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Abstract

Having numerous potential applications and
great impact, end-to-end speech translation
(ST) has long been treated as an independent
task, failing to fully draw strength from the
rapid advances of its sibling - text machine
translation (MT). With text and audio inputs
represented differently, the modality gap has
rendered MT data and its end-to-end models
incompatible with their ST counterparts. In ob-
servation of this obstacle, we propose to bridge
this representation gap with Chimera. By pro-
jecting audio and text features to a common
semantic representation, Chimera unifies MT
and ST tasks and boosts the performance on
ST benchmarks, MuST-C and Augmented Lib-
rispeech, to a new state-of-the-art. Specifically,
Chimera obtains 27.1 BLEU on MuST-C EN-
DE, improving the SOTA by a +1.9 BLEU
margin. Further experimental analyses demon-
strate that the shared semantic space indeed
conveys common knowledge between these
two tasks and thus paves a new way for aug-
menting training resources across modalities.
1

1 Introduction

Speech-to-text translation (ST) takes speech input
in a source language and outputs text utterance in
a target language. It has many real-world applica-
tions, including automatic video captioning, simul-
taneous translation for international conferences,
etc. Traditional ST approaches cascade automatic
speech recognition (ASR) and machine translation
(MT) (Sperber et al., 2017, 2019; Zhang et al.,
2019; Beck et al., 2019; Cheng et al., 2019). How-
ever, cascaded models often suffer from the issues
of error propagation and translation latency. As a
result, there have been a series of recent attempts
on end-to-end speech-to-text translation (Liu et al.,

'All codes, data, and resources will be made released at
https://github.com/Glaciohound/Chimera-SLT.

2019, 2018; Weiss et al., 2017; Bérard et al., 2018;
Duong et al., 2016; Jia et al., 2019; Dong et al.,
2021b; Wang et al., 2020b). The end-to-end ap-
proaches learn a single unified model, which is
easier to deploy, has lower latency and could po-
tentially reduce errors.

However, it remains a challenge for end-to-end
ST to catch up with their cascaded counterparts
in performance. We argue that the root cause is
the gap between the two modalities, speech and
text. Although they both encode human languages,
they are dissimilar in both coding attributes (pitch,
volume, and intonation versus words, affixes, and
punctuation) and length (thousands of time frames
versus tens of words). This issue is further coupled
with the relatively smaller amount of parallel data
for ST than for MT.

To tackle these challenges, we resort to making
use of the additional available bilingual data for
MT. Our hypothesis is, to better leverage MT data,
an ideal model should be able to bridge the repre-
sentations between speech and text. Motivated by
this intuition, we propose Chimera, a text-speech
shared semantic memory network. It learns a se-
mantic memory by projecting features from both
modalities into a shared semantic space. This ap-
proach unifies ST and MT workflows and thus has
the advantage of leveraging massive MT corpora
as a side boost in training. It can also use speech-
text pairs to align the semantic memories from two
modalities.

This idea of a unified text-speech representa-
tion also finds its neural basis as suggested by
recent evidence from functional neuroimaging
(van Atteveldt et al., 2004; Spitsyna et al., 2006;
Shankweiler et al., 2008). Specifically, van At-
teveldt et al. (2004); Spitsyna et al. (2006) iden-
tifies certain regions in brain that the processing
stream for speech sounds and visual texts converge
at. Shankweiler et al. (2008) further verifies that
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the size of such convergence sites correlates pos-
itively with the subjects’ reading skills. Coinci-
dentally, at these convergence sites also found re-
gions responsive to downstream activities such as
lexical and semantical word recognition (Binder
et al., 2003) and spontaneous generation of speech
(Blank et al., 2002). The evidence establishes the
pivotal role of a modality-agnostic converged rep-
resentation in language activities in brain.

This intuition lacks exploration in previous stud-
ies, with only a few exceptions (Indurthi et al.,
2019; Liu et al., 2020), possibly due to the difficul-
ties aforementioned and marginal improvements.

Our results show that Chimera achieves new
state-of-the-art results on all of 8 translation di-
rections in the benchmark datasets MuST-C and
Augmented LibriSpeech. Specifically, Chimera
obtains a 27.1 BLEU score on MuST-C EN-DE,
which surpasses the best result ever reported by up
to +1.9 BLEU. We also provide results under varia-
tions and ablations and validate our model design
ideas by detailed analysis, as well as visualizing
the semantic space Chimera has learned.

Our work makes the following contributions.
First, we propose Chimera, which is able to bridge
the modality gap between speech and text. Second,
we derive a novel bi-modal contrastive training task
to learn an alignment between semantic memories
of two modalities. Finally, Chimera achieves a
new state-of-the-art performance on the MuST-C
benchmark and demonstrates its efficacy in learn-
ing modality-agnostic semantic representations.

2 Related Work

End-to-end ST Since its first proof-of-concept
work (Bérard et al., 2016; Duong et al., 2016), solv-
ing Speech Translation in an end-to-end manner
has attracted extensive attention (Vila et al., 2018;
Salesky et al., 2018, 2019; Di Gangi et al., 2019b;
Bahar et al., 2019a; Di Gangi et al., 2019c; In-
aguma et al., 2020). Standard training techniques
such as pretraining (Weiss et al., 2017; Bérard
et al., 2018; Bansal et al., 2018; Stoian et al., 2020;
Wang et al., 2020a; Pino et al., 2020), multi-task
training (Vydana et al., 2021; Le et al., 2020; Tang
et al., 2021), meta-learning (Indurthi et al., 2019),
and curriculum learning (Kano et al., 2018; Wang
et al., 2020b) have been applied. As ST data are
expensive to collect, Jia et al. (2019); Pino et al.
(2019); Bahar et al. (2019b) augment synthesized
data from ASR and MT corpora. Methods utiliz-

ing trained models, such as knowledge distillation
(Liu et al., 2019) and model adaptation (Di Gangi
et al., 2020), have also been shown to be effective.
Among these attempts, (Indurthi et al., 2019; Le
et al., 2020; Liu et al., 2020) are most related to
ours, as they also attempt to train models on ASR
or MT data. However, they both lack pivotal mod-
ules in model design to semantically bridge the gap
between audio and text, and could thus suffer from
modality mismatch in representations.

Cascaded ST The cascaded method is a more
long-standing trend in ST (Sperber et al., 2017;
Jan et al., 2018). To alleviate its innate problem
of error propagation, Cheng et al. (2018, 2019)
introduce synthetic ASR-related errors and pertur-
bations. On the other hand, some post-processing
techniques such as re-segmentation (Matusov et al.,
2006), punctuation restoration (Fiigen, 2008), and
disfluency detection (Fitzgerald et al., 2009) are
proposed to fix flaws or errors that occurred during
the translation.

Cross-Lingual Techniques Techniques in multi-
lingual tasks is also related to ours, as they aim at
extracting common features out of sources from
different representations (which, in this case, is
language diversity) as well. However, multilingual-
ism lacks key difficulties as observed in audio-text
modality gap as discussed before. (Lu et al., 2018)
and (Vazquez Carrillo et al., 2019) are early at-
tempts by building an LSTM-based attentional in-
terlingua. Yu et al. (2018); Yang et al. (2019) uses
a similar cosine-based loss for multilingual train-
ing. Zhu et al. (2020) is probably more similar
in method to ours, but Chimera is more simple in
terms of model and objectives, and the memories
in Chimera are additionally designed to focus on
specific semantic categories.

3 Proposed Method: Text-Speech Shared
Semantic Memory Network

3.1 Speech Translation Overview

An ST corpus usually consists of a set of triplet
data S = {(xi,zi,y:)}. Here x; is the audio wave
sequence, z; is the transcript sequence and y; is
the translation sequence in the target language. As
a benefit of shared semantic projection, Chimera
is able to leverage large-scale MT training corpora
T = {(u;, v;)}, where u; and v; are the source
and target text sequences.
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Figure 1: An overview of the proposed Chimera. The Encoder Module contains Word embedding for text input,
and Wav2vec2 sub-module for speech input. The shared semantic projection Module uses its memory query to
produce semantic memory with fixed-size representation from contextual features. The Decoder Module decodes
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Figure 2: Besides MT and ST translation loss, we adopt
a bi-modal contrastive loss to help aligning the seman-
tic memories from text and speech. In short, among
semantic memory elements from both sides of paired
speech and transcript, the contrastive loss maximizes
the cosine similarity between the same semantic mem-
ory element.

3.2 Chimera Architecture

Figure 1 illustrates the structure of Chimera. It
consists of three major components, an encoding
module, a shared semantic projection module, and
a decoding module.

Encoding Module Different from that of a conven-
tional ST model, the encoding module of Chimera
accepts either speech or text as input. For text
input, we use word embeddings plus positional em-
beddings. For speech input, we use a pretrained
Wav2Vec2 (Baevski et al., 2020) to extract speech
features. As the speech features can be very long,
we apply an additional 1-dimensional strided CNN
to reduce the length. Both speech and text branches
share a common subsequent Transformer encoder
(Vaswani et al., 2017). The final output of the en-

coding module is contextual features.

Shared Semantic Projection Module Shared se-
mantic projection plays a pivotal role in Chimera.
The contextual features of speech and text may fol-
low different distributions and of different lengths.
Ideally, the shared semantic projection computes a
constant number of semantic features as its output
semantic memories.

This module take the contextual features out
from the encoding module as input and then output
semantic memories of fixed length m. It consists
of n attentional layers. It keeps a tuple of m train-
able input-dependent memory queries to indicate
the types of desired semantic information, which
is used as the initial “memories”. Uni-modal con-
textual features serves as attention “keys” and “val-
ues”, while memories serves as attention “queries®.
Memories are iteratively fed to the n shared seman-
tic projection layers, with each layer output used
as input to next layer. The final output is used as
the semantic memory.

I, = M, € R™*¢ (1)
K, =V;=HeR* )
I,11=0;= Attn(Ii,KZ‘,Vi) € R™*4 3)

where My, I:I, I; and O; denote the memory
queries, contextual features, the input, and the out-
put of each layer, respectively. [ is the length of
contextual features. d is the shared vector dimen-
sion. The top-most output O, is finally fed into the
decoding module.
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Decoding Module The decoding module contains
a conventional Transformer decoder. The only dif-
ference is that the input is the fixed-size O,,, which
can possibly come from either speech or text.

3.3 Training Objectives

The training objective of Chimera consists of three
aspects, with their supervision signals coming from
speech-to-text translation data {(x;,y;)}, text ma-
chine translation data ({u;,v;)} and ({z;,y;)}
and the speech-transcript pairs {(x;, z;) }.
Speech-to-Text Translation Training The work-
flow of Chimera in Speech Translation is straight-
forward.  The training objective is negative
log-likelihood on speech-to-text translation data
{(xi,yi)} as the loss function.

EST = _Ex,y IOg P(y’X) (4)

Text Machine Translation Training Chimera is
also able to train on MT corpus because of the
unification of speech and text representations. Sim-
ilar to ST training, the shared semantic projection
module projects the contextual text features to the
shared semantic space, which are then taken by the
decoding module to output a translation.

ﬁMT = _Eu,v log P(V|u) (5)

Bi-modal Contrastive Training The motivation
of Chimera design is to bridge the speech and
text representations. We introduce dual-modal con-
trastive training to learn an alignment between rep-
resentations from speech and text as illustrated in
Figure 2. First, semantic memories from two inputs
are computed. Then for each text semantic memory,
M(e*t, we compute its cosine similarities with all
speech semantic memory {cos(M}**, M3 ceehyy.
They are then fed into a softmax function. The loss
function maximizes the item from matched pairs
(Mlert My - Finally, the loss is summed
across all text memory items and vise versa.

text speech
eTeos(MF M)

Lor =—Exz Z In
ctr - Z

' eTcos(M‘f"HM;peeCh)
’ (6)

speech text
Teos(IML;™, M)

e

- IE:X,Z E ln speech text

- reos(IVL™, MESX)
i 2.i€

Intuitively, the contrastive loss forces the pair
(Mtert MIEPE“M o project semantic memories

close to each other. In the meantime, the soft-
max function trains the model to maintain diversity
among semantic memories.

The final loss is a weighted sum of each loss:

L = AstLst + AmtLlmr + Acler  (7)

4 [Experiments

We conduct experiments on the benchmark MuST-
C and, as a validation of model design, carry out
ablation studies and visualize the representations
Chimera has learned.

4.1 Dataset and Preprocessing

MuST-C (Di Gangi et al., 2019a) is a multilin-
gual speech translation corpus with triplet data
sources: source audio, transcripts, and text transla-
tions. MuST-C contains translations from English
(EN) to 8 languages: Dutch (NL), French (FR),
German (DE), Italian (IT), Portuguese (PT), Roma-
nian (RO), Russian (RU), and Spanish (ES). With
each pair consisting of at least 385 hours of audio
recordings, to the best of our knowledge, MuST-C
is currently the largest speech translation dataset
available for each language pair. It includes data
from English TED talks with manual transcripts
and translations at the sentence level. We use the
dev and tst-COMMON sets as our development
and test data, respectively.

Augmented LibriSpeech Dataset (En-Fr) (Ko-
cabiyikoglu et al., 2018) is composed of aligned
e-books in French and their human reading in En-
glish. It provides typical triplet data of English
speech, transcript and French text. Following the
setting of (Liu et al., 2019), we utilize the 100h
hours of clean train set as training data, and use the
original 2 hours of dev set and and 4 hours of test
set.

Machine Translation Datasets After bridging the
modality gap, Chimera has the potential power to
utilize Machine Translation resources. Therefore
we incorporate data from WMT, OpenSubtitles (Li-
son and Tiedemann, 2016) and OPUS100 (Zhang
et al., 2020b) translation tasks. Specifically, we
use WMT 2014 (Bojar et al., 2014) 2 for EN-DE,
EN-FR, EN-RU and EN-ES, WMT 2016 (Bojar
et al., 2016) 3 for EN-RO, and OPUS100 * for

2downloadable at http://www.statmt.org/wmt14/translation-
task.html

3downloadable at https://www.statmt.org/wmt16/translation-
task.html
*downloadable at http://opus.nlpl.eu/opus-100.php
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External Data

MuST-C EN-X

Model Speech ASR MT | EN-DE EN-FR EN-RU EN-ES EN-IT EN-RO EN-PT EN-NL
FairSeq ST ' X x x| 227 32.9 153 272 227 219 281 27.3
Espnet ST * x x x| 229 32.8 158 280 238 219 280 274
AFS * x x x| 224 316 147 269 230 210 263 249
Dual-Decoder ¢ x x x| 236 335 152 281 242 229 300 276
STATST * X X x | 23.1 - - - - - - -
MAML ° x x v | 221 34.1 - - - - - -
Self-Training ° v v X 25.2 34.5 - - - - - -
W2V2-Transformer * v/ x x| 223 343 158 287 242 224 293 282
Chimera Mem-16 v x v | 256 350 167 302 240 232 297 285
Chimera v x v | 271° 356 174 306 250 240 302 292

Table 1: Main results on tst-=COMMON subset on all 8 languages in MuST-C dataset. “Speech” denotes unlabeled

audio data.

*: the result uses a mixed WMT14+OpenSubtitles data for MT pre-training. EN-DE Among the

baselines, T shows results from Ott et al. (2019), ¥ from Inaguma et al. (2020), * from Zhang et al. (2020a),
from Le et al. (2020), * from Liu et al. (2020), > from Indurthi et al. (2019), and ° from Pino et al. (2019). * shows
results of a simple baseline model by combining a Wav2Vec2 module (Baevski et al., 2020) and a Transformer
model, which could be viewed as the “no external data” version of Chimera.

External Data

Model Speech ASR MT | EN-FR
W2V2-T * v X X 6.4
TCEN 1 X X X 17.1
LSTM * X v v 17.0
AFS ° X X X 17.2
Multilingual * X v X 17.6
Transformer + X ve X 17.7
Curiculum + X v X 18.0
COSTT® X X v 18.2
LUT © X v X 18.3
STAST # X v X 18.7
Chimera v X v ‘ 194

Table 2:  Results on LibriSpeech English-French

dataset. * is the same W2V2-Transformer baseline as
in Table 1. T is from Wang et al. (2020a), ! from Ba-
har et al. (2019b), * from Inaguma et al. (2019), two
baselines under + from Wang et al. (2020b), b from
Dong et al. (2021a), ¢ from Dong et al. (2021b), °
from Zhang et al. (2020a) and  from Liu et al. (2020).

Model External Data MuST-C
Speech ASR MT | EN-DE
W2V2-T + Dec PT v x  WMT14 22.2
W2V2-T + KD v x  WMTI14 24.6
Chimera v x  WMT14 26.3
Table 3: Comparison with other baselines utilizing

external MT data on MuST-C EN-DE. “Dec PT” pre-
trains decoder on MT corpus; “KD” adopts the knowl-
edge distillation technique used in Liu et al. (2019)

EN-PT, EN-IT, and EN-NL, as pretraining corpora.

We additionally evaluate OpenSubtitles as EN-DE
MT data to test the impact of MT corpus selec-
tion. WMT 2014 dataset provides at least 4 million
sentences of translation data in each language pair.
WMT 2016 contains less, around 600k for EN-RO
direction. OPUS100 has around 1M sentences for
each sentence pair. OpenSubtitles provides 22M
sentences for EN-DE.

Pre-processing of Data and Evaluation For
speech input, the 16-bit raw wave sequences are
normalized by a factor of 2'° to the range of
[—1,1).

For text input, on each translation pair, all texts
(ST transcripts and translation, and MT source and
target texts) are pre-processed in the same way.
Texts are case-sensitive. Punctuation is kept, split
from words, and normalized. Non-print punctua-
tion is removed. The sentences are then tokenized
with Moses tokenizer °>. We filter out samples
whose number of source or target tokens is over 250
and whose ratio of source and target text lengths
is outside range [2/3,3/2]. For sub-wording, we
use a unigram sentencepiece® model with a dictio-
nary size of 10000. On each translation direction,
The sentencepiece model is learned on all text data
from both ST and MT corpora. The dictionary is
shared across MT and ST and across source and
target languages.

The performance is evaluated with BLEU (Pap-
ineni et al., 2002) using sacreBLEU 7. We average

>https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

®https://github.com/google/sentencepiece

"https://github.com/mjpost/sacrebleu, with configuration
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S.S. Projection Decoder | EN-DE EN-FR

- - 25.6 35.0
Fixed - 243 343
- Fixed 24.2 334
Fixed Fixed 23.8 33.1

Table 4: Performance of Mem-16 Chimera when freez-
ing different modules in fine-tuning. S.S. Projection
is abbreviation for shared semantic projection. “Fixed”
indicates that weights in this module are not updated
during fine-tuning, and “-” means otherwise. The re-
sults demonstrate that freezing modules indeed ham-
pers the model’s ability to adapt, but the weights pre-
trained on MT are already highly informative for ST.

7 consecutive checkpoints around the one of the
best dev loss and adopt a beam size of 10.

4.2 Model Configuration

For text input, we use 512-dimensional word em-
beddings plus sinusoidal positional embeddings.
For audio input, the Wav2Vec2 Module follows
the base configuration in Baevski et al. (2020). It
uses parameters pretrained on LibriSpeech audio
data only. The 1-dimensional CNN for speech fea-
tures has 2 layers with stride size 2, kernel size 5,
padding 2, and hidden dimension 1024.

The shared Transformer encoder consists of
6 layers. The memory queries are 64 512-
dimensional vectors. The parameters of shared se-
mantic projection resemble a 3-layer Transformer
encoder. The Transformer decoder has 6 layers.
Each of these Transformer layers, except for those
in the Wav2Vec2 module, has an embedding di-
mension of 512, a hidden dimension of 512, and 8
attention heads.

In both pretraining and fine-tuning stages, we
use an Adam optimizer with 81 = 0.9, 5o = 0.98,
and 4k warm-up updates. We apply an inverse
square root schedule algorithm for the learning
rate. In MT pretraining, the learning rate is Se-4,
the maximum number of updates is 300k, with at
most 33k input tokens per batch. In ST pretraining,
the learning rate is 1e-4, the maximum number of
updates is 150k, with at most 16M source audio
frames per batch. The loss weights Agt, Amr and
Acir are all set to 1.

We also show results on a base version of
Chimera, for which the memory queries are only 16
512-dimensional vectors (codenamed ‘“Mem-16").

of 13a tokenzier, case-sensitiveness and full punctuation

MT Contrastive | EN-DE  EN-FR

v v 25.6 35.0
v X 25.0 34.6
X v 24.7 34.6
X X 25.1 34.6

Table 5: BLEU scores of Mem-16 Chimera on MuST-
C tst-COMMON set without one or both of auxiliary

tasks. “x” means this task is not used during fine-

tuning, and “v"”” means othersize. “Contrastive” is the
bi-modal contrastive task. The removal of one or both
of tasks greatly harms the model’s performance on both
language pairs.

Because of the training efficiency and simplicity,
all ablation studies and visualizations adopted the
Mem-16 configuration if not stated otherwise.

Both Chimera and Chimera Mem-16 contain
around 165M parameters. The whole training pro-
cess for one trial on 8 Nvidia Tesla-V100 GPUs
generally takes 20 —40 hours according to the trans-
lation direction.

4.3 Benchmark Experiments

Training We train Chimera in a pretrain - fine-tune
manner. In the first stage, we pretrain Chimera on
MT datasets so as to leverage additional sources
of training data, as well as provide a better initial-
ization point. In the fine-tuning stage, we adopt
multi-task training as described in Section3.3. In
addition to the conventional ST task, Chimera is
also fine-tuned on MT and bi-modal contrastive
task to align inputs from speech and text.
Baselines We include as baselines the speech trans-
former model from (Ott et al., 2019), Espnet result
from (Inaguma et al., 2020), adaptive feature se-
lection method from (Zhang et al., 2020a), dual-
decoder Transformer from (Le et al., 2020) and
Modality-Agnostic Meta-Learning from (Indurthi
et al., 2019) in Table 1. We also provide a se-
ries of baseline results of a simple combination of
Wav2Vec2 (Baevski et al., 2020) and Transformer.
It could be viewed Chimera without external MT
pre-training, with still competitive but not SOTA
results.

To verify the effectiveness of our training tech-
nique, we also compare with other baselines able
to leverage external MT corpus in Table 3.
Results The experiment results are shown in Table
1 and 2. Our Chimera achieves state-of-the-art per-
formance on all language pairs, even though we do
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Figure 3: Curve of MuST-C EN-DE tst-COMMON

BLEU scores on Chimera against the amount of MT
data used during pretraining. (a) shows Chimera Mem-
16’s performance on WMT14. Blue triangles are the
speech translation BLEU scores, and green squares are
transcript-translation BLEU scores after MT pretrain-
ing. (b) shows how Chimera (M = 64) behaves with
or without OpenSubtitles data.

not utilize Google Translate results on Augmented
Librispeech as most baselines. EN-DE results of
Chimera uses WMT14+OpenSubtitles for MT pre-
trainng, while a detailed ablation study on the effect
of MT data can be found in Section 4.4. Note that
the improvement on EN-PT is not so significant as
EN-DE and EN-FR. We attribute this to the data
discrepancy between OPUS100 and MuST-C. A
large number of sentences in OPUS100 are from
movie subtitles, which are more informal, contain
repeated sentences, and cover different topics from
those in MuST-C public speeches.

In Table 3, under the same data condition,
Chimera outperforms other techniques such as de-
coder pre-training and knowledge distillation (Liu
etal., 2019).

4.4 Ablation Studies and Visualizations

Knowledge Shared across Tasks One potential
benefit in our design is that the shared semantic
space can hold common knowledge shared across
ST and MT tasks. To validate this motivating idea,
we analyze the model’s behavior while manipu-

Figure 4: 2-dimensional PCA projection of the seman-
tic memories in Mem16 Chimera across different sam-
ples. Each colored cluster (circled out) represents a
semantic memory element,. A “” corresponds to a
speech semantic memory, and a “+” marks a text one.

lating its modules. If certain weights pretrained
during the MT task also contain meaningful infor-
mation for ST, fixing them should not greatly harm
the model’s performance.

Specifically, after MT pretraining, we fix certain
modules and do not update their weights during
fine-tuning. We choose to fix the weights in the
shared semantic projection module, the decoding
module, or both of them.

Table 4 shows the results. After freezing mod-
ules, the results on both EN-DE and EN-FR drop
slightly. This demonstrates that freezing weights
indeed hampers the model’s ability to adapt from
MT to ST dataset. But the decreased scores are still
comparable to many of the best results in Table 1.
This validates the effectiveness of shared semantic
space, and indicates that the weights pretrained on
MT are already informative enough for Chimera to
still generalize sufficiently well on ST task.

Multi-task Training One advantage of bridging
the modality gap is that the model can fully benefit
from training on auxiliary tasks with more data,
such as those mentioned in Section 3.2. To evaluate
their impacts, we conduct another ablation study on
EN-DE and EN-FR.. Either or both of the auxiliary
tasks are not used during fine-tuning.

The results of this ablation are presented in Ta-
ble 5. Here we can see a significant decrease (with,
for example, p=0.020 in one-tailed Student’s t-test
comparing row 1 and 2) in BLEU scores when ei-
ther of the auxiliary tasks is abandoned. Although
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and annotated with their transcripts. Three fonts distinguish three groups of transcripts of similar patterns.

the bi-model contrastive loss is not directly related
to the ST task, a poor alignment between semantic
memories of speech and text hinders Chimera from
leveraging the shared knowledge across two tasks.
When the MT task is removed, the drop in BLEU
scores is also huge. This could be explained that
during fine-tuning, the auxiliary MT task is nec-
essary for keeping shared knowledge from being
forgotten.

It is interesting to observe that abandoning both
tasks produces results similar to abandoning ei-
ther one of the tasks. This suggests that the two
auxiliary tasks only have effects when combined
with each other: only when both using MT task
to maintain the pretrained parameters from forget-
ting, as well as using the bi-modal contrastive task
to align between speech and text representations,
can Chimera benefit from shared knowledge in MT
pretraining.

Additional Machine Translation Data We at-
tribute the gain in the performance of Chimera
mainly to the pretraining on MT data. One evi-
dence is the performance gain when using the larger
OpenSubtitles as MT corpus for EN-DE in 1. To
further probe the influence of the additional MT
data, we vary the amount of MT data available dur-
ing pretraining on EN-DE direction. The results
are plotted in Figure 3.

As the size of additional MT dataset increases,
the MuST-C BLEU score improves significantly.

This confirms the importance of massive high-
quality MT data for pretraining Chimera. The re-
sults also help explain the relatively inferior scores
on EN-PT in Table 1 which uses the OPUS100
dataset in pretraining.

Visualization of Semantic Memories The
shared semantic projection is designed to only ex-
tract semantic categories of information necessary
for decoding, regardless of the input modality. In
this way, it can bridge the different representations
of speech and text during computation and
facilitate knowledge sharing between MT and ST.

To validate this motivation, we visualize them
with Principal Component Analysis (PCA) in Fig-
ure 4. Up to 100 speech-transcript paired sam-
ples are randomly chosen from the valid set. We
record vector values of 16 semantic memories from
Chimera Mem-16 when inputs are speeches or tran-
scripts, and apply 2-dimensional PCA. The 16 se-
mantic memories are distinguished by 16 colors.
Every “.” corresponds to a semantic memory from
speech, and each “+” is a semantic memory from
the text. It is clear that the semantic memories
are highly clustered, everyone of which learns a
particular region. Speech and text representations
are also projected close within the same region,
proving the model’s ability to ignore representation
differences and bridge the modality gap.

To take a closer view of the structure of each se-
mantic memory subspace, we randomly choose one
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Figure 6: Visualization of the final-layer attention of M/ = 16 memories on inputs, and their alignment between
each other. A pair of audio and its transcript is fed to Chimera Mem-16. The area of each dot is linear to dot
product between two attention vectors. The color is a linear interpolation of M indicative colors as in Fig 4, with
mixing weights linear to the Hadamard product of attention vectors. (Best viewed in color)

semantic memory and apply PCA to its correspond-
ing cluster. The results are visualized in Figure
5. These samples come from 50 speech-transcript
pairs. Each pair of speech (““-”’) and transcript (“+”)
share the same color and are linked through dashed
lines.

Two interesting properties could be observed.
First, paired speech and transcript inputs are again
close to each other, even though they are coming
from different modalities. Second, the visualized
representations are organized according to their se-
mantic or syntactic patterns. We recognize several
clusters in the figure, and annotate their transcripts
with different fonts. The three annotations at the
upper-right corner (Italic font) are all questions;
those at the upper-left corner (wavy underlined
font) all follow a simple future tense; at the bottom-
left corner of the figure (underlined font) is another
cluster of sentences of copular verbs. This proves
that the shared semantic space that Chimera has
learned is well-structured, and thus validates our
model design.

Visualization of Inter-Modal Attention Align-
ment “Attention” is the internal mechanism of
Transformer based modules. In the design of
Chimera, attention is used for extracting M key
semantic categories of features from input. To in-
vestigate whether these extracted features is indeed
semantic, we further visualized the similarity be-
tween attention on paired audio and text in Fig 6.

Here the colors, which distinguish different mem-
ories attending to inputs, is clustered on sequence
and distributed close to the diagonal, demonstrat-
ing an alignment between matching tokens in two
modalities. Here we also observe four beaming
columns, where the full stop mark in text aligns
with pauses in audio. This is an indication of se-
mantic rather than positional essence of the memo-
ries.

5 Conclusions and Future Work

In this paper, we propose Chimera, a model capa-
ble of learning a text-speech shared semantic mem-
ory network for bridging the gap between speech
and text representations. Being able to leverage
a large amount of external Machine Translation
data, Chimera achieves new state-of-the-art perfor-
mance on the MuST-C dataset on all 8 languages.
Additional experiment results also demonstrate its
ability to learn a well-structured shared semantic
space as well as effectively share learned knowl-
edge across MT and ST, and validate our design of
auxiliary tasks.

In the future, we will focus on deriving a better
task to tightly align speech and text representations.
Also, the workflows of MT and ST are only par-
tially shared in Chimera, which still requires the
model to adapt to ST when switching to the fine-
tuning stage. So it remains a challenge to better
couple their computation graphs in future designs.
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