low-confidence

prediction given by the detection module. Con-

cretely, when the probability of the detection result

is low, Lc decreases and the model will focus more

on optimizing Ld. And when the detection prob-

ability is high, the model optimizes Ld and Lc at

balance.

The adaptive weighting objective enables us to

jointly train our model with the sum of the two loss

functions:

L = Ld + Lc (7)

We compare different weighting strategies with our

adaptive weighting in experiments.

3.3 Pre-training MLM-phonetics

In this section, we introduce our pre-trained lan-

guage model, MLM-phonetics, that 1) integrates

phonetic features and 2) solves the problems of

using standard masked language model in our CSC

architecture.

The pre-train and fine-tune framework (Devlin

et al., 2019) has been proven effective in facilitating

downstream NLP tasks including sentence classi-

fication, question answering, etc. But the inputs

of these tasks are of identical distribution with pre-

training, while the input sentences in CSC are with

errors, which are different from the pre-training

samples. Some work thus far side-stepped the in-

put divergence by avoiding to input error sentences

directly to pre-trained models. For example, Zhang

et al. (2020) use a bidirectional-GRU for error de-

tection before a BERT-based correction network.

In order to take advantage of the pre-training

technique, we modify the pre-training task. In the

pre-training of a standard mask language model

(MLM-base), the model is trained by predicting

15% randomly selected characters which are re-

placed with the [MASK] token, random character,

and themselves at the sampling rate of 80%, 10%,

and 10%, respectively.

To avoid input divergence and integrate phonetic

features, we propose two pre-training replacements:

confused-Hanzi4 and a noisy-pinyin. We use Figure

3 to illustrate these replacements:

• [MASK] replacement trains the reasoning

ability of the language model by restoring

masked characters only according to the con-

text.

• Random Hanzi replacement trains MLM-

base to correct words from random ones (e.g,

to predict “得(de)” from “不(bu)”), which is a

more difficult task compared with correcting

from similarly pronounced characters. How-

ever, due to the different input distribution,

this strategy is of little help to CSC.

• Same replacement encourages MLM-base to

copy the input characters (e.g, the replacement

“好(hao)”).

• Confused-Hanzi replacement trains MLM-

phonetics to correct words to their commonly

confused characters in the confusion set (e.g,

to predict “豪(hao)” to “好(hao)”). It provides

the model a way to access samples with typo.

• Noisy-pinyin replacement trains MLM-

phonetics to predict the original characters

from pinyin of their commonly confused

characters in the confusion set (e.g, to predict

4Hanzi is a transliteration meaning Chinese characters.
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[Mask] [Mask]

(a). MLM-base (b). MLM-phonetics

Transformer Transformer

[Mask]

Different Replacements:          [Mask]         Random Hanzi Same Confused-Hanzi Noisy-pinyin

ta                 yu shuo bu hen hao fa                 ye bu cha ta  de yu shuo hen hao fa                 ye bu cha

de                    de hao yu de              de hao yu

Figure 3: An example of the different replacement strategy for MLM-base and MLM-phonetics.

“得(de)” from “de”). It helps clustering

similarly pronounced characters with their

corresponding pinyin tokens.

The first three replacements are used for pre-

training standard MLM-base and the last two are

proposed in our method to model the similarity

between characters and pinyin tokens. In the pre-

training of MLM-phonetics, our data generator

randomly chooses 20% of token positions in the

training samples. If the ith token is chosen, we

empirically replace it with (1) the [MASK] token

40% of the time, (2) the noisy-pinyin of this token

30% of the time, and (3) a confused-Hanzi from

its confusion set 30% of the time5. Then MLM-

phonetics is trained to predict the original sentence

from the sentence with replacements.

The two proposed pre-training tasks can smooth

out the input divergence between pre-training and

fine-tuning the CSC model. The Confused-Hanzi

replacement simulates the input of the detection

module and the two replacements together facili-

tates the pre-trained model to adapt to the fused

embedding (Eq. 3).

3.4 Novelty of our method

Our method is most related to Zhang et al. (2020),

but different in the following aspects.

First, our model combine the embedding of

pinyin and character to prevent information loss,

which is more like the human correction process

that predicts correction with the pronunciation of

the problematic words. On the contrary, Zhang

et al. (2020) has to add residual connection before

emitting the final correction, or it will forget the

phonetic information of the error words after com-

bining their embedding with [MASK].

5For multiple characters in the confusion set, select
them/their pinyin randomly in the replacement.

Second, we share the pre-trained encoder in

detection and correction by proposing new pre-

training tasks, while Zhang et al. (2020) took an

un-pre-trained bidirectional-GRU in detection to

avoid the input divergence between pre-training

and fine-tuning.

Third, we propose an adaptive weighting policy

in jointly training the error detection and correc-

tion. This policy encourages the model to produce

clear detection results, making the fused embed-

ding dominated by either semantic features or pho-

netic features, which is close to the pre-training

task. On the contrary, Zhang et al. (2020) proposed

to linearly combine the detection and correction

loss with a fixed hyper-parameter.

4 Experiments

We carry out experiments on the SIGHAN dataset,

a benchmark for CSC.

4.1 Data Processing

The training set consists of two parts: 1) A pre-

training corpus of 0.3 billion Chinese sentences,

and 2) A CSC training corpus of 281K sentences

pairs. The first corpus is used for pre-training

MLM-phonetics, and the latter is used to fine-tune

the CSC model initialized by MLM-phonetics.

For the pre-training corpus, we collect a variety

of data, such as encyclopedia articles, news, sci-

entific papers, and movie subtitles from a search

engine. The CSC training data used in our experi-

ments is the same as Wang et al. (2019) and Cheng

et al. (2020), including three human-annotated

training datasets (Wu et al., 2013; Yu et al., 2014;

Tseng et al., 2015) and an automatically generated

dataset with the approach proposed in Wang et al.

(2018)6.

6See Appendix A for training corpus detail.
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Detection Correction

Prec. Rec. F1 Prec. Rec. F1

SIGHAN13

FASPell (2019) 76.2 63.2 69.1 73.1 60.5 66.2

Pointer Networks (2019) (character-level) 56.8 91.4 70.1 79.7 59.4 68.1

Soft-Masked BERT* 81.1 75.7 78.3 75.1 70.1 72.5

SpellGCN (2020) 80.1 74.4 77.2 78.3 72.7 75.4

ERNIE 76.6 71.9 74.2 73.0 68.5 70.6

MLM-phonetics(Ours) 82.0 78.3 80.1 79.5 77.0 78.2

SIGHAN14

FASPell (2019) 61.0 53.5 57.0 59.4 52.0 55.4

Pointer Networks (2019) (character-level) 63.2 82.5 71.6 79.3 68.9 73.7

Soft-Masked BERT* 65.2 70.4 67.7 63.7 68.7 66.1

SpellGCN (2020) 65.1 69.5 67.2 63.1 67.2 65.3

ERNIE 63.5 69.3 66.3 60.1 65.6 62.8

MLM-phonetics(Ours) 66.2 73.8 69.8 64.2 73.8 68.7

SIGHAN15

FASPell (2019) 67.6 60.0 63.5 66.6 59.1 62.6

Pointer Networks (2019) (character-level) 66.8 73.1 69.8 71.5 59.5 64.9

Soft-Masked BERT (2020) 73.7 73.2 73.5 66.7 66.2 66.4

Soft-Masked BERT* 67.6 78.7 72.7 63.4 73.9 68.3

SpellGCN (2020) 74.8 80.7 77.7 72.1 77.7 75.9

ERNIE 73.6 79.8 76.6 68.6 74.4 71.4

MLM-phonetics(Ours) 77.5 83.1 80.2 74.9 80.2 77.5

Table 1: The performance on SIGHAN13, SIGHAN14, and SIGHAN15 testset. Soft-Masked BERT* is our re-

production of Soft-Masked BERT using the same training data as in our method, while Soft-Masked BERT was

trained on an in-house dataset containing 5 million sentences and their counterparts with automatically generated

errors, as reported in Zhang et al. (2020), where the authors only provided their results on SIGHAN15.

4.2 Model Settings

We compare our methods with previous state-of-

the-art methods:

• FASPell (Hong et al., 2019) first generates can-

didates for each character in the input sentence

through a pre-trained MLM, then uses a filter-

ing model with visual and phonetic similarity

features to select the best candidate.

• Pointer Networks (Wang et al., 2019) uses a

seq2seq system based on the constraint that

each correct word is contained in the confu-

sion set of the erroneous character.

• Soft-Masked BERT (Zhang et al., 2020), for

each token in the sentence, linearly com-

bines its embedding with the embedding of

[MASK], and predicts the error character

based on a fine-tuned masked language model.

• SpellGCN (Cheng et al., 2020) incorpo-

rates two similarity graphs into a pre-trained

sequence-labeling model via graph convolu-

tional network. The two graphs are derived

from a confusion set and correspond to pro-

nunciation and shape similarities.

• ERNIE (Sun et al., 2020) directly finetunes

the standard masked language model on the

CSC training data.

• MLM-phonetics, our proposed method uses

an end-to-end system based on a pre-trained

language model with phonetic features.

Pointer Network uses LSTM in both encoder

and decoder. All the other methods take CSC as

a sequence tagging problem with a pre-trained 12-

layer Transformer as encoder. FASPell and Soft-

Masked BERT use the pre-trained BERT, while

ERNIE and MLM-phonetics use the pre-trained

ERNIE for initialization7. We use the sentence-

level and character-level f1-score to evaluate dif-

ferent systems. At the sentence-level, a predic-

tion is considered correct only if all the errors in

the sentence are detected or corrected. Therefore,

sentence-level evaluation is stricter and results in

lower scores. Following Cheng et al. (2020), we

7The difference between BERT and ERNIE in fine-tuning
is trivial, see Appendix B for detail.
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use the scripts in (Hong et al., 2019) to calculate

the sentence-level results.

4.3 Overall Results

Table 1 shows the detection and correction perfor-

mance on three SIGHAN test sets. All the methods

provide sentence-level results except Pointer Net-

work, which provides the results at the character-

level.

It shows that our method, MLM-phonetics sig-

nificantly outperforms the other systems. For exam-

ple on SIGHAN15, the detection F1-score has 2.5

point improvement (77.7→80.2) and the correction

F1-score has 1.6 point improvement (75.9→77.5)

compared with the previous best method SpellGCN.

Our method also achieves over 6 points improve-

ment over ERNIE in correction f1-score, verifying

the effectiveness of our pre-training strategy.

All the listed methods except Pointer Networks

use pre-trained model for initialization, but only

FASPell, SpellGCN and our method take phonetic

information into consideration. FASPell uses iso-

lated phonetic features and language model, which

inevitably lead to performance decline. SpellGCN

incorporates phonetic knowledge into the language

model by building a graph convolutional network

on the top of BERT. It is proven to be effective,

but the graph is derived from a prepared confusion

set. Therefore, the performance of the model de-

pends on the completeness of this set. As shown

in Table 1, the precision of SpellGCN is close to

MLM-phonetics, but there is a significant gap in

the recall. Our method, with the help of addi-

tional Pinyin tokens, integrates phonetic features

in word embedding, thus increasing the general-

ization of the model. Soft-Masked BERT corrects

sentences without phonetic features. Its detection

and correction performance is inferior to ours. This

may partly due to the lack of phonological simi-

larity, as well as the difference in model architec-

ture. It is also notable that the training data of our

method MLM-phonetics is consistent with that of

Pointer Networks, Soft-Masked BERT*, SpellGCN

and ERNIE, but Soft-Masked BERT and FASPell

use different training data. See Appendix C for

some case studies.

4.4 Pre-training Tasks

In order to analyze the effect of the three re-

placement tasks ([MASK], Confused-Hanzi, Noisy-

pinyin) in the pre-training of MLM-phonetics, we
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Figure 4: The Sentence-level Correction F1-score of 4

pre-trained models evaluated on SIGHAN15 testset.

take three models for comparison, each trained by

only two of the three tasks with equal probability.

During fine-tuning, the testing curves on

SIGHAN15 are plotted in Figure 4. MLM-

phonetics shows the best performance, achieving

the correction f1-score of 77.5 in the 7th epoch.

However, it’s interesting that its performance is in-

ferior to the pre-trained model without (w/o) noisy-

pinyin at the beginning. This is caused by the pre-

training & fine-tuning discrepancy.

The model w/o noisy-pinyin only learns to pre-

dict the original characters from [MASK] and

confused-Hanzi in pre-training. So the pinyin em-

bedding has not been initialized until fine-tuning.

Therefore, the pinyin embedding can be viewed

as noise in the embedding fusion of the fine-

tuning stage. Such embedding is close to its pre-

training input distribution, thus the pre-trained

model w/o noisy-pinyin performs good at the begin-

ning. MLM-phonetics, on the contrary, is trained

to reconstruct words based on either Hanzi em-

bedding or pinyin embedding in the pre-training.

But it needs to predict from a fusion of them in

fine-tuning, thus it requires longer training time for

adaption. As the training continues, the model

benefits from the embedding fusion and finally

achieves 0.6 points improvements (76.9→77.5)

over the pre-trained model w/o noisy-pinyin.

Besides, the other two pre-trained models per-

form relatively low. The pre-trained model w/o

confused-Hanzi suffers from input divergence in

pre-training & fine-tuning. The model is not trained

to correct words from spelling errors until the fine-

tuning stage. The pre-trained model w/o [MASK]

performs the worst, which shows the importance of



2257

Objective
Detection Correction

Prec. Rec. F1 Prec. Rec. F1

fixed hyperparameter: λ = 0.2 75.6 79.1 77.3 71.7 77.5 74.5

λLuc + (1− λ)Ld λ = 0.5 77.1 82.0 79.5 74.1 78.4 76.2

(Zhang et al., 2020) λ = 0.8 76.1 81.2 78.6 75.3 77.9 76.6

Ours: Lc + Ld 77.5 83.1 80.2 74.9 80.2 77.5

Table 2: Sentence-level performance of using different objectives on SIGHAN15.

using [MASK] prediction to enhance the semantic

comprehension.

4.5 Balance the objective of detection and

correction

Next, we explore the impact of the weighting strat-

egy that balances the two objectives in fine-tuning.

In our CSC model, both the detection and cor-

rection are sequence labeling tasks. We use the

detection probability to balance the two tasks, as

depicted in Eq.(6). On the contrary, Zhang et al.

(2020) balances the two tasks with a fixed hyper-

parameter λ: λLuc+(1−λ)Ld, in which Luc is the

un-weighted negative log-likelihood of correction:

Luc = −
∑

i

log p(yi|em; θc) (8)

The results of the two strategies are shown in

Table 2. Our method is generally better than the

results of using a fixed hyper-parameter for combi-

nation. Among the three systems with fixed hyper-

parameters, the system with λ = 0.8 achieves

the highest correction f1-score and the one with

λ = 0.5 achieves the best detection f1-score. Note

that the detection F1-score is evaluated based on

the correction result (i.e., only the corrected char-

acters are regarded as detected), rather than based

on the prediction of the detection module. There-

fore, it’s not weird to find that the setting λ = 0.2
costs much on detection but its detection f1-score

is the worst. This also provides us a hint that the

detection and correction need to be coordinated.

Setting λ to 0.2 may improve the performance of

the detection module, but a poor correction module

will bring down the final detection performance.

Our method, on the contrary, balances the Lc

and Ld according to the confidence given by the

detection module dynamically and achieves the

best performance. Compared with the fixed hyper-

parameter strategy with λ = 0.8, our F1 scores

have 1.6 points (78.6→80.2) improvement in de-

tection and 0.9 points (76.6→77.5) improvement

in correction, indicating the effectiveness of our

dynamic balance strategy in alleviating the unbal-

anced problem between the two tasks.

4.6 Error Analysis

To analyze the prediction errors, we collect the

incorrectly predicted samples and classify them

into two classes:

• Detection Error: the detection module pro-

duces an error prediction, i.e. ydi 6= ŷdi .

• Correction Error: the detection module gen-

erates a correct prediction, but the correction

module fails to generate the right character,

i.e., ydi = ŷdi and yi 6= ŷi.

We summarize the two classes on the

SIGHAN15 testset and the proportion of the De-

tection Error and Correction Error is 83.6% and

16.4%, respectively. This reveals that most of the

false predictions are Detection Errors.

We further explore the reason behinds the poor

detection performance. Is it mainly because many

errors cannot be detected (false negative errors), or

does the detection module make incorrect predic-

tions of errors (false positive errors)? We decom-

pose the 83.6% detection errors into the two types

and find that false negative errors and false positive

errors account for 41.1% and 42.5% respectively.

The proportions of the two error types are almost

equal. A possible reason is that some homonyms

are indistinguishable, such as “的”, “地”, and “得”.

All of the three characters have the pronunciation

of “de” and it makes sense to use any of these

candidates in many sentences, phonetically or se-

mantically. This problem has also been proposed in

Cheng et al. (2020), which takes further fine-tuning

to reduce the indistinguishability. In this case, the

detection module produces many predictions that

are different from the ground-truth results, affect-

ing the detection performance.

5 Conclusion

In this paper, we propose a novel end-to-end frame-

work for CSC with phonetic pre-training. In-
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spired by traditional pipeline systems, the model

incorporates phonetic information of characters

into pre-training. We first pre-train a masked lan-

guage model with phonetic features to improve

the model’s ability to understand sentences with

misspelling and model the similarity between char-

acters and pinyin tokens. Further, we propose an

end-to-end framework to integrate detection and

correction in one model. Experiments on a bench-

mark dataset show that our model significantly out-

performs the previous state-of-the-art. The CSC

model with phonetic features can be used to reduce

errors for speech recognition and translation sys-

tems. In the future, we are going to apply CSC

to more challenging scenarios, such as streaming

ASR error correction for automatic simultaneous

translation, as well as variable-length correction.
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A Datasets

All of our used datasets are listed in Table 3.

The Pre-training corpus includes 0.3 billion sen-

tences and the remaining four corpora contain

281K <error, correct> sentence pairs in sum8. The

three SIGHAN datasets are human-annotated and

the (Wang et al., 2018) is generated automatically

with ASR and OCR technique.

Datasets #Lines Avg. Length #Errors

Training Corpus

Pre-training corpus 0.3B 29.37

Wang et al. (2018) 271,329 44.4 382,704

SIGHAN 2013 350 49.2 350

SIGHAN 2014 6,526 49.7 10,087

SIGHAN 2015 3,174 30 4,237

Total 281,379 44.4 397,378

Test sets

SIGHAN 2013 1000 74.1 1227

SIGHAN 2014 1062 50.1 782

SIGHAN 2015 1100 30.5 715

Table 3: Experimental Data Statistics Information.

B Difference between BERT and ERNIE

We evaluate the performance of two pre-trained

models, BERT (Devlin et al., 2019) and ERNIE

(Sun et al., 2020), on the SIGHAN testset. For both

of them, we use the released model9 of the base

version (12 layers with the hidden size of 768).

The zero-shot performance is listed in Table 4.

In this setup, we directly use the released model

for error correction without fine-tuning. It shows

that ERNIE has a prominent advantage over BERT

in both detection and correction. This is caused

by a prediction problem of BERT that for most of

the time, BERT corrects the first character to be

the period symbol (“。”). We guess that this is

because of a Chinese data pre-processing bug of

BERT, that is, when a paragraph is divided into

multiple sentences, it always divides the ending pe-

riod of a sentence into the beginning of the next one.

Therefore, a lot of sentences incorrectly predicts

the beginning character to be the period symbol.

Then we finetune the 281K CSC training data

on the two pretrained models. Table 5 shows the

performance of the two models is basically the

same. The difference between BERT and ERNIE

is +0.4, -2.0, and +1.6 on SIGHAN13, SIGHAN14,

8The 281K sentence pairs can be downloaded at
https://github.com/ACL2020SpellGCN/SpellGCN/tree/master/data/merged.

9The released model of ERNIE:
https://github.com/PaddlePaddle/ERNIE. The released
model of BERT: https://github.com/google-research/bert

and SIGHAN15, respectively. Therefore the differ-

ence between BERT and ERNIE after fine-tuning

is trivial.

Detection Correction

Prec. Rec. F1 Prec. Rec. F1

SIGHAN13

BERT 4.73 4.74 4.74 3.2 3.2 3.19

ERNIE 56.0 40.9 47.3 33.3 24.3 28.1

SIGHAN14

BERT 4.7 8.8 6.1 2.6 4.9 3.4

ERNIE 63.5 27.2 31.1 18.8 14.1 16.1

SIGHAN15

BERT 9.4 15.6 11.7 6.3 10.4 7.8

ERNIE 55.8 33.9 42.2 30.8 18.7 23.3

Table 4: The performance of Zero-Shot BERT and

ERNIE.

Detection Correction

Prec. Rec. F1 Prec. Rec. F1

SIGHAN13

BERT 73.3 70.4 71.8 71.7 68.9 70.2

ERNIE 76.6 71.9 74.2 73.0 68.5 70.6

SIGHAN14

BERT 63.3 71.0 67.0 61.3 68.7 64.8

ERNIE 63.5 69.3 66.3 60.1 65.6 62.8

SIGHAN15

BERT 68.3 77.8 72.7 65.5 74.6 69.8

ERNIE 73.6 79.8 76.6 68.6 74.4 71.4

Table 5: The performance of pre-trained models with

fine-tuning.

C Ablation Study

We compare our method with ERNIE and Soft-

Masked BERT trained on identical datasets shown

in Table 3. Table 6 and Table 7 show that MLM-

phonetics performs better at generating semanti-

cally coherent and similar sounding corrections.
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Input

ta men de chao fan hen bu cuo zai shuo ta men zuo de ga li ji ye hao chi

他 们 的 吵 翻 很 不 错， 再 说 他 们 做 的 咖 喱 鸡 也 好 吃！

Their quarrel is very good, and the curry chicken they make is also delicious!

ERNIE

ta men de kao can hen bu cuo zai shuo ta men zuo de ga li ji ye hao chi

他 们 的 烤 餐 很 不 错， 再 说 他 们 做 的 咖 喱 鸡 也 好 吃！

Their roast meal is very good, and the curry chicken they make is also delicious!

Soft-Masked

BERT*

ta men de chao fa hen bu cuo zai shuo ta men zuo de ga li ji ye hao chi

他 们 的 炒 法 很 不 错， 再 说 他 们 做 的 咖 喱 鸡 也 好 吃！

Their fried method is very good, and the curry chicken they make is also delicious!

MLM-phonetics

(ours)

ta men de chao fan hen bu cuo zai shuo ta men zuo de ga li ji ye hao chi

他 们 的 炒 饭 很 不 错， 再 说 他 们 做 的 咖 喱 鸡 也 好 吃！

Their fried rice is very good, and the curry chicken they make is also delicious!

Table 6: An example from SIGHAN15 test set. Errors are marked in red and right corrections are in blue. All of the

three methods accurately detect the misspelling words, but only MLM-phonetics yields the correct result. ERNIE

changes “吵翻” (“chao fan”) to differently pronounced “烤餐” (“kao can”) and Soft-Masked BERT* changes “吵

翻” to “炒法” (“chao fa”, fried method), which sounds similar but is not so good as “炒饭” (fried rice) in terms of

semantic coherence.

Input

ying xiang xiao hai zi xiang de kuai xue xi guan li de ban fa

影 像 小 孩 子 想 得 快 ， 学 习 管 理 的 斑 法

Image children think fast, learn management spot method

ERNIE

ying xiang xiao hai zi xiang de kuai xue xi guan li de fang fa

影 响 小 孩 子 想 得 快 ， 学 习 管 理 的 方 法

Influence children think fast, learn management method

Soft-Masked BERT*

ying xiang xiao hai zi xiang de kuai xue xi guan li de fang fa

影 像 小 孩 子 想 得 快 ， 学 习 管 理 的 方 法

Image children think fast, learn management method

MLM-phonetics

(ours)

ying xiang xiao hai zi xiang de kuai xue xi guan li de ban fa

影 响 小 孩 子 想 得 快 ， 学 习 管 理 的 办 法

Influence children think fast, learn management method

Table 7: Another example from the SIGHAN15 test set. Again, MLM-phonetics predicts phonetically similar and

semantically coherent correction. But both ERNIE and Soft-Masked BERT* replace “斑”(ban) with “方”(fang),

which is semantically coherent but sounds greatly different.


