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Abstract

An important aspect of developing dialogue
systems is how to evaluate and compare the
performance of different systems. Existing au-
tomatic evaluation metrics are based on turn-
level quality evaluation and use average scores
for system-level comparison. In this paper, we
propose to measure the performance of a di-
alogue system by computing the distribution-
wise distance between its generated conversa-
tions and real-world conversations. Specifi-
cally, two distribution-wise metrics, FBD and
PRD, are developed and evaluated. Experi-
ments on several dialogue corpora show that
our proposed metrics correlate better with hu-
man judgments than existing metrics.

1 Introduction

Dialogue generation is a special text generation
task, which has drawn booming attention in the nat-
ural language processing community. It is widely
agreed that one single input query is often asso-
ciated with multiple valid responses in this task,
which is termed as a 1-to-n relationship between
a query and its responses (Vinyals and Le, 2015;
Zhou et al., 2017; Zhao et al., 2017; Liu et al.,
2018; Chen et al., 2021; Chan et al., 2021; Gao
et al., 2021). It increases the challenges of auto-
matically evaluating the performance of dialogue
systems.

In general, the previous evaluation metrics
mainly focus on turn-level quality. For example, un-
supervised word-overlapping or embedding-based
metrics (Papineni et al., 2002; Lin, 2004; Mitchell
and Lapata, 2008; Zhang et al., 2020) calculate
the similarity or alignment between generated re-
sponses and reference responses, which is not well-
suited for open-end dialogue tasks. Learned classi-
fication or regression systems (Lowe et al., 2017;

∗Equal contribution. Work was done during internship at
Tencent AI Lab.

Tao et al., 2018; Sellam et al., 2020; Ghazarian
et al., 2019) are corpus-dependent because of re-
quiring additional task-specific training or tuning,
which run the risk of assigning lower quality to a
better model in the overfitting or underfitting cases.

In this paper, we provide a new perspective that
distribution distance between generated conversa-
tions and real conversations can be applied to mea-
sure the performances of dialogue systems. There
are three main contributions: (1) We firstly pro-
pose two unsupervised distribution-wise metrics
(i.e., FBD and PRD) to solve the evaluation is-
sue in this field. (2) The experimental results show
that the proposed distribution-wise metrics perform
well. Particularly, FBD achieves compelling perfor-
mances on most evaluation corpora, which shows
a promising direction for designing evaluation met-
rics. (3) We collect the typical evaluation corpora
and existing evaluation metrics in order to better
assess the performance of dialogue systems, which
could be useful for researchers in this community 1.

2 Related Work

In this section, we focus on unsupervised automatic
evaluation metrics for dialogue system evaluation.
In general, existing unsupervised metrics mainly
measure turn-level qualities, which can be cate-
gorized into two main classes: word overlapping
metrics and embedding-based metrics:
Word-overlapping Metrics Such metrics quantify
the amount of word-overlap between generated
response and reference responses. For example,
BLEU (Papineni et al., 2002) calculates the geomet-
ric mean of the precision for n-gram. ROUGE (Lin,
2004) is a recall-oriented metric. METEOR (Baner-
jee and Lavie, 2005) computes the harmonic mean
of precision and recall with stemming and syn-

1The source codes and data are available at https://
github.com/yhlleo/frechet-bert-distance.

https://github.com/yhlleo/frechet-bert-distance
https://github.com/yhlleo/frechet-bert-distance
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onyms.
Embedding-based Metrics Embedding-based
metrics align the generated response and the refer-
ence in latent semantic space. Some adopt the vec-
tor similarity of sentence embeddings as a quality
measure. For example, Embedding Average (Foltz
et al., 1998; Mitchell and Lapata, 2008) calculates
sentence-level embeddings by averaging word rep-
resentations. Vector Extrema (Forgues et al., 2014)
computes sentence-level embeddings by taking the
most extreme value for each dimension in all word
vectors. Others adopt more fine-grained semantic
matching. For example, Greedy Matching (Rus
and Lintean, 2012) greedily matches each word
in a generated response to a word in the reference
response, and the final score is defined as the av-
erage of word-level similarity scores. Zhang et al.
(2020) introduced a better embedding-based metric
BERTScore that computes word similarity using
contextual embeddings from pre-trained language
models.

Our proposed methods are best placed in the liter-
ature of embedding-based metrics. However, there
are two main differences from previous metrics in
this field: (1) We compute the distribution distance
between embedding sets as the system-level per-
formance of a dialogue system, which does not re-
quire task-specific training/tuning; (2) We propose
to extract sentence-level semantic representations
directly from pre-trained language models (Devlin
et al., 2019; Liu et al., 2019), where there are no op-
erations of converting the wold-level embeddings
to sentence-level embeddings.

3 Proposed Methods

Given a collect of sentence pairs {(xi,yi)}N , we
assume that the corresponding semantic represen-
tations {vi}N can be extracted in this manner:

vi = LM([xi,yi]) (1)

where LM(·) refers to pre-trained language mod-
els(i.e., (Devlin et al., 2019; Liu et al., 2019; Yang
et al., 2019; Clark et al., 2020)), [·, ·] refers to
the concatenation operation. Intuitively, the dif-
ferences between the distribution R of real samples
and the distribution G of generated samples can be
applied to measure the performances of dialogue
systems (i.e., d(R,G)). Therefore, we propose two
distribution-based methods to automatically eval-
uate the performance of dialogue systems, which
are presented in this section in detail.

3.1 Fréchet Bert Distance
Semantic representations {vi}N are extracted by
a pre-trained language model, which encodes the
contextual information of the sentences. The main
intuition is that the distribution of semantic rep-
resentations of generated sentences should be as
close as possible to the distribution of semantic
representations of real sentences in a successful
system. To measure this, we assume that such se-
mantic representations follow a multi-dimensional
Gaussian, which can be represented by variables:
mean and covariance. The difference between two
Gaussians (generated and real sentence pairs) is
measured by the Fréchet distance (Dowson and
Landau, 1982). We call the Fréchet distance be-
tween the distribution R with mean (µr,Σr) ob-
tained from real sentence pairs and the distribution
G with mean (µg,Σg) obtained from generated
sentence pairs as “Fréchet Bert Distance” (FBD),
which is formulated as:

dFBD(R,G) = ‖µr − µg‖+
Tr(Σr + Σg − 2(ΣrΣg)

1/2)
(2)

Once the distribution of generated data closes to the
distribution of real data, the model indeed achieves
low FBD scores. Similarly, such distance (Heusel
et al., 2017) has been widely verified in various
Generative Adversarial Networks (GANs) in com-
puter vision tasks (Karras et al., 2017; Zhang et al.,
2018a; Park et al., 2019), which is consistent with
increasing disturbances and human judgment. Sur-
prisingly, we observed that FBD works well in
evaluating open-end dialogue systems.

3.2 Precision-Recall Distance
We notice that FBD is based on the estimated Gaus-
sian parameters (µ,Σ). There is an optional strat-
egy to get rid of estimating the parameters. Inspired
by (Sajjadi et al., 2018), we apply a precision-
recall-based method, named as Precision-Recall
Distance (PRD), to evaluate the distance between
two distributions.

The key intuition is that precision should mea-
sure how much of G can be generated by a “part”
of R while recall should measure how much of R
can be generated by a “part” of G. In general, (a)
If R is bimodal and G only captures one of the
modes, we should have perfect precision but only
limited recall; (b) In the opposite case, we should
have perfect recall but only limited precision; (c)
If R = G, we should have perfect precision and
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recall; (d) If the supports of R and G are disjoint,
we should have zero precision and recall. The BPD
is formulated as:

dPRD(R,G) = max

{
2α(λ)β(λ)

α(λ) + β(λ)

∣∣∣∣λ ∈ Λ

}
(3)

where Λ = {tan( i
m+1

π
2 )|i = 1, · · · ,m},

m ∈ N refers to a given angular resolution,
α(λ) =

∑
v∈V min(λR(v), G(v)) and β(λ) =∑

v∈V min(R(v), G(v)
λ ) 2. Therefore, the better

dialogue systems will achieve higher PRD scores.

4 Experiments

4.1 Datasets & Systems

To verify the two proposed metrics, we conduct
experiments on six public dialogue corpora.
Baseline Metrics. We mainly compare with sev-
eral widely-used metrics in text generation field:
a) three word-overlapping metrics: BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), ME-
TEOR (Denkowski and Lavie, 2014); b) four
embedding-based metrics: Greedy Matching (Rus
and Lintean, 2012), Embedding Average (Wieting
et al., 2015), Vector Extrema (Forgues et al., 2014)
and BERTScore (Zhang et al., 2020). All these
metrics do not require task-specific training.
Datasets. We collect three recently released evalu-
ation corpora which consist of dialogue query and
response samples of different systems, and the cor-
responding human annotations:

• Persona(M): USR (Mehri and Eskénazi,
2020) built an evaluation corpus based on Per-
sonaChat (Zhang et al., 2018b), in which both
four system outputs and the corresponding
human evaluation scores were collected.

• Daily(H), Convai2, and Empathetic:
GRADE (Huang et al., 2020) used three dia-
logue corpora, including DailyDialog (Lowe
et al., 2017), Convai2 (Dinan et al., 2019)
and EmpatheticDialogues (Rashkin et al.,
2018), to do the evaluations and compared
two dialogue models: Transformer-Ranker
and Transformer-Generator collected from
the ParlAI platform (Miller et al., 2017).

• Daily(Z) and Persona(Z): Dialogue Eval-
uation (Zhao et al., 2020) used Dai-

2For a distribution P with a finite state space V , we have
v ∈ V and P (v) > 0.

Source Address
Transformers https://github.com/

huggingface/transformers

USR https://github.com/Shikib/usr

GRADE https://github.com/li3cmz/
GRADE/tree/main/evaluation

Daily(Z) https://github.com/ZHAOTING/
dialog-processing/tree/master/
src/tasks/response_eval

Persona(Z)

ParlAI https://github.com/
facebookresearch/ParlAI

BLEU
https://github.com/nltk/nltk

METEOR
ROUGE-L
Greedy https://github.com/Maluuba/

nlg-evalAverage
Extrema

BERTScore https://github.com/Tiiiger/
bert_score

Table 1: All the public resources in our experiments.

Corpus Num. of Systems
Samples

Persona(M) 60

Seq2Seq
LSTM language model
Key-Value Profile Memory Network
Generated Human-written

Daily(H) 150
Transformer-Ranker

Convai2 150
Transformer-Generator

Empathetic 150

Daily(Z) 100

Seq2Seq

Persona(Z) 150

Attentional Seq2Seq
HRED
VHRED
GPT2-sm
GPT2-md

Table 2: The details of each evaluation corpus.

lyDialog (Lowe et al., 2017) and Per-
sonaChat (Zhang et al., 2018b) to build two
evaluation corpora and collected outputs of six
generative models (with three decoding strate-
gies). The appropriateness of each response
was obtained by human annotation.

Implementation Details. We leverage pre-trained
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) for utterance-level contextualized en-
coding 3 without additional tuning or training the
language models. For each query and response pair

3Based on the public project: https://github.com/
huggingface/transformers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/Shikib/usr
https://github.com/li3cmz/GRADE/tree/main/evaluation
https://github.com/li3cmz/GRADE/tree/main/evaluation
https://github.com/ZHAOTING/dialog-processing/tree/master/src/tasks/response_eval
https://github.com/ZHAOTING/dialog-processing/tree/master/src/tasks/response_eval
https://github.com/ZHAOTING/dialog-processing/tree/master/src/tasks/response_eval
https://github.com/facebookresearch/ParlAI
https://github.com/facebookresearch/ParlAI
https://github.com/nltk/nltk
https://github.com/Maluuba/nlg-eval
https://github.com/Maluuba/nlg-eval
https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Metric Persona(M) Daily(H) Convai2 Empathetic Daily(Z) Persona(Z)
Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr.

Word-Overlapping Metrics
BLEU .400 .672 .445 .444 .800 .801 .136 .331 .595 .421 .400 .390
METEOR .800 .860 .018 .050 .800 .767 .382 .133 .643 .689 .700 .936
ROUGE-L .600 .289 .545 .417 .200 .061 .391 .472 .738 .725 .400 .915

Embedding-Based Metrics
Greedy .600 .260 .855 .764 .600 .794 .736 .864 .690 .726 .100 .835
Average .800 .863 .209 .209 .600 .879 .664 .725 .548 .769 .300 .861
Extrema .600 .435 .745 .761 .800 .766 .618 .722 .595 .746 .500 .834
BERTScoreB .800 .590 .137 .082 .800 .817 .300 .077 .857 .883 .900 .961
BERTScoreR .800 .517 .855 .857 .800 .939 .600 .697 .714 .860 .700 .918

Distribution-Based Metrics
FBDB 1.00 .853 .564 .717 .800 .854 .427 .623 .786 .763 .400 .923
FBDR 1.00 .802 .891 .926 .800 .747 .864 .951 .929 .963 1.00 .860
PRDB .800 .637 .221 .409 1.00 .972 .227 .399 .690 .914 .900 .984
PRDR .800 .660 .591 .578 1.00 .913 .545 .583 .762 .906 .900 .932

1.“Spr.” and “Pr.” refer to Spearman and Pearson correlation coefficients, respectively.
2. B and R mean using BERT (base) and RoBERTa (base) as language models, respectively.

Table 3: Correlations of all the metrics with overall quality ratings the six dialogue corpora.
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Figure 1: The comparisons between BERTScore, FBD
and PRD metrics on various corpora. For each corpus,
we average the performances of BERT and RoBERTa
language models.

(xi,yi), we use the last hidden output of [CLS]
as its semantics representation without tuning or
training the language models. To assess the system-
level performances of dialogue systems, we cal-
culate the Spearman and Pearson correlations be-
tween the rankings of human evaluation and the
rankings of evaluation metrics. If a evaluation met-
ric is designed for turn-level evaluation, we average
the all turn-level scores as the performance of the
corresponding dialogue system.
Public Resources. All the compared evaluation
corpora and evaluation metrics are available in
Table 1. Once the official implementations are
not available, we use the repositories with highest
“stars” on GitHub. The details of each evaluation
corpus, including number of samples and compared
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Figure 2: Comparisons between BERTScore, FBD and
PRD metrics on various language models. For each
model, we average the performances on all the six eval-
uation corpora.

dialogue systems in each corpus, are presented in
Table 2.

4.2 Results

We compute the system-level correlation between
all automatic metrics and the quality ratings by us-
ing Spearman and Pearson correlation coefficients.

Model P(M) D(H) C2 EM D(Z) P(Z)
BERT .57±.44 .65±.39 .60±.42 .65±.39 .67±.38 .65±.38

RoBERTa .71±.38 .68±.37 .73±.34 .68±.37 .68±.37 .71±.33

1. {P(M), D(H), · · · , P(Z)} refer to the six evaluation corpora.
2. The reported values are mean±standard deviation.

Table 4: Comparisons of the normality on various eval-
uation corpora. The normality is calculated over each
dimension of the extracted semantic representations.
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The performances of various evaluation metrics
on different public corpora are reported in Table 3.
Our proposed two metrics (i.e., FBD and PRD)
show comparable performances over the baseline
metrics. Especially, FBDR achieves compelling
performances on five corpora, which indicates a
good ability of generalization and robustness on
various corpora. In addition, most evaluation met-
rics are sensitive to the evaluation corpora. For
example, BLEU performs well in Convai2 but
fails in Empathetic. Similarly, BERTScoreB per-
forms well in Convai2 and Persona(Z) but fails
in Daily(H) and Empathetic. It indicates that the
selection of evaluation corpora has a great influ-
ence on assessing the performances of evaluation
metrics. Hence, it’s better to use multiple corpora
to do the comparisons between metrics. Obviously,
our proposed FBDR outperforms the existing eval-
uation metrics in the view of robustness.

In Figure 1, we compare the evaluation metrics
in the perspective of various evaluation corpora,
where the results of BERT and RoBERTa language
models are averaged. It confirms the superiority
of the FBD metric. Compared to the performance
of USR (Mehri and Eskénazi, 2020) (1.000/.820
on Persona(M)), a reference-free metric that relies
on task-specific training/tuning with task-specific
data, the performances of our proposed methods
are comparable without any training/tuning. There-
fore, we believe that it’s a promising direction to
explore distribution-wise metrics for assessing dia-
logue systems in this field.

As shown in Figure 2, we average the perfor-
mances of each metric on all evaluation corpora.
It shows that our proposed FBD has higher perfor-
mance expectations that outperform BERTScore
with different language models. The large mod-
els do not show improvements in average perfor-
mance compared to the base models. In general,
FBD metric achieves better Spearman and Pear-
son correlations compared to PRD. Surprisingly,
RoBERTa-based metrics, including BERTScore,
the proposed FBD and PRD, perform better than
the corresponding BERT-base ones. Given that our
FBD metric lies on the assumption of multivari-
ate Gaussian distribution, we hypothesize that the
semantic representations extracted by RoBERTa
model fit Gaussian distribution better than BERT
model. To verify this point, as shown in Table 4,
we use “Shapiro–Wilk test” (Razali et al., 2011) to
calculate the normality in statistics, where small

Model Relevance Grammar Content Overall

Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr.
Word-Overlapping Metrics

BLEU .857 .454 .167 .213 .143 .270 .595 .421
METEOR .810 .736 .119 .044 .024 .349 .643 .689
ROUGE-L .857 .758 .238 .075 .190 .375 .738 .725

Embedding-Based Metrics
Greedy .881 .769 .214 .133 .119 .350 .690 .726
Average .762 .808 .071 .197 .238 .399 .548 .769
Extrema .714 .776 .143 .009 .476 .539 .595 .746
BERTScoreB.976 .908 .333 .111 .524 .593 .857 .883
BERTScoreR.857 .889 .119 .115 .310 .604 .714 .860

Distribution-Based Metrics
FBDB .762 .790 .190 .203 .667 .404 .786 .763
FBDR .976 .965 .429 .472 .524 .839 .929 .963
PRDB .833 .932 .238 .156 .571 .708 .690 .914
PRDR .881 .925 .238 .235 .452 .729 .762 .906

1.“Spr.” and “Pr.” refer to Spearman and Pearson correlation
coefficients, respectively.
2. B and R mean using BERT (base) and RoBERTa (base) as
language models, respectively.

Table 5: Fine-grained comparisons on Daily(Z) (Zhao
et al., 2020) corpus.

values lead to the rejection of normality whereas a
value of one indicates normality of the data.

4.3 Fine-Grained Performances
In the evaluation corpus Daily(Z) (Zhao et al.,
2020), it provides four fine-grained human eval-
uation scores, including relevance, grammar, con-
tent and overall, which can be used to dive more
insights of different evaluation metrics.

As shown in Table 5, our proposed metric FBDR

achieves the best performances on most evalua-
tions in the fine-grained comparisons. It indicates
the distribution-wise metric correlate better with
human judgements on various aspects.

5 Conclusions

In this paper, we propose to measure the perfor-
mance of a dialogue system by computing the
distribution-wise difference between its generated
conversations and real-world conversations. Specif-
ically, two distribution-wise metrics, FBD and
PRD, are developed on pre-trained language mod-
els. Experiments on six public dialogue corpora
show that our proposed metrics correlate better
with human judgments than existing metrics.
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Larchevêque, and Réal Tremblay. 2014. Boot-
strapping dialog systems with word embeddings.
In NeurIPS, modern machine learning and natural
language processing workshop.

Jun Gao, Wei Bi, Ruifeng Xu, and Shuming Shi. 2021.
REAM]: An enhancement approach to reference-
based evaluation metrics for open-domain dialog
generation. In Findings of ACL.

Sarik Ghazarian, Johnny Tian-Zheng Wei, A. Galstyan,
and Nanyun Peng. 2019. Better automatic evalua-
tion of open-domain dialogue systems with contex-
tualized embeddings. ArXiv, abs/1904.10635.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to
a local nash equilibrium. In NeurIPS.

Lishan Huang, Zheng Ye, Jinghui Qin, Liang Lin, and
Xiaodan Liang. 2020. Grade: Automatic graph-
enhanced coherence metric for evaluating open-
domain dialogue systems. In EMNLP.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen. 2017. Progressive growing of gans for
improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In ACL.

Yahui Liu, Wei Bi, Jun Gao, Xiaojiang Liu, Jian Yao,
and Shuming Shi. 2018. Towards less generic re-
sponses in neural conversation models: A statistical
re-weighting method. In EMNLP.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ryan Lowe, Michael Noseworthy, I. Serban, Nico-
las Angelard-Gontier, Yoshua Bengio, and Joelle
Pineau. 2017. Towards an automatic turing test:
Learning to evaluate dialogue responses. In ACL.

Shikib Mehri and M. Eskénazi. 2020. Usr: An unsuper-
vised and reference free evaluation metric for dialog
generation. In ACL.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh, and Ja-
son Weston. 2017. Parlai: A dialog research soft-
ware platform. arXiv preprint arXiv:1705.06476.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In ACL.

Kishore Papineni, S. Roukos, T. Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation
of machine translation. In ACL.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and
Jun-Yan Zhu. 2019. Semantic image synthesis with
spatially-adaptive normalization. In CVPR.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2018. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. arXiv preprint arXiv:1811.00207.

Nornadiah Mohd Razali, Yap Bee Wah, et al. 2011.
Power comparisons of shapiro-wilk, kolmogorov-
smirnov, lilliefors and anderson-darling tests. Jour-
nal of statistical modeling and analytics, 2(1):21–
33.



2198

Vasile Rus and Mihai Lintean. 2012. An optimal
assessment of natural language student input us-
ing word-to-word similarity metrics. In Interna-
tional Conference on Intelligent Tutoring Systems.
Springer.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic,
Olivier Bousquet, and Sylvain Gelly. 2018. Assess-
ing generative models via precision and recall. In
NeurIPS.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. Bleurt: Learning robust metrics for text gen-
eration. In ACL.

Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui
Yan. 2018. Ruber: An unsupervised method for au-
tomatic evaluation of open-domain dialog systems.
In AAAI.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Towards universal para-
phrastic sentence embeddings. arXiv preprint
arXiv:1511.08198.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In NeurIPS.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaogang Wang, Xiaolei Huang, and Dimitris N
Metaxas. 2018a. Stackgan++: Realistic image syn-
thesis with stacked generative adversarial networks.
IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 41(8):1947–1962.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018b. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? arXiv preprint arXiv:1801.07243.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In ICLR.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In ACL.

Tianyu Zhao, Divesh Lala, and Tatsuya Kawahara.
2020. Designing precise and robust dialogue re-
sponse evaluators. In ACL.

Ganbin Zhou, Ping Luo, Rongyu Cao, Fen Lin,
Bo Chen, and Qing He. 2017. Mechanism-aware
neural machine for dialogue response generation. In
AAAI.


