
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2199–2213
August 1–6, 2021. ©2021 Association for Computational Linguistics

2199

Neural Combinatory Constituency Parsing

Zhousi Chen, Longtu Zhang, Aizhan Imankulova, and Mamoru Komachi
Tokyo Metropolitan University

6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan
chen-zhousi@ed.tmu.ac.jp vincentzlt@outlook.com

aizhan.imankulova@cogsmart-global.com komachi@tmu.ac.jp

Abstract

We propose two fast neural combinatory mod-
els for constituency parsing: binary and multi-
branching. Our models decompose the bottom-
up parsing process into 1) classification of tags,
labels, and binary orientations or chunks and
2) vector composition based on the computed
orientations or chunks. These models have
theoretical sub-quadratic complexity and em-
pirical linear complexity. The binary model
achieves an F1 score of 92.54 on Penn Tree-
bank, speeding at 1327.2 sents/sec. Both the
models with XLNet provide near state-of-the-
art accuracies for English. Syntactic branching
tendency and headedness of a language are ob-
served during the training and inference pro-
cesses for Penn Treebank, Chinese Treebank,
and Keyaki Treebank (Japanese).

1 Introduction

Transition-based and chart-based methods are
two main paradigms for constituency parsing.
Transition-based parsers (Dyer et al., 2016; Kitaev
and Klein, 2020) build a tree with a sequence of
local actions. Despite their O(n) computational
complexity, the locality makes them less accurate
and necessitates additional grammars or lookahead
features for improvement (Kuhlmann et al., 2011;
Zhu et al., 2013; Liu and Zhang, 2017c). By con-
trast, chart-based parsers are conceptually simple
and accurate when used with a CYK-style algo-
rithm (Kitaev and Klein, 2018; Zhou and Zhao,
2019) for finding the global optima. However, their
complexity is O(n3). To achieve both accuracy
and simplicity (without high complexity) is a criti-
cal problem in parsing.

Recent efforts were made using neural models.
In contrast to earlier symbolic approaches (Char-
niak, 2000; Klein and Manning, 2003), neural mod-
els are simplified by utilizing their adaptive dis-
tributed representation, thereby eliminating compli-

Yet parents demand them .

CC NNS VBP PRP .
#CC NP #VBP NP #.

_S VP #.

_S #.

S

R R

R

R

L L L

L L

L

BiLSTMori
FFNN ori

FFNN label

FFNN tag

FFNN binary

Model Components:

L/R

BiLSTM cxt
or XLNet

Figure 1: Parsing instance with the binary model. The
bottom-up flow of word information is indicated by
blue arrows and orientation flows by dotted red arrows.
Binary parsing explores the internal constituents of S.
Special labels prefixed with “#” or “ ” are sub category
placeholders caused by binarization and stratification.

cated symbolic engineering. The seq2seq model for
parsing (Vinyals et al., 2015) leverages such repre-
sentation to interpret the structural task as a general
sequential task. With augmented data and ensem-
ble, it outperforms the symbolic models mentioned
in Petrov et al. (2006) and provides a complexity
of O(n2) with the attention mechanism (Bahdanau
et al., 2015). However, its performance is infe-
rior to those of specialized neural parsers (Liu and
Zhang, 2017a,b,c). Socher et al. (2013) proposed a
parsing strategy for a symbolic constituent parser
augmented with neural vector compositionality. It
did not outperform the two paradigms in neural
style probably because the neural techniques, such
as contextualization, are not fully exploited. Kitaev
and Klein (2020) showed that a simple transition-
based model with a dynamic distributed represen-
tation, BERT (Devlin et al., 2019), nearly delivers
a state-of-the-art performance.

We propose a pair of greedy combinatory parsers
(i.e., neural combinators) that efficiently utilize vec-
tor compositionality with recurrent components to

2200

(0.7_
↑

_0.3)
↑

BiLSTMchk

(←NP?)
↑

(DP?)
↗ ↖

1 1 0 0 11

(0.3_
↑

0.3
↑

0.1
↑

_0.3)
↑

0 0

forward
backward

FFNNchk

FFNNmulti
with Softmax

FFNNlabel
FFNNtag

1 10 0

Headedness: NP syntactic role from DT or NN?

↑
2nd iteration
w/ the same
components

↓

Stop condition

(0.5_ _0.2)0.3

Parse a long sentence in timesuch

#VBZ

BiLSTMcxt
or XLNet

()
 ↑

PP#VBZ

#PDT #DT #JJ #NN #IN NP

NP

VP

VBZ PDT DT JJ NN IN NN

Figure 2: Multi-branching parsing uses chunks instead
of orientations to form constituents. Chunks impose
Softmax-normalized weights for their inputs. The un-
supervised weights provide a shred of evidence for the
headedness problem (Zwicky, 1985).

address the aforementioned issues. Their bottom-
up parsing process is a recursive layer-wise loop of
classification and vector composition, as illustrated
in Figures 1 & 2. Both parsers work on multiple un-
folded variable-length layers, iteratively combining
vectors until one vector remains. The binary model
provides either left or right orientation for each
word or constituent, whereas the multi-branching
model marks chunks as constituents at their bound-
aries. Constituent embeddings are composed based
on orientations or chunks. Tagging and labeling are
directly performed on all composed embeddings,
creating the elements for building a tree: tags, la-
bels, and paths. The deterministic and greedy char-
acteristics yield two simple and fast models, and
they investigate different linguistic aspects.

The contributions of our study are as follows:

• We propose two combinatory parsers1 at
O(n) average-case complexity with a theo-
retical O(n2) upper bound. The binary parser
achieves a competitive F1 score on Penn Tree-
bank. Both models are the fastest and yet
more compact than many previous models.

• We extend the proposed models with a recent
pre-trained language model, XLNet (Yang
et al., 2019). These models have higher speeds
and are comparable to state-of-the-art parsers.

• The binary model leverages Chomsky nor-
mal form (CNF) factors as a training strategy

1Our code, visualization tool, and pre-trained models are
available at https://github.com/tmu-nlp/nccp

and reflects the branching tendency of a lan-
guage. The multi-branching model reveals
constituent headedness (Zwicky, 1985) with
an attention mechanism.

2 Previous Work

Transition-based parsers. A transducer takes
sequential lexical inputs and produces sequential
tree-constructing actions in O(n) time. Although
it can perfectly parse formal languages, complex se-
mantics and long dependencies make it difficult to
parse natural languages. Informative features (Liu
and Zhang, 2017c; Kitaev and Klein, 2020; Yang
and Deng, 2020), or training and decoding strate-
gies such as dynamic oracles (Cross and Huang,
2016), reranking (Charniak and Johnson, 2005),
beam search, and ensemble, can increase the accu-
racy. However, these make the models complex,
and the paradigm fails to naturally parallelize ac-
tions.

Chart-based parsers. An exhaustive search al-
gorithm checks every possibility in a triangular
chart and finds the optimal tree globally. Recent
neural chart parsers have achieved state-of-the-art
accuracy (Kitaev and Klein, 2018; Zhou and Zhao,
2019; Mrini et al., 2020; Zhang et al., 2020). De-
spite their high accuracy, they are comparatively
inefficient. Only 2n − 1 of O(n2) scoring nodes in
the chart contain true constituents; many are filler
nodes. Chart parsers are often specially engineered
for high-speed decoding. (e.g., using Cython)

Other parsers. Shen et al. (2018) and Nguyen
et al. (2020) proposed local-and-greedy parsers in
the top-down splitting style. Their models facilitate
divide-and-conquer algorithms that construct the
tree based on the magnitude of the splitting scores.
A similar way of leveraging concurrent and greedy
operations appears in an easy-first parser (Goldberg
and Elhadad, 2010). Sequential labeling (Gómez-
Rodrı́guez and Vilares, 2018; Wei et al., 2020) is
a new active thread that also enables parallelism
and fast decoding. Collobert (2011) designed an
iterative chunking process for parsing. His work
stratifies trees into levels of IOBES prefixed con-
stituent chunking nodes. Similar to ours, his parser
works from the bottom levels to higher levels. How-
ever, the complexity is fixed at O(n2) without any
node combinations. All models introduced in this
section do not exploit vector compositionality.

2201

Yet I want Coke

CC PRP VBZ

VP

NNP

NP NP

S

Yet I want Coke

CC PRP VBZ

VP

NNP

NP NP

_S

S

Yet I want Coke

CC PRP VBZ

VP

NNP

NP NP

_S

S

#CC #VBZ

The bottom layer
in binary model

Yet I want Coke

CC PRP VBZ

VP

NNP

NP NP

S

#CC

NP#CC

#VBZ

(Binarized)

(Original)

(Stratified for orientation)

 (Stratified for chunking)

The bottom layer
in multi-branching

model

Orientation signals
R L R L

Chunking signals
1 1 1 0 1

CNF-left

Figure 3: Example illustrating our tree stratification.
Both binary and multi-branching stratified trees contain
redundancy, from which the original tree can be recov-
ered with a few simple heuristic rules. Four in a layer
combine into two with a compression ratio of 1/2.

Category Samples # Types
Original S NP VP SBAR+S 104

Sub S NP VP PP 25
#POS #NNP #DT #JJ #. 45

Table 1: Three categories of our constituent label set
with their samples and number of types. This is created
from Penn Treebank (PTB). ‘ Sub’ and ‘#POS’ are re-
laying types, which we group into a sub category.

3 Neural Combinatory Parsing

3.1 Data and Complexity
Our models require stratified trees to train recurrent
layers, and the binary model requires further bina-
rization. Stratification and binarization introduce
redundant relaying nodes to the trees.

Tree binarization. From the bottom-up perspec-
tive, a binary tree describes the order in which
words and constituents combine with their neigh-
bors into larger constituents, as shown in Figure 3.
The orientations of the four words (i.e., right-left-
right-left) determine the first combination.

After binarization, we label the relaying sub-
constituents with the parent label prefixed with an
underscore mark. If terminal POS tags do not im-
mediately form constituents, we create relaying
placeholders prefixed with a hash mark2, as pre-
sented in Table 1. Unary branches were collapsed
into a single node. Plus marks were used to join
their labels (e.g., SBAR+S), and all trace branches
were removed. The CNF with either a left or a

2Multi-branching trees do not require binarization. The
‘ Sub’ group disappears, but the ‘#POS’ group persists.

CNF Left-factoring Right-factoring
Ori. Left Right Left Right
PTB 3.8M 4.4M 2.3M 6.5M
CTB 2.5M 1.7M 1.4M 2.8M
KTB 4.5M 0.9M 1.8M 2.1M
nCNF Midin-factoring Midout-factoring
PTB 3.0M 5.3M 2.8M 5.2M
CTB 1.9M 2.2M 1.7M 2.1M
KTB 2.8M 1.7M 2.5M 1.2M

Table 2: Frequencies of orientation with different CNF
(biased) and non-CNF (balanced) factors in different
stratified corpora.

5.7x + 0.0037x2

5.7x + 0.0045x2

6.9x + 0.0069x2

6.0x − 0.0036x2

5.3x − 0.0041x2

non−CNF Midin non−CNF Midout

CNF Left CNF Right Multi−branching

0 25 50 75 1000 25 50 75 100

0 25 50 75 100
0

200
400
600

0
200
400
600

Sentence Length

N
um

be
r o

f N
od

es

Figure 4: Linear empirical complexity in stratified PTB.
Linear regression reflects insignificant O(n2) tenden-
cies. We differentiated the quadratic terms with red or
light blue colors and omitted the constant biases.

right factor is commonly used. However, it is
heuristically biased, and trees can be binarized us-
ing other balanced splits such as always splitting
from the center to create a complete binary tree
(mid-out) and iteratively performing left and right
to create another balanced tree (mid-in). Finally,
the orientation is extracted from the paths of these
binary trees.

We binarized Penn Treebank (Marcus et al.,
1993, PTB) for English, Chinese Treebank (Xue
et al., 2005, CTB) for Chinese, and Keyaki Tree-
bank3 (Butler et al., 2012, KTB) for Japanese to
present the syntactic branching tendencies in Ta-
ble 2. As English is a right-branching language,
its majority orientation is to the right. Even left-
factoring cannot reverse the trend, but it should
create a greater balance. Figure 4 shows that it is
less effective to stratify PTB with a right factor
because it enhances the tendency. The reverse ten-
dency emerges in the KTB corpus as Japanese is a
left-branching language. For Chinese, CTB does

3https://github.com/ajb129/
KeyakiTreebank/tree/master/treebank

2202

Top

← Bottom−up combinatory direction

| ← Open Bottom Layers from Long Sentences → |

← layer@0← layer@1

1/2

3/5
2/3
3/4
4/5
8/9

1

2 50 100 150 200 249
Layer Size (CNF−Left Factored PTB)

C
om

pr
es

s
R

at
io

Figure 5: Layer-wise compression ratio over different
sizes. The dot size was proportional to the situation
count. Statistically, the ratio had a stable mean of 0.77.

not exhibit a clear branching tendency. Non-CNF
factors preserve the original tendency.

Complexity. Our models are trained with strati-
fied treebanks. The complexity for inference fol-
lows the total number of nodes in each layer of a
tree. There are two ideal cases: 1) Complete bal-
anced trees with complexity O(n). They contain
multiple independent phrases and enable full con-
currency. 2) Trees with a single dependency core.
The model reduces a constant number of nodes in
each layer, resulting in O(n2) complexity.

While each parse is a mixture of many cases, the
empirical complexity prefers the first case. For-
mally, the average-case complexity can be inferred
as O(n) with the help of a stable compression ratio
0 < C < 1 (C ≥ 0.5 for binary). Let mi repre-
sent the number children of the i-th tree in a gen-
eral layer; the compression ratio can be stated as
C = ∑i 1∑i mi

. Our stratified treebanks give stable Cs
for layers of different lengths, as shown in Figure 5.
For the k-th layer of a sentence with n words, the
number of nodes to compute can be expected to be
C

k ⋅ n. Based on tree height K > 0, the expected
number of total parsing nodes is

K�
k=0

C
k ⋅ n = n ⋅ ∞�

k=0
C

k − n ⋅ ∞�
k=K+1

C
k < n

1 −C .

The partial geometric series determines an empiri-
cally linear complexity on average.

Theoretically, the complexity has a quadratic
upper bound. The general layer with

mi =
�������
M if i = j
1 otherwise

entails the second case, where mj is the only M -
ary branch in each layer. The nodes shape a triangu-
lar stratified tree with an O(n2) complexity. How-
ever, this case is rare, especially for long sentences

Algorithm 1: Combinatory Parsing
1 Function PARSE(e0∶n; t0∶n, l0∶k0∶nk

, o
0∶k
0∶nk

or c
0∶k
0∶nk+1):

2 x
0
0∶n ← BiLSTMcxt(e0∶n)

3 for i← 0 to n − 1 do
4 t̂i ← FFNN tag(x0

i)
5 Ltag ← CROSS-ENTROPY(ti, t̂i)
6 for j ← 0 to k do
7 for i← 0 to nj − 1 do
8 l̂

j
i ← FFNN label(xj

i)
9 Llabel ← CROSS-ENTROPY(lji , l̂

j
i)

10 x
j+1
0∶nj+1 ← COMPOSE(xj

0∶nj
; oj0∶nj

or c
j
0∶nj+1)

11 return t̂0∶n, l̂0∶k0∶nk

that should contain several concurrent phrases. Oth-
erwise, regression in Figure 4 should show signif-
icant O(n2) tendencies. (See Appendix A.1 for
more support and examples.)

Data structure. To summarize the data compo-
nents of a treebank corpus, we used four tensors
of indices for 1) words, 2) POS tags, 3) stratified
syntactic labels, 4) stratified orientations, or 5) strat-
ified chunks,

�x0∶n, t0∶n, l0∶k0∶nk
, o

0∶k
0∶nk

or c
0∶k
0∶nk+1�j ∈D,

where n is the length of the j-th sentence, k indi-
cates the k-th layer of the stratified data, and nk

is the layer length. “:” indicates a range of a se-
quence.

3.2 Combinatory Parsing
Our models comprise four feedforward (FFNN)
and two bidirectional LSTM (BiLSTM) networks
to decompose parsing into collaborative functions,
as shown in Algorithm 1. During training, we use
teacher forcing. In the inference phase, the super-
vised signals behind all semicolons are ignored; the
predicted signals serve as their substitute.

Input e0∶n is an embedding sequence indexed by
x0∶n. In lines 2–5, the model prepares a contextual
sequence for the combinator and predicts the lexi-
cal tags. Lines 6–10 describe the layer-wise loop
of the combinator.

The tagging and labeling functions, FFNNtag
and FFNNlabel, are 2-layer FFNNs. Their first layer
is shared, creating a hidden layer necessary for pro-
jecting diversified situations in the manifold to the
non-zero logits for the argmax decision. The core
function COMPOSE4 is either a binary Algorithm 2
or a multi-branching Algorithm 3.

4COMPOSE with BiLSTM cannot be parallelized to O(1).

2203

Algorithm 2: Binary Compose
1 Function COMPOSE(xj

0∶nj
; oj0∶nj

):
2 h

j
0∶nj
← BiLSTMori(x

j
0∶nj

)

3 for i← 0 to nj − 1 do
4 ô

j
i ← FFNNori(h

j
i)

5 Lori ← HINGE-LOSS(oji , ô
j
i)

6 if i > 0 and ô
j
i−1 + (1 − ôji) > 0 then

7 Append BINARY(ôji−1, ôji , xj
i−1, xj

i) to x
j+1

8 return x
j+1
0∶nj+1

9
10 Function BINARY(oL, oR, xL, xR):
11 if oL + (1 − oR) = 1 then // relay
12 return oL ⋅ xL + (1 − oR) ⋅ xR

13 else // vector interpolation
14 �← � FFNNbinary(xL ⊕ xR)
15 return �⊙ xL + (1 − �)⊙ xR

Algorithm 3: Multi-branching Compose
1 Function COMPOSE(xj

0∶nj
; cj0∶nj+1):

2 �hj
0∶nj

, �hj
0∶nj
← BiLSTMchk(x

j
0∶nj

)

3 Pad �hj
0∶nj

with �hj−1 and �hj
0∶nj

with �hj
nj

4 for i← 0 to nj do
5 ĉ

j
i ← FFNN chk(�hj

i−1 ⊕ �hj
i)

6 Lchk ← HINGE-LOSS(cji , ĉ
j
i)

7 if ĉji = 1 then Append i to s // segment

8 if i < nj then
9 d

j
i ← (�hj

i − �hj
i−1)⊕ (�hj

i − �hj
i+1)

10 for i← 0 to �s� − 1 do
11 Append MULTI(djsi ∶si+1 , xj

si ∶si+1) to x
j+1

12 return x
j+1
0∶nj+1

13
14 Function MULTI(dchk, xchk):
15 �chk ← Softmax(FFNNmulti(dchk))
16 return∑chk

i �i ⊙ xi

Binary model. In Algorithm 2, the orientation
function is hinted by BiLSTMori. A single-layer
FFNNori with a threshold reduces the outputs to an
integer of either 0 or 1 to indicate two possible ori-
entations. In function BINARY, when two adjacent
orientations agree as they sum to 2, their embed-
dings are combined by a combinatory operation. �
is the Sigmoid function, “⊕” represents concatena-
tion, and “⊙” represents pointwise multiplication.
(See Appendix A.3 for more binary variants.)

Multi-branching model. To resemble binary in-
terpolation, we use the Softmax function for each
chunk, as described in Algorithm 3. BiLSTMchk
is in place of BiLSTMori to hint FFNNchk emitting
chunk signals. Segment s splits xj0∶nj

and d
j
0∶nj

into
chunks of xchk and dchk. FFNNmulti and Softmax
turn dchk into attention �chk to interpolate vector
chunk xchk. Binary interpolation � is a special case

of the multi-branching �chk because Sigmoid and
Softmax functions are closely related.

To obtain the final tree representation, we apply
a symbolic pruner in the same bottom-up manner
to remove redundant nodes, expand the collapsed
nodes, and assemble the sub-trees based on the
neural outputs. (See Appendix A.4.)

4 Experiments

We follow previous data splits for PTB, CTB, and
KTB (See Appendix A.2). The preprocessing of
data is described in Section 3.1.

For the binary model, we explored interpolated
dynamic datasets by sampling two CNF factored
datasets. This is because of the following: 1) The
experiments with the non-CNF factors did not yield
any promising results; thus, we have not reported
them. 2) The language was loosely left-branched,
right-branched, or did not show a noticeable ten-
dency. Moreover, the use of a single static dataset
may introduce a severe orientation bias. 3) All fac-
tors are intermediate variables and equally correct.
We defined the sampling strategies with two static
CNF-factored datasets at certain ratios and named
each strategy in the format “L%R%” according
to the ratio percentages. Our experiments mainly
focus on binary model B because of the aforemen-
tioned property for training parsers more accurate
than multi-branching model M.

Our parsers do not contain lexical information
components (Liu and Zhang, 2017c; Kitaev and
Klein, 2018). Instead, we use fastText (Bojanowski
et al., 2017) because we can obtain pre-trained
models easily for many languages or train new
ones from scratch with the corpora at hand. We
examined its influence in Section 4.2, whereas the
official pre-trained embeddings are the default.

Meanwhile, pre-trained language models are use-
ful for various tasks, including constituency pars-
ing (Kitaev and Klein, 2018, 2020; Zhou and Zhao,
2019; Yang and Deng, 2020; Mrini et al., 2020).
We chose XLNet (Yang et al., 2019) to compare
with the static fastText embeddings. Specifically,
either a 1-layer FFNN (/0) or an n-layer BiLSTM
(/n+) was used to convert the 768-unit output to our
model size. We used a GeForce GTX 1080 Ti with
11 GB and a TITAN RTX with 24GB memory only
for tuning XLNet.

The model size for vector compositionality was
set at 300. The hidden sizes for labeling, orien-
tation, and chunking were 200, 64, and 200, re-

2204

●
●

●

● ●
●

●

●
●

●

●
●

●
●

●
●
●

●
●

●
●

●●
●

●

●
●

●●●

●
●

●

●
●
●

●

0.1

0.3

0.5

0.7

Max.Tag −0.3 0 0.3 Max.Label
Difference of Tag and Label Loss Coefficients

O
rie

nt
at

io
n

Lo
ss

 C
oe

ffi
ci

en
t

91.0

91.5

92.0

92.5Max.Orientation (0.2, 0.3, 0.5)

Figure 6: Grid search with an interval of 0.1 in a space
of (tag, label, orientation) loss coefficients. The best
was (0.2, 0.3, 0.5) indicated by an arrow.

spectively. Different numbers of layers of the
BiLSTMcxt (/n) were explored, and the default
was six layers. HINGE-LOSS was the default cri-
terion for orientation while binary cross-entropy
(BCE-LOSS) was tested. The coefficients of the
three losses were explored and the default were
L = 0.2 ⋅Ltag + 0.3 ⋅Llabel + 0.5 ⋅Lori (or chk).
4.1 Overall Results
Table 3 lists the parsing accuracies and speeds of
the single models in ascending order according to
their F1 scores for the PTB corpus. The transition-
based parsers with O(n) complexity appear at the
top of the table, followed by other types of mod-
els, and the chart parsers running in O(n3) time
are at the bottom of the table. The models exhib-
ited similar trends for the CTB. Shen et al. (2018)
and our models belong to type O and have similar
complexities. Generally, the accuracy follows the
complexity, whereas the speed roughly follows the
year of publication rather than complexity or type.

4.2 Comparison of Models
Models with fastText. We investigated the bi-
nary model through ablation. The impacts of fast-
Text are presented in the upper part of Table 4.
B/E does not require any external data beyond
PTB, which is comparable to models without a
pre-trained GloVe (Pennington et al., 2014).

Then, we replaced BiLSTMori with an FFNN to
examine its effect. The results are in the bottom
rows. The comparison proves whether the embed-
dings are collaborative for the orientation signals
because FFNN regards each input independently.

Finally, we used a grid search to explore the
hyperparameter space of our three-loss coefficients.

●●
●●●●●●

●
●

●

●

●●
●●●

●
●

●●

●●

●●

●●●
●●

●●

●●●●●

●

●●●●●

PTB − en
C

TB − zh
KTB − jp

Left L75R25 L50R50 L25R75 Right

91

92

85

86

84

86

BiLSTMcxt
● 6−layer

8−layer

F1

Figure 7: Probabilistic interpolations of two CNF fac-
tors to F1 scores. The capacity of BiLSTMcxt is almost
saturated with 6 or 8 layers.

Figure 6 shows that the performance correlates to
the orientation loss the most, but it is not overly
sensitive to the hyperparameters.

Pre-trained language model. We compared the
results using frozen fastText with those using
frozen XLNet5 in Table 5. The accuracy of
the model increased along with the depth of
BiLSTMcxt, and it exhibited the most significant
increase across all variants. Owing to XLNet, our
complexities grew to O(n2).

We fine-tuned our models6 and compared them
with other parsers using fine-tuned language mod-
els. These are listed in Table 6.

4.3 Tree-Binarization Strategy

To reflect the branching tendency, our best sin-
gle model for PTB was obtained on the dynamic
L95R05 dataset. This dataset is a probabilistic in-
terpolation between the left-factored dataset (for
95% chances) and a right-factored dataset (for 5%
chances) in Figure 7. The best model for CTB ap-
peared on the left side at L70R30, scoring 86.14,
whereas the best for KTB was on the L30R70
dataset, scoring 87.05 with a 6-layer BiLSTMcxt.
Typically, the results for all the corpora had a mini-
mum at L50R50. For English, the left “wing” was
higher than the right; the opposite trend was ob-
served for Japanese. For Chinese, no clear trend
was obtained.

All studies described in the previous sections
were conducted on the PTB L85R15 dataset.

5XLNet tokenizes words into sub-word fractions. For the
frozen XLNet, using leftmost, rightmost, or averaged sub-
word embeddings as the word input yielded similar results.

6For the fine-tuned XLNet, using either the leftmost or
rightmost sub-word yielded similar results earlier. However,
averaging sub-words produced F1 scores under 94.

2205

Corpus Penn Treebank Chinese Treebank
Single Model Type sents/sec LP LR F1 Type LP LR F1
Watanabe and Sumita (2015) T↑ (32) - - - 90.7 T↑ (64) - - 84.3
Gómez-Rodrı́guez and Vilares (2018) O 898 - - 90.7 O - - 83.1
Cross and Huang (2016) T↑ (1) - 92.1 90.5 91.3 - - - -
Liu and Zhang (2017c) T↓ (16) 79.2 92.1 91.3 91.7 T↓ (16) 85.9 85.2 85.5
Stern et al. (2017) C 75.5 93.0 90.6 91.8 - - - -
Shen et al. (2018) O↓ (1) 111.1 92.0 91.7 91.8 O↓ (1) 86.6 86.4 86.5
Charniak and Johnson (2005) C - - - 92.1 - - - -
Ours (multi-branching) O↑ (1) 1122.6 92.1 92.1 92.1 O↑ (1) 86.0 84.7 85.3
Ours (binary) O↑ (1) 1327.2 92.8 92.3 92.5 O↑ (1) 85.8 86.2 86.0
Nguyen et al. (2020) O↓ (1) 130.2 92.8 92.8 92.8 - - - -
Kitaev and Klein (2018) C 212.5 93.9 93.2 93.6 C 91.9 91.5 91.7
Wei et al. (2020) O↓ (1) 155 94.1 93.3 93.7 O↓ (1) 89.9 87.4 88.7
Zhou and Zhao (2019) C 226.3 93.9 93.6 93.7 C 92.3 92.0 92.2
Zhang et al. (2020) C 1092 94.2 94.0 94.1 C 89.7 89.9 89.8

Table 3: Single-model results on PTB and CTB test datasets sorted by the F1 scores on PTB. Transition-based
parsers, chart parser, and others are marked as T, C, and O, respectively; ↑ and ↓ denote bottom-up and top-down.
The number in brackets indicates the beam size. Kitaev and Klein (2018) used Tesla K80, and the CTB scores are
cited from Kitaev et al. (2019). Zhou and Zhao (2019) used GeForce GTX 1080 Ti (same condition).

Var Specification F1
B/e without fastText initialization. 91.73
B/✏ with tuned official fastText. 91.69
B/E with frozen fastText from PTB. 92.31
B/F BiLSTMori into FFNN�ori. 88.97
B/L BiLSTMori with BCE-LOSS. 92.32

Table 4: Results of ablation studies on fastText (top)
and BiLSTMori (bottom) of the binary model.

Frozen fastText Frozen XLNet
Var F1 sents/sec F1 sents/sec
B/0 65.02 1386.6 89.24 411.2
B/2 91.34 1350.0 93.74 398.4
B/6 92.54 1327.2 93.89 382.7

Table 5: Effectiveness of using frozen static word em-
beddings or dynamic sub-word language model and
corresponding peak speed.

4.4 Complexity and Speed

To test our linear speed advantage, we inflated our
training data with redundant nodes to resemble the
triangular chart of CYK algorithm, as depicted in
Figure 8 and Table 7. The parse in the triangular
treebank has the worst-case complexity of O(n2).
Meanwhile, training with linearity halved the train-
ing time, reduced memory usage, and canceled the
length limit for our three corpora. There is a sheer
difference between linearity and squared complex-
ity.

Fine-Tuned Model F1 sents/sec Type
Kitaev and Klein (2018) 95.13 70.8 C
Kitaev and Klein (2020) 95.44 1200 T
Nguyen et al. (2020) 95.48 - O↓
Zhang et al. (2020) 95.69 - C
Wei et al. (2020) 95.8 - O↓
Zhou and Zhao (2019) 96.33 64.8 C
Yang and Deng (2020) 96.34 71.3 T
Mrini et al. (2020) 96.38 59.2 C
B/0 (XLNet+FFNN) 95.72 411.2 O↑
B/2 (XLNet+BiLSTM) 94.67 398.4 O↑
M/0 (XLNet+FFNN) 95.44 369.4 O↑

Table 6: Improvements with pre-trained language mod-
els. We used a greedy search algorithm on single
GeForce GTX 1080 Ti. Rows 6–8 are reported by Yang
and Deng (2020) using GeForce GTX 2080 Ti. Kitaev
and Klein (2020) used a cloud TPU with a beam search
algorithm and a larger batch size.

5 Discussion

5.1 Model Structure

Our parsers comprise a neural encoder for scoring
(i.e., Algorithm 1) and a non-neural decoder for
searching. The decoder is a symbolic extension of
the encoder in that both run in bottom-up manner,
and the decoder interprets the scores as local-and-
greedy decisions. Other neural parsers also fit a
similar encoder–decoder framework. However, de-
coders with dynamic programming often include
forward and backward processes heterogeneous to

2206

200

400

600

800

0 25 50 75 100
Training Batch Length

Sp
ee

d
(s

en
ts

/s
ec

)
Stratified Triangular

Yet I want Coke

CC PRP VBZ

VP

NNP

NP NP

_S

#CC #VBZ

VP

S

<0>

_S

(Triangular)

Figure 8: Linear complexity vs. squared complexity.
Redundancy with placeholder “<0>” helps maintain
the triangular shape.

Format Time/150 Memory OOM
Stratified 7.5 hours 3.3 GB -

Triangular 15.9 hours 8.2 GB 100

Table 7: Training time and memory consumed by our
two data formats. The time column indicates the time
used for 150 training epochs with validations. Devel-
opment F1 scores are approximately 92.4. The OOM
column lists the length limit for preventing an out-of-
memory error. Kitaev and Klein (2018) took 10 hours
for 93 training epochs on our GeForce GTX 1080 Ti to
yield their results.

their forward encoders (Kitaev and Klein, 2018,
2020). The encoder and decoder in our model
and Shen et al. (2018) are more homogeneous and
can be easily merged. Our parsers are bottom-up
combinatory, while theirs was top-down splitting.
Similar homogeneity can be found in an easy-first
dependency parser (Goldberg and Elhadad, 2010).

Input component. In terms of encoder, Tables
4–6 examine the impact of BiLSTMcxt with fast-
Text or XLNet, and the following conclusions can
be drawn. 1) The top rows of Table 4 suggest that
frozen fastText embeddings contain sub-word in-
formation, whereas tuning them disturbs the frozen
information because the n-gram model is not part
of our model. 2) Table 5 shows that the deeper
the contextualization BiLSTMcxt (or XLNet), the
better the results. 3) Tables 5 and 6 indicate that the
tuning process for the pre-trained language mod-
els (Peters et al., 2018; Devlin et al., 2019; Yang
et al., 2019) achieves a significant improvement.

Speed and size. One of our research goals was
to achieve simplicity and efficiency. In terms of
speed, our models parallelize more actions than
transition-based parsers and have fewer computing
nodes than chart parsers. In terms of size, our
models contain approximately 4M parameters in
addition to the 13M fastText (or 114M XLNet)
pre-trained embeddings, which is fewer than those

●

●
● ●

●

●
●

●
●

● ●
●

●

●

224 725 795 465 162 35 9

88
90
92
94
96

0−9 10−19 20−29 30−39 40−49 50−59 60−69

Number of Test Samples

Sentence Length Bins

F1
 S

co
re

binary multi−branching
● XLNet fastText+BiLSTM

Figure 9: XLNet provides an overall improvement for
all models and length bins. All models find it challeng-
ing to handle long sentences.

of Shen et al. (2018, 22M+) and Kitaev and Klein
(2018, 26M). The recursiveness and productiveness
of vector compositionality should account for the
compact size.

Vector compositionality. The performance of
FFNN�ori is inferior to that of its RNN counterparts,
suggesting that some information might not be en-
coded locally. Thus, the COMPOSE function should
remain in a contextual form to collaboratively lever-
age the whole layer. However, BiRNN might still
be a bottleneck for long-range orientation, as sug-
gested in Figure 9. BiLSTMchk is a major weak-
ness of the multi-branching model, especially for
longer sentences.

5.2 Tree Binarization and Headedness
Tree binarization. Probabilistic interpolation
with two CNF-factored datasets is effective for the
three languages studied, as shown in Figure 7. Dy-
namic sampling allows the model to cover a wider
range of composed vectors to improve its robust-
ness to ambiguous orientations. Furthermore, it
seems counterintuitive for human learners to obtain
the best model using left-biased interpolation for a
right-branching language or vice versa. However,
for a neural model, balancing the frequency seems
to be the key factor for improving performance
(Sennrich et al., 2016; Zhao et al., 2018). The fact
that the L50R50 dataset yielded the worst models
also suggests that the balance should be based on
a default orientation tendency. This could also be
the reason why mid-in or mid-out did not improve
the model.

Headedness. Figure 10 show the intermediate
parses on the same sentence from our two models.
They are typical examples in the output.

The binary model first combines determiners
and their right neighbors rather than adjectives and
nouns in noun phrases (blue spans). It also post-

2207

 !""""""""""""S""""""""""""""""""#
 !""""""""""""""""""$"""""""""""""""# %
 S+VP VP %
 !""""""""""""$""""""""# !"""""""$""""""# %
 % NP % VP %
 % !"""""""$"""""# % !"""""$"""""# %
 % % PP % !""""$"""# % %
 % NP !"""$""""# % % NP % %
 % !""""$""""# % NP % % !""$"""# ADVP %
 % !""$""# % % !""$""# % % !"$"# % % %
 VBG DT JJ NNS IN NN NNS VBZ VBN DT JJ NN RB .
Predicting the financial results of computer firms has been a tough job lately .

 !""""""""""""""""""""""""S""""""""""&"""""""""""""""""#
 S+VP(36%) VP(35%) 28%
 !"""""""""$"""""""""# % %
 57% NP(43%) % %
 % !"""""""$"""""""# !"""""$"""""# %
 % NP(56%) PP(44%) 62% VP(38%) %
 % % !"""$""""# % !"""""""'""""""""# %
 % % 62% NP(38%) % 57% NP(21%) 22% %
 % !""""'""""""# % !""$""# % % !"""'"""# % %
 % 48% 18% 34% % 55% 45% % % 47% 20% 34% ADVP %
 % % % % % % % % % % % % % %
 VBG DT JJ NNS IN NN NNS VBZ VBN DT JJ NN RB .
Predicting the financial results of computer firms has been a tough job lately .

Figure 10: English internal constituents (top) and head-
edness (bottom) from our two models.

Parent (#) Head child by maximum weight
NP (14.4K) DT (4.5K); *NP (4.3K); *NNP (1.6K);

*JJ (922); *NN (751); *NNS (616);
etc. (1.6K; 38 of 50 types with “*”)

VP (6.8K) VBD (1.5K); VB (1.4K); VBZ (1.0K);
VBN (954); VBP (705); MD (523);
VBG (387); VP (169); TO (81); etc.

PP (5.5K) IN (5.0K); TO (397); etc.
S (3.8K) VP (3.4K); S (194); NP (90); etc.
SBAR (1.2K) IN (649); WHNP (395); WHPP (19);

WHADVP (121); SBAR (15); etc.
ADVP (278) RB (181); IN (30); RBR (25); etc.
QP (198) CD (67); IN (65); RB (29); JJR (16);

Table 8: English headedness selection with our multi-
branching model on PTB test set. “*” marks the ab-
sence of a DT child for its NP sisters. For quantifier
phrases (QP), some non-quantifiers are more likely to
be heads if they appear; e.g., adverbs (RB; e.g., “ap-
proximately”), prepositions (IN; e.g., “about”), and rel-
ative adjectives (JJR; e.g., “more than”).

pones the combination with adjuncts such as punc-
tuation and adverb (red spans). The high frequen-
cies of determiners in noun phrases make them
great attractors.

On the other hand, the multi-branching model
places close attention on what the syntactic head is
supposed to be. In the noun phrases, determiners
receive the highest weight averages (red), and the
nouns obtain the second (blue). This phenomenon
suggests that an English noun phrase’s syntactic
role is mainly projected from the determiners, as
discussed by Zwicky (1985). Table 8 provides
more statistical support. For example, the model
selects DT as an NP head if it is available; other-
wise, nouns and adjectives are prominent heads.
Chinese and Japanese parsers work similarly for
their headedness. (See Appendix A.5.)

(Forced root→) S
┌──────┬─────┬─┴─┬────┬─────┬─┐
 (stop iteration)
│ NP │ │ NP │ │
│ │ │ │ │ │ │
│ NP │ │ NP │ │
│ ┌─┴─┐ │ │ ┌──┴──┐ │ │
`` JJ NN VBD IN DT NN JJ .
 `` Margin debt was at a record high .

Figure 11: Failed parse from the multi-branching
model. The model stops parsing and saves computa-
tions when it repeats the same chunking positions.

5.3 Error Analysis
The rate of an invalid parse is the last topic that
we consider for our parsers. For the binary parser,
fatal errors, such as frame-breaking orientations,
appear at an early stage of training. However, the
late 90% of training time contains very few errors,
and our binary model is free from invalid parsing
on the test set. For the multi-branching parser, it is
observed that 11 out of 2,416 test parses are forests
rather than parse trees when they are trained with
fastText. However, the multi-branching parser with
fine-tuned XLNet reduces the error count on the
test set to 1.

We present a failed multi-branching parse with
fastText, as shown in Figure 11. The postnominal
adjective “high” is uncommon for English. Be-
cause the model did not group it with the adjacent
“a record” to form an NP, the error propagated to
higher layers (e.g., no PP as an adjunct to form a
VP), causing the bad parse. It implies that the multi-
branching model requires an appropriate predict-
argument configuration to chunk.

6 Conclusion

We proposed a pair of neural combinatory con-
stituency parsers. The binary one yields F1 scores
comparable to those of recent neural parsers. The
multi-branching one reveals constituency headed-
ness. Both are simple and efficient with relatively
high speeds. We also leveraged a pre-trained lan-
guage model and CNF factors to increase the ac-
curacy. We reflected the branching tendencies of
three languages.

Acknowledgments

We extend special thanks to our reviewers for in-
valuable comments and Hayahide Yamagishi for
initial discussions. This work has been partly sup-
ported by the Grant-in-Aid for Scientific Research
from the Japan Society for the Promotion of Sci-
ence (JSPS KAKENHI); Grant Number 19K12099.

2208

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of

the 3rd International Conference on Learning Rep-

resentations.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-

tion for Computational Linguistics, 5:135–146.

Alastair Butler, Tomoko Hotta, Ruriko Otomo, Kei
Yoshimoto, Zhen Zhou, and Hong Zhu. 2012.
Keyaki Treebank: phrase structure with functional
information for Japanese. In Proceedings of Text An-

notation Workshop, 2012.

Eugene Charniak. 2000. A Maximum-Entropy-
Inspired Parser. In Proceedings of 6th Applied Nat-

ural Language Processing Conference, pages 132–
139.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. In Proceedings of the Conference of the

43rd Annual Meeting of the Association for Compu-

tational Linguistics, pages 173–180.

Ronan Collobert. 2011. Deep Learning for Efficient
Discriminative Parsing. In Proceedings of the Four-

teenth International Conference on Artificial Intelli-

gence and Statistics, volume 15 of JMLR Proceed-

ings, pages 224–232.

James Cross and Liang Huang. 2016. Span-Based Con-
stituency Parsing with a Structure-Label System and
Provably Optimal Dynamic Oracles. In Proceedings

of the 2016 Conference on Empirical Methods in

Natural Language Processing, pages 1–11.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference

of the North American Chapter of the Association

for Computational Linguistics: Human Language

Technologies, pages 4171–4186.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent Neural Net-
work Grammars. In Proceedings of the 2016 Con-

ference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Lan-

guage Technologies, pages 199–209.

Yoav Goldberg and Michael Elhadad. 2010. An Effi-
cient Algorithm for Easy-First Non-Directional De-
pendency Parsing. In Human Language Technolo-

gies: Conference of the North American Chapter of

the Association of Computational Linguistics, pages
742–750.

Carlos Gómez-Rodrı́guez and David Vilares. 2018.
Constituent Parsing as Sequence Labeling. In Pro-

ceedings of the 2018 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1314–
1324.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Mul-
tilingual Constituency Parsing with Self-Attention
and Pre-Training. In Proceedings of the 57th Confer-

ence of the Association for Computational Linguis-

tics, pages 3499–3505.

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In Proceedings

of the 56th Annual Meeting of the Association for

Computational Linguistics, pages 2676–2686.

Nikita Kitaev and Dan Klein. 2020. Tetra-Tagging:
Word-Synchronous Parsing with Linear-Time Infer-
ence. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics,
pages 6255–6261.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate Unlexicalized Parsing. In Proceedings of the

41st Annual Meeting of the Association for Compu-

tational Linguistics, pages 423–430.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic Programming Algorithms
for Transition-Based Dependency Parsers. In Pro-

ceedings of the 49th Conference of the Association

for Computational Linguistics, pages 673–682.

Jiangming Liu and Yue Zhang. 2017a. Encoder-
Decoder Shift-Reduce Syntactic Parsing. In Pro-

ceedings of the 15th International Conference on

Parsing Technologies, pages 105–114.

Jiangming Liu and Yue Zhang. 2017b. In-Order
Transition-based Constituent Parsing. Transactions

of the Association for Computational Linguistics,
5:413–424.

Jiangming Liu and Yue Zhang. 2017c. Shift-Reduce
Constituent Parsing with Neural Lookahead Fea-
tures. Transactions of the Association for Compu-

tational Linguistics, 5:45–58.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-

tional Linguistics, 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed Rep-
resentations of Words and Phrases and their Compo-
sitionality. In Advances in Neural Information Pro-

cessing Systems 26, pages 3111–3119.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking Self-Attention: Towards Inter-
pretability in Neural Parsing. In Proceedings of the

2020 Conference on Empirical Methods in Natural

Language Processing, pages 731–742.

2209

Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq R.
Joty, and Xiaoli Li. 2020. Efficient Constituency
Parsing by Pointing. In Proceedings of the 58th An-

nual Meeting of the Association for Computational

Linguistics, pages 3284–3294.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language

Processing, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference

of the North American Chapter of the Association

for Computational Linguistics: Human Language

Technologies, pages 2227–2237.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and
Interpretable Tree Annotation. In Proceedings of

the 21st International Conference on Computational

Linguistics and 44th Annual Meeting of the Associ-

ation for Computational Linguistics, pages 433—-
440.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-

nual Meeting of the Association for Computational

Linguistics, pages 1715—-1725.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron C. Courville, and Yoshua Ben-
gio. 2018. Straight to the Tree: Constituency Pars-
ing with Neural Syntactic Distance. In Proceedings

of the 56th Annual Meeting of the Association for

Computational Linguistics, pages 1171–1180.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with Compo-
sitional Vector Grammars. In Proceedings of the

51st Annual Meeting of the Association for Compu-

tational Linguistics, pages 455–465.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A Minimal Span-Based Neural Constituency Parser.
In Proceedings of the 55th Annual Meeting of the As-

sociation for Computational Linguistics, pages 818–
827.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015. Gram-
mar as a Foreign Language. In Advances in Neu-

ral Information Processing Systems 28, pages 2773–
2781.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based Neural Constituent Parsing. In Proceedings

of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing

of the Asian Federation of Natural Language Pro-

cessing, pages 1169–1179.

Yang Wei, Yuanbin Wu, and Man Lan. 2020. A Span-
based Linearization for Constituent Trees. In Pro-

ceedings of the 58th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 3267–
3277.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese TreeBank: Phrase
structure annotation of a large corpus. Natural Lan-

guage Engineering, 11(2):207–238.

Kaiyu Yang and Jia Deng. 2020. Strongly Incremental
Constituency Parsing with Graph Neural Networks.
In Advances in Neural Information Processing Sys-

tems 33: Annual Conference on Neural Information

Processing Systems 2020.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. CoRR, abs/1906.08237.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020.
Fast and Accurate Neural CRF Constituency Pars-
ing. In Proceedings of the Twenty-Ninth Interna-

tional Joint Conference on Artificial Intelligence,
pages 4046–4053.

Yang Zhao, Jiajun Zhang, Zhongjun He, Chengqing
Zong, and Hua Wu. 2018. Addressing Troublesome
Words in Neural Machine Translation. In Proceed-

ings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 391–400.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar Parsing on Penn Treebank. In
Proceedings of the 57th Conference of the Associ-

ation for Computational Linguistics, pages 2396–
2408.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and Accurate Shift-
Reduce Constituent Parsing. In Proceedings of the

51st Annual Meeting of the Association for Compu-

tational Linguistics, pages 434–443.

Arnold M. Zwicky. 1985. Heads. Journal of Linguis-

tics, 21(1):1–29.

2210

 X
!"#"$"#"%
X X X X X

 X
 !"&%
 sub X
 !"&% '
 sub X X
 !"&% ' '
sub X X X
!&% ' ' '
X X X X X

 X
!&"%
X sub
' !&"%
X X sub
' ' !&"%
X X X sub
' ' ' !&%
X X X X X

 X
!""&"%
X sub
' !&""%
X sub X
' !"&% '
X X sub X
' ' !&% '
X X X X X

 X
 !"&""%
 sub X
 !"&"% '
sub sub X
!&% !&% '
X X X X X

 X
!"$"""%
X X X
' ' !"$"""%
X X X X X
' ' ' ' !"$"%
X X X X X X X

A flat tree

CNF-left CNF-right

nCNF-midin nCNF-midout

A multi-branching
tree with a single
dependency core:

an caseO(n2)

Binarization

Figure 12: Examples used in the content. A flat tree is
binarized with four factors. The binarization of CNF-
left, CNF-right, or nCNF-midin creates binary trees
with a single dependency core (i.e., a single sub thread),
whose O(n2) complexity is the same with the tree with-
out binarization in the lower left. Most nodes are relay-
ing nodes. Meanwhile, nCNF-midout enables concur-
rent phrases with O(n) complexity (i.e., multiple sub

threads). However, the division tends to break a con-
stituent into ungrammatical pieces, which confuses the
model and does not lead to improvement.

 X
 !""#$#"#"%
 X X X X X
 !"$% & & & &
 X X X X X X
!$% & & & & &
X X X X X X X

 X
 !""$""%
 X sub
 !"$% &
 X X sub
 !$% & !"#$#"%
 X X X X X X X

Figure 13: Adding sub nodes to make flat structure
more efficient. Using the strategy as a new dynamic
dataset also brings multi-branching model M a stable
accuracy improvement with an F1 score of 92.36 on
PTB. However, it has nothing to do with linguistic prop-
erties. We save it for a future study.

A Appendices

A.1 Compression Ratios and Linearity

Figure 12 presents examples for tree binarization
and the worst case of O(n2) complexity. Figure 14
shows the overall linear data complexities in the
three languages. Figures 15 & 16 and Table 9
indicate that, given a language and a factor, the
compression ratio is stable and seldom affected by
the sentence length.

The regressions for PTB and CTB show weak
O(n2) tendencies; the quadratic coefficients can be
either positive or negative. Meanwhile, KTB falls
into the worst case, as shown in Figure 14. This
is because KTB trees tend to have a flat structure

on the right side of parses, as illustrated in Figure
17. Relaying nodes in the flat structure never com-
bine until the final layer, creating strong O(n2)
tendencies. As a result, all KTB datasets fall into
the worst case, especially when binarized with the
CNF-left factor.

A preprocess that groups the flat structure into
the sub category can prevent considerable quadratic
impacts on all datasets. All O(n2) tendencies are
largely weakened across three corpora, and all lin-
ear coefficients drop significantly, as illustrated on
the right of Figure 14. The preprocess cannot erad-
icate the worst case in KTB. However, all linear
coefficients’ magnitudes are at least hundreds of
times larger than those of the quadratic terms. In
our sub-quadratic case, 200 words lead to approx-
imately 1.5K nodes. Meanwhile, a sentence with
n words has a triangular chart with n(n+1)

2 nodes,
whose quadratic coefficient is 0.5. In this case, 200
words lead to approximately 20K nodes.

A.2 Experiment Setting
The treebanks PTB and CTB have been widely
used for experiments. For PTB, sections 2-21 were
used for training, section 22 for development, and
section 23 for testing. For CTB, articles 001-270
and 440-1151 were used for training, 301-325 for
development, and 271-300 for testing. There is
no widely accepted data split for the KTB corpus,
except for some probabilistic divisions, because
KTB contains mixed data from sources such as
newswires, book digests, and Wikipedia. We ran-
domly reserved 2,075 samples for development,
1,863 samples for testing, and the remaining 3.3
million as training samples. Few sentences in
the training sets were longer than 100 words (3
of 40K in PTB; 96 of 17K in CTB; 55 of 33K
in KTB). Frozen English (wiki.en.bin), Chinese
(cc.zh.300.bin), and Japanese (cc.ja.300.bin) em-
beddings were used for PTB, CTB, and KTB, re-
spectively7. We fed fastText with the PTB text to
train cbow instead of skipgram embeddings for
B/E with their default settings for 50 epochs.

The batch size was 80, and sentences longer
than 100 words were excluded for the triangular
data to avoid out-of-memory (OOM) errors on a
single GeForce GTX 1080 Ti with 11 GB. We froze
XLNet to train our model and then tuned XLNet
from the 5-th epoch. We doubled the batch size at
the inference phase to 160.

7https://fasttext.cc/

2211

5.7x + 0.0037x2

5.0x + 0.0073x2

8.8x + 0.0306x2

6.9x + 0.0069x2

5.4x + 0.0066x2

5.5x + 0.0087x2

5.7x + 0.0045x2

5.0x + 0.0058x2

7.5x + 0.0109x2

6.0x − 0.0036x2

5.0x − 0.0011x2

5.0x + 0.0085x2

5.3x − 0.0041x2

4.4x − 0.0003x2

5.0x + 0.0084x2

CNF Left CNF Right nCNF Midin nCNF Midout Multi.

PTB
C

TB
KTB

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

0
500
1K

1.5K
2K

0
500
1K

1.5K
2K

0
500
1K

1.5K
2K

Sentence Length

N
um

be
r o

f N
od

es

5.3x + 0.0007x2

4.6x − 0.0001x2

4.1x + 0.0052x2

5.3x + 0.0006x2

4.6x − 0.0001x2

4.2x + 0.0052x2

5.3x − 0.0005x2

4.6x − 0.0003x2

4.1x + 0.0052x2

5.2x − 0.0033x2

4.3x − 0.0012x2

3.9x + 0.005x2

4.5x − 0.0049x2

3.8x − 0.0022x2

3.1x + 0.0032x2

CNF Left CNF Right nCNF Midin nCNF Midout Multi.
PTB

C
TB

KTB

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

0
500
1K

1.5K
2K

0
500
1K

1.5K
2K

0
500
1K

1.5K
2K

Sentence Length

N
um

be
r o

f N
od

es

Figure 14: Left: the empirical complexities related to Figures 15 & 16. Linear regressions are shown on a light
blue background when the quadratic terms are negative. Right: resultant complexities after a preprocessing that
groups the flat structure into sub-constituent before stratification. (See Figure 13.)

Factor Left Right Midin Midout Multi.
All layers

PTB 0.77 ±0.11 0.79 ±0.11 0.78 ±0.11 0.77 ±0.11 0.73 ±0.20
CTB 0.77 ±0.11 0.77 ±0.11 0.76 ±0.11 0.74 ±0.11 0.70 ±0.20
KTB 0.82 ±0.12 0.75 ±0.12 0.79 ±0.12 0.73 ±0.12 0.69 ±0.29

Layers longer than 40
PTB 0.78 ±0.04 0.80 ±0.04 0.77 ±0.04 0.74 ±0.04 0.69 ±0.08
CTB 0.79 ±0.04 0.80 ±0.04 0.78 ±0.04 0.77 ±0.04 0.76 ±0.07
KTB 0.90 ±0.04 0.80 ±0.05 0.86 ±0.04 0.77 ±0.06 0.84 ±0.07

Table 9: Mean and standard deviation of compression ratios of Figures 15 & 16. Longer layers have converged
deviations. The last column came from the multi-branching treebanks without a binarizing factor.

We used the Adam optimizer with a default learn-
ing rate of 10−3, while we opted for the XLNet’s
Adam hyperparameters when tuning the pre-trained
XLNet (e.g., their learning rate was 10−5). We
adopted a warm-up period for one epoch and a lin-
ear decrease after the 15-th decrease since the last
best evaluation. The recurrent dropout rate was
0.2; other dropout probabilities for FFNNs were
set to 0.4. For model selection, the training process
terminated when the development set did not im-
prove above the highest score after 100 consecutive
evaluations. The Evalb program8 was used for F1
scoring.

We demonstrated score profiles for our main
models in Table 10. The discrepancy in F1 scores
and difference between precision and recall are
relatively small on the PTB development and test
sets.

A.3 Variants of Binary Compose
If we choose the relay instruction in line 12 of
Algorithm 2, additive vector compositionality is
retained (Mikolov et al., 2013) as the naı̈ve ADD

8https://nlp.cs.nyu.edu/evalb/

Input Development Test
Comp. M. F1 P −R F1 P −R
Frozen B 92.50 0.00 92.54 +0.56
fastText M 92.10 −0.35 92.10 −0.03
Tuned B 95.64 −0.05 92.72 +0.19
XLNet M 95.34 −0.15 92.44 +0.30

Table 10: F1 scores and differences in precision and
recall (P −R) on the PTB development and test sets.

variant in lines 5–6 of Algorithm 4. The model can
infer a full tensor tree; however, ADD causes the
vector magnitude to increase with the tree height
cumulatively. This is unwanted in the recurrent or
recursive neural network.

Therefore, we examined a learnable FFNNmulti

with Sigmoid activation to perform gate-style in-
terpolation in five variants NS, NV, CS, CV, and
BV as described in lines 8–17. When a variant
takes no input and produces a scalar interpolation
parameter �, we consider this case NS. (“�” is a
placeholder for no input.) Meanwhile, CV indi-
cates concatenated input and vectorized interpola-
tion. BV is a variant that involves a biaffine tensor

2212

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Non−CNF Midout

Non−CNF Midin

CNF Right

CNF Left

2 50 100 150 200 249

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

Layer Size (Binarized PTB)

C
om

pr
es

s
R

at
io

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Non−CNF Midout

Non−CNF Midin

CNF Right

CNF Left

2 50 100 150 200 240

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

Layer Size (Binarized CTB)

C
om

pr
es

s
R

at
io

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Top

← Bottom−up combinatory direction

| ← Bottom Layers from Long Sentences → |

Non−CNF Midout

Non−CNF Midin

CNF Right

CNF Left

2 50 100 150 200 254

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

1/2
3/5
2/3
3/4
4/5
8/9

1

Layer Size (Binarized KTB)

C
om

pr
es

s
R

at
io

Figure 15: Binarized corpora with four factors. Curved tiers can be observed in each plot. For example, the
leftmost tier is composed of n−1

n (followed by n−2
n , n−3

n , and so on). The dots in this tier range from a high
compression ratio of 0.5 to the least efficient ones in their corpus. Efficient dots are more populated, judging by
their sizes and colors. All statistics yield stable means, which are also presented in Table 9.

| ← Bottom Layers from Long Sentences → | | ← Bottom Layers from Long Sentences → | | ← Bottom Layers from Long Sentences → |

PTB CTB KTB

2 50 100 150 200 250 2 50 100 150 200 250 2 50 100 150 200 250
0.00

0.25

0.50

0.75

1.00

Layer Size (Multi−branching Treebanks)

C
om

pr
es

s
R

at
io

Figure 16: Multi-branching corpora. Curved tiers appear more symmetric and all statistics still yield stable means.

Algorithm 4: Binary Compose Variants
1 Function BINARY(oL, oR, xL, xR;Var):
2 x← oL ⋅ xL + (1 − oR) ⋅ xR

3 if oL + (1 − oR) = 1 then // relay
4 return x

5 else if Var is ADD then // ADD
6 return x

7 else
8 if Var is NS or NV then // No input
9 �← � FFNNbinary(�)

10 else if Var is CS or CV then // Concat. . .
11 �← � FFNNbinary(xL ⊕ xR)
12 else if Var is BV then // Biaffine
13 �← � FFNNbinary(xL, xR)
14 if Var is NV, CV, or BV then // Vector �

15 x← �⊙ xL + (1 − �)⊙ xR

16 else if Var is NS or CS then // Scalar �

17 x← � ⋅ xL + (1 − �) ⋅ xR

18 return x // NS NV CS CV BV

operation. CV is our default BINARY variant; the
experiments for these variants are presented in Ta-
ble 11.

In terms of the F1 score, the most competitive
variants of CV are BV and NV, suggesting that fine

Var Specification F1
BV Biaffine inputs for vector �. 92.53
CV xL ⊕ xR as input for vector �. 92.54
CS xL ⊕ xR as input for scalar �. 91.83
NV No input; bias vector �. 92.36
NS No input; bias scalar �. 91.95

ADD xL + xR 91.86

Table 11: Compositionality of the BINARY function.

interpolation can effectively facilitate vector com-
positionality. The similarity in results of CS, NS,
and ADD validate this suggestion. This indicates
that vector compositionality is not as trivial as an
additive function at the scalar level, and a matrix
operation is sufficient. BV is the costliest variant
with a tensor operation that runs very slowly (30
sents/sec).

A.4 Recovering Symbolic Tree

To obtain the final tree representation, we initial-
ized the working place with leaves of words and

2213

Algorithm 5: Recovering a Symbolic Tree
1 Function REC(x0∶n, t0∶n, lk0∶nk

, o
k
0∶nk

or c
k
0∶nk+1):

2 for i← 0 to n − 1 do
3 treei ← TREE(ti, xi)
4 for j ← 0 to k − 2 do
5 if binary parsing then // BINARY
6 for i← 0 to nj − 1 do
7 if oji + (1 − oji+1) = 2 then
8 Combine treei∶i+2 under lj+1parent of (i,i+1)
9 else // MULTI-BRANCHING

10 foreach chk in c
j
0∶nj+1 do

11 Combine treechk under lj+1parent of (chk)
12 Expand unary and flatten sub labels for tree0
13 return tree0

 !"""""""""""""#""""""""""""""IP"""$
 34% VP(38%) 29%
 % !"""""""""&""""""""""$ %
 % 57% IP(43%) %
 % % !""""""&""""""$ %
 % % 41% VP(59%) %
 % % % !"""#"&"""""""""$ %
 % % % 42% 25% NP(33%) %
 % % % % % !"""#"""&"""""""""""""$ %
 % % % % % 36% 29% NP(36%) %
 % % % % % % % !""""""""""""'""""""""""""$ %
 % % NP % % % % 32% NP(22%) 46% %
 % % !"""&"""$ % % % % % !"""""""&#""""""$ % %
 % % DNP(49%) 51% % % % % % 29% NP(27%) 44% % %
 % % !"""&"""$ % % % % % % % !""&""$ % % %
 % % NP(46%) 54% % % % % % % % NP(51%)49% % % %
 % % !"&""$ % % % % % % % % !"&"$ % % % %
 % % 51% 49% % % % % % % % % 52% 48% % % % %
 % % % % % % % % % % % % % % % % % %
 NP % NP NP % NP % % NP % NP NP ADJP NP NP NP NP %
 % % % % % % % % % % % % % % % % % %
 NR BA NR NN DEG NN VV AS NN PU NR NN JJ NN NN NN NR PU
ᇾᰀ ಩ ෭๜ դᤒࢫ ጱ ࢫ෪ ദᕳ ԧ ࢫᳩ ̵ ӳՂ᮷ ྜዤՈ ᖓݳ ֛ᙙ Ӿஞ Ԇձ ֎භ୷ ̶

Translation: Kano awarded (授给/了) the Japanese delegation's flag to the head of the delegation (团
长) and director (主任) of the Tokyo Comprehensive Sports Center for the Disabled, Toshihiko Ban.

 !"""""#"""""""""""""#""""""""""""""#""IP""""""#"""#""#"""#"""#""#""#"""$
 10% 8% PP(12%) 9% 9% 5% 5% 6% 8% 6% 8% 14%
 % % !"""&""""$ % % % % % % % % %
 % % NP(44%) 56% IP % % % % % % % %
 % % !"""&"""$ % !"""&#"""""$ % % % % % % % %
 % % PP(48%) 52% % PP(33%) 25% 42% % % % % % % % %
 % % !"&"$ % % !"&$ % % % % % % % % % %
 NP % 42% 58% % % 46% 54% % % % % % % % % % %
 !"&""$ % % % % % % % % % % % % % % % % %
46% 54% % NP % % % NP % % % % % % % % % % %
 % % % % % % % % % % % % % % % % % % %
 D NP PU NP PP NP PP NP PP VB PP VB PP VB2 AXD FN AX VB2 PU
ͩ΄ ͵Η ̵ ࠈդ ΄ ᐙ䒍͵ͷ ΅ ᝒ橑 Ψ ᯿΃ ΀͢Ο ఉ͹ ͼ ͣ ͵ ΄ ͽ ͘Ρ ̶

Translation: For this reason, the Tang dynasty’s (の) ancestors (祖師たち/は-subject) have come to
realize (悟っ) it through struggles (苦闘/を-object).

Figure 17: Chinese (top) and Japanese (bottom) parses
from the multi-branching model.

predicted POS tags. Two symbolic rules were used
to modify the labels and construct sub-trees, as de-
scribed in Algorithm 5. 1) The collapsed unary
branches were expanded to their original structure
by splitting at the plus marks (e.g., SBAR+S into
SBAR and S). 2) ‘the label is a sub’ excluded the
repeated labels and relayed sub-trees. These rules
enabled a single tree0 as the final output.

A.5 Chinese and Japanese Headedness

Figure 17 presents two non-English parses from
the multi-branching model. Both the Chinese and
Japanese languages possess functional markers that
receive high attention (percentage and words in
red), such as the second character tagged with BA
in Chinese, and Japanese case markers tagged with
PP. Interestingly, the Chinese verb (i.e., the one
meaning “awarded”) received the highest attention,
whereas Japanese verbs (i.e., two sub-words tagged

with VB) did not. We supposed the reason behind
this is that Japanese sentences drop the VBs and
other heads more often than Chinese. The coor-
dinated NPs in the Chinese parse (i.e., two words
meaning “head” and “director”) received equal at-
tention weights.

Moreover, two trees show their branching ten-
dencies: Chinese is midin-alike; Japanese is a left-
branching language, and KTB has a large flat struc-
ture on the right.

