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Abstract

Recently, dense passage retrieval has become a
mainstream approach to finding relevant infor-
mation in various natural language processing
tasks. A number of studies have been devoted
to improving the widely adopted dual-encoder
architecture. However, most of the previous
studies only consider query-centric similarity
relation when learning the dual-encoder re-
triever. In order to capture more comprehen-
sive similarity relations, we propose a novel
approach that leverages both query-centric and
PAssage-centric sImilarity Relations (called
PAIR) for dense passage retrieval. To im-
plement our approach, we make three major
technical contributions by introducing formal
formulations of the two kinds of similarity
relations, generating high-quality pseudo la-
beled data via knowledge distillation, and de-
signing an effective two-stage training proce-
dure that incorporates passage-centric similar-
ity relation constraint. Extensive experiments
show that our approach significantly outper-
forms previous state-of-the-art models on both
MSMARCO and Natural Questions datasets1.

1 Introduction

With the recent advances of pre-trained language
models, dense passage retrieval techniques (repre-
senting queries and passages in low-dimensional
semantic space) have significantly outperformed
traditional term-based techniques (Guu et al.,
2020; Karpukhin et al., 2020). As the key step of
finding the relevant information, it has been shown
that dense passage retrieval can effectively im-
prove the performance in a variety of tasks, includ-
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1Our code is available at https://github.com/
PaddlePaddle/Research/tree/master/NLP/
ACL2021-PAIR
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Figure 1: An illustrative case of a query q, its positive
passage p+ and negative passage p−: (a) Query-centric
similarity relation enforces s(q, p+) > s(q, p−);
(b) Passage-centric similarity relation further enforces
s(p+, q) > s(p+, p−), where s(p+, q) = s(q, p+). We
use the distance (i.e., dissimilarity) for visualization:
the longer the distance is, the less similar it is.

ing question answering (Lee et al., 2019; Xiong
et al., 2020b), information retrieval (Luan et al.,
2021; Khattab and Zaharia, 2020), dialogue (Ji
et al., 2014; Henderson et al., 2017) and entity
linking (Gillick et al., 2019; Wu et al., 2020).

Typically, the dual-encoder architecture is used
to learn the dense representations of queries and
passages, and the dot-product similarity between
the representations of queries and passages be-
comes ranking measurement for retrieval. A num-
ber of studies have been devoted to improving this
architecture (Guu et al., 2020; Karpukhin et al.,
2020; Xiong et al., 2020a) for dense passage re-
trieval. Previous studies mainly consider learning
query-centric similarity relation, where it tries to
increase the similarity s(q, p+) between a query
and a positive (i.e., relevant) passage meanwhile
decrease the similarity s(q, p−) between the query
and a negative (i.e., irrelevant) passage. We argue
that query-centric similarity relation ignores the
relation between passages, and it brings difficulty
to discriminate between positive and negative pas-
sages. To illustrate this, we present an example in

https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2021-PAIR
https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2021-PAIR
https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2021-PAIR
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Figure 1, where a query q and two passages p+

and p− are given. As we can see in Figure 1(a),
although query-centric similarity relation can en-
force s(q, p+) > s(q, p−) and identify the positive
passages in this case, the distance (i.e., dissimi-
larity) between positive and negative passages is
small. When a new query is issued, it is difficult
to discriminate between positive passage p+ and
negative passage p−.

Considering this problem, we propose to fur-
ther learn passage-centric similarity relation for
enhancing the dual-encoder architecture. The ba-
sic idea is shown in Figure 1(b), where we set an
additional similarity relation constraint s(p+, q) >
s(p+, p−): the similarity between query q and pos-
itive passage p+ should be larger than that between
positive passage p+ and negative passage p−. In
this way, it is able to better learn the similarity re-
lations among query, positive passages and nega-
tive passages. Although the idea is appealing, it
is not easy to implement due to three major is-
sues. First, it is unclear how to formalize and learn
both query-centric and passage-centric similarity
relations. Second, it requires large-scale and high-
quality training data to incorporate passage-centric
similarity relation. However, it is expensive to
manually label data. Additionally, there might be a
large number of unlabeled positives even in the ex-
isting manually labeled datasets (Qu et al., 2020),
and it is likely to bring false negatives when sam-
pling hard negatives. Finally, learning passage-
centric similarity relation (an auxiliary task) is not
directly related to the query-centric similarity re-
lation (a target task). In terms of multi-task view-
point, multi-task models often perform worse than
their single-task counterparts (Alonso and Plank,
2017; McCann et al., 2018; Clark et al., 2019).
Hence, it needs a more elaborate design for the
training procedure.

To this end, in this paper, we propose a
novel approach that leverages both query-centric
and PAssage-centric sImilarity Relations (called
PAIR) for dense passage retrieval. In order to
address the aforementioned issues, we have made
three important technical contributions. First, we
design formal loss functions to characterize both
query-centric and passage-centric similarity rela-
tions. Second, we propose to generate pseudo-
labeled data via knowledge distillation. Third,
we devise a two-stage training procedure that
utilizes passage-centric similarity relation during

pre-training and then fine-tunes the dual-encoder
according to the task goal. The improvements in
the three aspects make it possible to effectively
leverage both kinds of similarity relations for im-
proving dense passage retrieval.

The contributions of this paper can be summa-
rized as follows:

• We propose an approach that simultaneously
learns query-centric and passage-centric sim-
ilarity relations for dense passage retrieval. It
is the first time that passage-centric similarity
relation has been considered for this task.

• We make three major technical contributions
by introducing formal formulations, generat-
ing high-quality pseudo-labeled data and de-
signing an effective training procedure.

• Extensive experiments show that our ap-
proach significantly outperforms previous
state-of-the-art models on both MSMARCO
and Natural Questions datasets.

2 Related Work

Recently, dense passage retrieval has demon-
strated better performance than traditional sparse
retrieval methods (e.g., TF-IDF and BM25). Dif-
ferent from sparse retrieval, dense passage re-
trieval represents queries and passages into low-
dimensional vectors (Guu et al., 2020; Karpukhin
et al., 2020), typically in a dual-encoder architec-
ture, and uses dot product as the similarity mea-
surement for retrieval. The existing approaches
for dense passage retrieval can be divided into two
categories: (1) unsupervised pre-training for re-
trieval (2) fine-tuning only on labeled data.

In the first category, different pre-training tasks
for retrieval were proposed. Lee et al. (2019)
proposed a specific approach to pre-training the
retriever with an unsupervised task, namely In-
verse Cloze Task (ICT), and then jointly fine-
tuned the retriever and a reader on labeled data.
REALM (Guu et al., 2020) proposed a new pre-
training approach, which jointly trained a masked
language model and a neural retriever. Differ-
ent from them, our proposed approach utilizes the
pseudo-labeled data via knowledge distillation in
the pre-training stage, and the quality of the gen-
erated data is high (see Section 4.6).

In the second category, the existing approaches
fine-tuned pre-trained language models on labeled
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data (Karpukhin et al., 2020; Luan et al., 2021).
Both DPR (Karpukhin et al., 2020) and ME-
BERT (Luan et al., 2021) used in-batch random
sampling and hard negative sampling by BM25,
while ANCE (Xiong et al., 2020a), NPRINC (Lu
et al., 2020) and RocketQA (Qu et al., 2020)
explored more sophisticated hard negative sam-
pling approach. Izacard and Grave (2020) and
Yang et al. (2020) leveraged a reader and a cross-
encoder for knowledge distillation on labeled data,
respectively. RocketQA found large batch size can
significantly improve the retrieval performance of
dual-encoders. ColBERT (Khattab and Zaharia,
2020) incorporated light-weight attention-based
re-ranking while increasing the space complexity.

The existing studies mainly focus on learning
the similarity relation between the queries and the
passages, while ignoring the relation among pas-
sages. It makes the model difficult to discrimi-
nate the positive passages and negative passages.
In this paper, we propose an approach simultane-
ously learn query-centric and passage-centric sim-
ilarity relations.

3 Methodology

In this section, we present an approach that
leverages both query-centric and PAssage-centric
sImilarity Relations (called PAIR) for dense pas-
sage retrieval.

3.1 Overview

The task of dense passage retrieval (Karpukhin
et al., 2020) is described as follows. Given a query
q, we aim to retrieve k most relevant passages
{pj}kj=1 from a large collection of M passages.

For this task, the dual-encoder architecture is
widely adopted (Karpukhin et al., 2020; Qu et al.,
2020), where two separate encoders EQ(·) and
EP (·) are used to represent the query q and the
passage p into d-dimensional vectors in different
representation spaces. Then a dot product is per-
formed to measure the similarity between q and p
based on their embeddings:

s(q, p) = EQ(q)
> · EP (p). (1)

Previous studies mainly capture the query-centric
similarity relation. As shown in Figure 1, passage-
centric similarity relation reflects important ev-
idence for improving the retrieval performance.
Therefore, we extend the original query-centric

learning framework by leveraging the passage-
centric similarity relation.

To develop our approach, we need to address
the issues described in Section 1, and we consider
three aspects to extend. First, we design a new
loss function that considers both query-centric and
passage-centric similarity relations. Second, we
utilize knowledge distillation to obtain large-scale
and high-quality pseudo-labeled data to capture
more comprehensive similarity relations. Third,
we design a two-stage training procedure to effec-
tively learn the passage-centric similarity relation
and improve the final retrieval performance.

3.2 Defining the Loss Functions

Our approach considers two kinds of losses,
namely query-centric loss and passage-centric
loss, as shown in Figure 2. The two kinds of
losses are characterized by the two different sim-
ilarity relations, query-centric similarity relation
and passage-centric similarity relation.

Query-centric Loss The query-centric similar-
ity relation regards the query q as the center and
pushes the negative passages p− farther than the
positive passages p+. That is:

s(Q)(q, p+) > s(Q)(q, p−) , (2)

where s(Q)(q, p+) and s(Q)(q, p−) represent the
similarities for the relevant and irrelevant passages
to query q, and they are defined the same as s(q, p)
in Eq. (1). Following (Karpukhin et al., 2020; Qu
et al., 2020), we learn the query-centric similarity
relation by optimizing query-centric loss that is the
negative log likelihood of the positive passage:

LQ = − 1

N

∑
〈q,p+〉

log
es

(Q)(q,p+)

es(Q)(q,p+) +
∑

p− es(Q)(q,p−)
.

(3)

As shown in Figure 1, for a given query, there
might exist some negative passages similar to
the positive passage, making it difficult to dis-
criminate between positive and negative passages.
Hence, we further incorporate passage-centric loss
to address this issue.

Passage-centric Loss The aim of learning
passage-centric similarity relation is to push nega-
tive passage p− farther from positive passage p+,
and making the similarity between positive pas-
sage p+ and query q larger than the similarity be-
tween positive passage p+ and negative passage
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Figure 2: An illustration of the combination of query-
centric loss and passage-centric loss.

p−. Formally, we introduce the following passage-
centric similarity relation:

s(P )(p+, q) > s(P )(p+, p−), (4)

where s(P )(p+, q) and s(P )(p+, p−) are defined as
EP (p

+)> ·EQ(q) andEP (p
+)> ·EP (p

−), respec-
tively. Similarly, we learn the passage-centric sim-
ilarity relation by optimizing the passage-centric
loss function that is the negative log likelihood of
the query:

LP = − 1

N

∑
〈q,p+〉

log
es

(P )(p+,q)

es(P )(p+,q) +
∑

p− es(P )(p+,p−)
.

(5)

By comparing Eq. (3) and Eq. (5), we can observe
that the difference in two kinds of loss lies in the
normalization part (underlined).

The Combined Loss We present an illustrative
sketch of the above two loss functions in Figure 2.
Next, we propose to simultaneously learn both
query-centric and passage-centric similarity rela-
tions in Eq.(2) and Eq.(4). Therefore, we com-
bine query-centric and passage-centric loss func-
tions defined in Eq. (3) and (5) to obtain the final
loss function:

L = (1− α) ∗ LQ + α ∗ LP , (6)

where α is a hyper-parameter and is tuned in ex-
periments. By considering passage-centric simi-
larity relation, our approach will be more capable
of discriminating between a positive passage and
a highly similar yet irrelevant passage

(
See Fig-

ure 1(b)
)
.

Dual-encoder with Shared Parameters Most
of the existing studies (Eq. (2)) equip the dual-
encoders with two separate encoders (EQ andEP )

for queries and passages, respectively. In this case,
different encoders may project queries and pas-
sages into two different spaces. However, to si-
multaneously model the query-centric similarity
relation and the passage-centric similarity relation,
the representations of queries and passages should
be in the same space. Otherwise, the similarity be-
tween passages and the similarity between queries
and passages are not comparable. Therefore, we
propose using the encoders that share the same pa-
rameters and structures for both queries and pas-
sages, i.e., EQ(·)=EP (·).

3.3 Generating the Pseudo-labeled Training
Data via Knowledge Distillation

By optimizing both query-centric loss and
passage-centric loss, we can capture more compre-
hensive similarity relations. However, more sim-
ilarity relation constraints require large-scale and
high-quality training data for optimization. Addi-
tionally, there might be a large number of unla-
beled positives even in the existing manually la-
beled datasets (Qu et al., 2020), and it is likely
to bring false negatives when sampling hard neg-
atives. Hence, we propose to generate pseudo-
labeled training data via knowledge distillation.

Cross-encoder Teacher Model The teacher
model is used to generate large-scale pseudo-
labeled data. Following RocketQA (Qu et al.,
2020), we adopt the cross-encoder architecture to
implement the teacher, which takes as input the
concatenation of query and passage and models
the semantic interaction between query and pas-
sage representations. Such an architecture has
been demonstrated to be more effective than the
dual-encoder architecture in characterizing query-
passage relevance (Yang et al., 2020). We follow
Qu et al. (2020) to train the cross-encoder teacher
with the labeled data.

Generating Pseudo Labels In this paper, we fol-
low Qu et al. (2020) to obtain positives and hard
negatives2 for unlabeled queries3. First, we re-
trieve the top-k candidate passages of unlabeled
queries from the corpus by an efficient retriever
DPR (Karpukhin et al., 2020), and score them
by the well-trained cross-encoder (i.e., teacher
model). We set two values spos and sneg (spos >
sneg) as the positive and hard negative thresholds,

2Xiong et al. (2020a) and Karpukhin et al. (2020) demon-
strate the importance of hard negatives.

3We obtain easy negatives from in-batch sampling.
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Dataset #q in train #q in dev #q in test #p

MSMARCO 502,939 6,980 6.837 8,841,823
Natural Questions 58,812 6,515 3,610 21,015,324

Table 1: The detailed statistics of MSMARCO and Natural Questions. Here, “q” and “p” are the abbreviations of
queries and passages, respectively.

respectively. Then, given each query, a candidate
passage with a score above spos or below sneg
will be considered as positive or negative. Note
that we also apply this on labeled corpus to ob-
tain more positives and reliable hard negatives.
Because there might be a large number of unla-
beled positives even in the existing manually la-
beled datasets (Qu et al., 2020) and it is likely to
bring false negatives in hard negative sampling.

3.4 Two-stage Training Procedure

Although passage-centric similarity relation(
Eq. (5)

)
is able to incorporate additional rele-

vance evidence, it is not directly related to the final
task goal (i.e., query-centric similarity relation).
Therefore, we design a two-stage training pro-
cedure that incorporates the passage-centric loss
in the pre-training stage, and then only optimize
the tasks-specific loss (i.e., query-centric loss) in
the fine-tuning stage. We present an illustration
for the two-stage training procedure in Figure 3.
Next, we present the detailed training procedure.

Pre-training In the pre-training stage, we train
the dual-encoder by optimizing the loss function
L in Eq. (6) (i.e., a combination of query-centric
loss and passage-centric loss). The pseudo-labeled
data from unlabeled corpus is adopted as the pre-
training data (Section 3.3).

Fine-tuning In the fine-tuning stage, we only
fine-tune the dual-encoder (pre-trained in the first
stage) according to the query-centric loss LQ

in Eq. (3). In this way, our approach focuses
on learning the task-specific loss, yielding bet-
ter retrieval performance. In this stage, we use
both ground-truth labels and pseudo labels derived
from the labeled corpus for training.

4 Experiments

In this section, we first describe the experimental
settings, then report the main experimental results,
ablation study and detailed analysis.

Unlabeled Corpus   

Labeled Corpus   

Dual-Encoder
w/QSR+PSR

Cross-Encoder
（i.e. Teacher)

Dual-Encoder
w/QSR

Ground Truth Labels    
+ Pseudo Labels    

Pre-training with learning both query-centric similarity relation (QSR)
and passage-centric similarity relation (PSR)

Fine-tuning with learning query-centric similarity relation (QSR)

Pseudo Labels    

Figure 3: Overview of the proposed two-stage method.

4.1 Experimental Settings

Datasets This paper focuses on the passage re-
trieval task. We conduct experiments on two pub-
lic datasets: MSMARCO (Nguyen et al., 2016)
and Natural Questions (Kwiatkowski et al., 2019).
The statistics of the datasets are listed in Ta-
ble 1. MSMARCO was originally designed for
multiple passage machine reading comprehension,
and its queries were sampled from Bing search
logs. Based on the queries and passages in MS-
MARCO Question Answering, a dataset for pas-
sage retrieval and ranking was created, namely
MSMARCO Passage Ranking. Natural Ques-
tions (NQ) was originally introduced as a dataset
for open-domain QA. The queries were collected
from Google search logs. DPR (Karpukhin et al.,
2020) selected the queries that had short answers,
and processed all the Wikipedia articles as the col-
lection of passages. In our experiments, we reuse
the version of NQ created by DPR.

Evaluation Metrics Following previous work,
we adopt Mean Reciprocal Rank (MRR) and Re-
call at top k ranks (Recall@k) to evaluate the per-
formance of passage retrieval. MRR calculates the
averaged reciprocal of the rank at which the first
positive passage is retrieved. Recall@k calculates
the proportion of questions to which the top k re-
trieved passages contain positives.

Unlabeled Corpus To obtain the augmenta-
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Methods PLM MSMARCO Dev Natural Questions Test
MRR@10 R@50 R@1000 R@5 R@20 R@100

BM25 (anserini) (Yang et al., 2017) - 18.7 59.2 85.7 - 59.1 73.7

doc2query (Nogueira et al., 2019b) - 21.5 64.4 89.1 - - -
DeepCT (Dai and Callan, 2019) - 24.3 69.0 91.0 - - -
docTTTTTquery (Nogueira et al., 2019a) - 27.7 75.6 94.7 - - -
GAR (Mao et al., 2020) - - - - - 74.4 85.3

DPR (single) (Karpukhin et al., 2020) BERTbase - - - - 78.4 85.4
DPR-E ERNIEbase 32.5 82.2 97.3 68.4 80.7 87.3
ANCE (single) (Xiong et al., 2020a) RoBERTabase 33.0 - 95.9 - 81.9 87.5
ME-BERT (Luan et al., 2021) BERTlarge 34.3 - - - - -
NPRINC (Lu et al., 2020) BERTbase 31.1 - 97.7 73.3 82.8 88.4
ColBERT (Khattab and Zaharia, 2020) BERTbase 36.0 82.9 96.8 - - -
RocketQA (Qu et al., 2020) ERNIEbase 37.0 85.5 97.9 74.0 82.7 88.5

PAIR (Ours) ERNIEbase 37.9 86.4 98.2 74.9 83.5 89.1

Table 2: Experimental results on MSMARCO and Natural Questions datasets. Note that we copy the results from
original papers and we leave it blank if the original paper does not report the result.

tion data, we collect about 1.8 million un-
labeled queries from Yahoo! Answers4, OR-
CAS (Craswell et al., 2020), SQuAD (Rajpurkar
et al.), TriviaQA (Joshi et al., 2017) and Hot-
potQA (Yang et al., 2018). In the pre-training
stage, we reuse the passage collections from the
labeled corpus (MSMARCO and NQ).

4.2 Implementation Details

We conduct experiments with the deep learning
framework PaddlePaddle (Ma et al., 2019) on up
to eight NVIDIA Tesla V100 GPUs (with 32G
RAM).

Pre-trained LMs The dual-encoder is initial-
ized with the parameters of ERNIE-2.0 base (Sun
et al., 2020). ERNIE-2.0 has the same networks
as BERT (Devlin et al., 2019), and it introduces a
continual pre-training framework on multiple pre-
trained tasks. The cross-encoder setting follows
the cross-encoder in RocketQA (Qu et al., 2020)

Hyper-parameters (a) batch size: Our dual-
encoder is trained with a batch size of 512 ×
1 in fine-tuning stage on NQ and 512 × 8 in
other settings. We use the in-batch negative set-
ting (Karpukhin et al., 2020) on NQ and cross-
batch negative setting (Qu et al., 2020) on MS-
MARCO. (b) training epochs: The number of
training epochs is set up to 10 for both pre-training
and fine-tuning for dual-encoder. (c) warm-up
and learning rate: The learning rate of the dual-
encoder is set to 3e-5 and the rate of linear
scheduling warm-up is set to 0.1. (d) # of posi-

4http://answers.yahoo.com/

tives and hard negatives: The ratio of the positive
to the hard negative is set to 1:4 on dual-encoder.

Optimizers We use LAMB optimizer (You
et al., 2020) to train the dual-encoder on MS-
MARCO, which is more suitable in cross-batch
negative setting. In other settings, we always use
ADAM optimizer (Kingma and Ba, 2015).

The choice of alpha α is a hyper-parameter to
balance the query-centric loss and passage-centric
loss (Eq. (6)). We searched for α from 0 to 1
by setting an equal interval to 0.1, and the model
achieves the best performance when α is set to 0.1.

4.3 Main Experimental Results

We consider both sparse and dense passage re-
trievers for baselines. The sparse retrievers in-
clude the traditional retriever BM25 (Yang et al.,
2017), and four traditional retrievers enhanced by
neural networks, including doc2query (Nogueira
et al., 2019b), DeepCT (Dai and Callan, 2019),
docTTTTTquery (Nogueira et al., 2019a) and
GAR (Mao et al., 2020). Both doc2query and
docTTTTTquery employ neural query generation
to expand documents. In contrast, GAR employs
neural generation models to expand queries. Dif-
ferent from them, DeepCT utilizes BERT to learn
the term weight. The dense passage retrievers
include DPR (Karpukhin et al., 2020), DPR-E,
ANCE (Xiong et al., 2020a), ME-BERT (Luan
et al., 2021), NPRINC (Lu et al., 2020), Col-
BERT (Khattab and Zaharia, 2020) and Rock-
etQA (Qu et al., 2020). DPR-E is our implemen-
tation of DPR using ERNIE (Sun et al., 2020)

http://answers.yahoo.com/
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Methods R@5 R@20 R@100

Complete (PAIR) 74.9 83.5 89.1

w/o PSR 73.6 83.3 88.8
w/o KD 70.9 82.7 88.1

w/ PSR FT 74.6 83.4 89.0
w/o SP 74.0 83.4 88.9
w/o PT 73.0 82.8 88.5

Table 3: The ablation study and controlled experiments
of different variants of PAIR on Natural Questions.

instead of BERT, to examine the effects of pre-
trained LMs.

Table 2 presents the main experimental results.
(1) We can see that PAIR significantly outper-

forms all the baselines on both MSMARCO and
NQ datasets. The major difference between our
approach and baselines lies in that we incorporate
both query-centric and passage-centric similarity
relations, which can capture more comprehensive
semantic relations. Meanwhile, we incorporate the
augmented data via knowledge distillation.

(2) We notice that baseline methods use differ-
ent pre-trained LMs, as shown in the second col-
umn of Table 2. In PAIR, we use the ERNIE-base.
To examine the effects of ERNIE-base, we im-
plement DPR-E by replacing BERT-base used in
DPR as ERNIE-base. From Table 2, we can ob-
serve that PAIR significantly outperforms DPR-E,
although they employ the same pre-trained LM.

(3) Another observation is that the dense re-
trievers are overall better than the sparse retrievers.
Such a finding has also been reported in prior stud-
ies (Karpukhin et al., 2020; Xiong et al., 2020a;
Luan et al., 2021), which indicates the effective-
ness of the dense retrieval approach.

4.4 Ablation Study

In this section, we conduct ablation study to exam-
ine the effectiveness of each strategy in our pro-
posed approach. We only report the results on the
NQ, while the results on the MSMARCO are sim-
ilar and omitted here due to limited space.

Here, we consider five variants based on our ap-
proach for comparison:

(a) w/o PSR removes the loss for passage-
centric similarity relation in the pre-training stage;

(b) w/o KD removes the knowledge distillation
for obtaining pseudo-labeled data and only uses
the labeled data (MSMARCO and NQ) for both
pre-training stage and fine-tuning stage;
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Figure 4: The comparison of PAIR and PAIR¬PSR on
s(p+, p−) and s(p+, q) with standard deviation.

(c) w/ PSR FT adds the loss for passage-centric
similarity relation in the fine-tuning stage;

(d) w/o SP uses separate encoders for queries
and passages instead of encoders with shared pa-
rameters;

(e) w/o PT removes the pre-training stage.
Table 3 presents the results for the ablation

study. We can observe the following findings:
• The performance drops in w/o PSR, demon-

strating the effectiveness of learning passage-
centric similarity relation;
• The performance drops in w/o KD, demon-

strating the necessity and effectiveness of the
knowledge distillation for obtaining large-scale
and high-quality pseudo-labeled data, since the
passage-centric loss tries to distinguish highly
similar but semantically different passages;
• The performance slightly drops in w/ PSR FT ,

because passage-centric loss is not directly re-
lated to the target task (i.e., query-based retrieval),
which suggests that passage-centric loss should be
only used in the pre-training stage;
• The performance drops in w/o SP, demon-

strating the effectiveness of dual-encoders with
shared parameters;
• The performance significantly drops in

w/o PT , demonstrating the importance of our pre-
training procedure.

4.5 Analysis on Passage-centric Similarity
Relation

The previous results demonstrate the effective-
ness of our proposed approach PAIR. Here, we
further analyze the effect of passage-centric loss
(Eq. (5)) in a more intuitive way. To examine
this, we prepare two variants of our approach,
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Query Top 1 passage retrieved by PAIR (correct) Top 1 passage retrieved by PAIR¬PSR (incorrect)

Which animal is the carrier of
the H1N1 virus ?

H1N1 strains caused a small percentage of all human flu
infections in 2004–2005. Other strains of H1N1 are endemic

::::
in pigs (swine influenza) and in birds (avian influenza) . . .

H5N1 is a subtype virus which can cause illness in humans
and many other animal species. A bird-adapted strain of
H5N1, called HPAIA (H5N1) for . . .

Where is gall bladder
situated in human body?

The gall bladder is a small hollow organ where bile is
stored . . . In humans, the pear-shaped gall bladder lies

:::::::::
beneath the liver, although the structure and position . . .

The urinary bladder is a hollow muscular organ in humans
and some other animals that collects and stores urine from the
kidneys before disposal by urination . . .

Table 4: The comparison of the top-1 passages retrieved by PAIR and PAIR¬PSR, respectively. The bold words
represent the main topics in queries and passages. The

::::::::::::::::::::::::::
italic words with wavy underline are the right answers. The

words with straight underline among passages have many words in common and may mislead the model PAIR¬PSR
to select the wrong passage.

namely the complete PAIR and the variant remov-
ing the passage-centric loss (Eq. (5)) denoted by
PAIR¬PSR.

We first analyze how the passage-centric simi-
larity relation (PSR) influences the similarity re-
lations among query, positive passage and nega-
tive passage. Figure 4 shows the comparison of
PAIR and PAIR¬PSR for computing the similarities
of s(p+, p−) and s(p+, q). We obtain s(p+, p−)
and s(p+, q) by the averaging the similarity of top
100 retrieved passages for each query in the test-
ing data of Natural Questions. We can see that be-
fore incorporating passage-centric similarity rela-
tion (PSR), s(p+, p−) is higher than s(p+, q). As a
result, the negatives are close to the positives. Af-
ter incorporating PSR, s(p+, p−) becomes lower
than s(p+, q). It indicates that passage-centric loss
pulls positive passages closer to queries and push
them farther away from negative passages in the
representation space. The comparison result is
consistent with passage-level similarity relation in
Eq. (4).

Next, we further present two examples in Ta-
ble 4 to understand the performance difference be-
tween PAIR and PAIR¬PSR. In the first example,
the top-1 passage retrieved by PAIR has the same
topic “H1N1” as the query. In contrast, the top-
1 passage retrieved by PAIR¬PSR has an incorrect
but highly relevant topic “H5N1”. Actually, the
sentences among the positive passage (retrieved
by PAIR) and the negative passage (retrieved by
PAIR¬PSR) share many common words. Such a
negative passage is likely to mislead the retriever
to yield incorrect rankings. Hence, these two pas-
sages should be far away from each other in the
representation space. This problem cannot be well
solved by only considering the query-passage sim-
ilarity in existing studies. Similar observations can
be find from the second example. The top-1 pas-
sage retrieved by PAIR has the same topic “gall

Threshold Data Quality Retrieval Performance
Accpos Accneg R@5 R@20 R@100

spos = 0.9 92% 96% 74.9 83.5 89.1
sneg = 0.1

spos = 0.8
90% 93% 74.5 83.4 88.9

sneg = 0.2

spos = 0.7
84% 87% 73.6 83.5 88.6

sneg = 0.3

spos = 0.6
80% 87% 73.5 83.4 88.7

sneg = 0.4

Table 5: The data quality and retrieval performance in
different thresholds on NQ. Accpos denotes accuracy of
positives and Accneg denotes accuracy of negatives.

bladder” as the query, while the top-1 passage re-
trieved by PAIR¬PSR is about “urinary bladder”.
These results show that passage-centric similarity
relations are particularly useful to discriminate be-
tween positive and hard negative passages (highly
similar to positive passages).

4.6 Analysis on Knowledge Distillation

In this section, we examine the influence of the
thresholds on pseudo-labeled data via knowledge
distillation, including the data quality and the re-
trieval performance. We conduct the analyses by
using different positive thresholds spos and nega-
tive thresholds sneg (See Section 3.3).

We first manually evaluate the quality of the
pseudo-labeled data via knowledge distillation
w.r.t. different threshold settings (i.e., the com-
binations of sneg and spos). For each threshold
setting, we randomly select 100 queries, each of
which corresponding to a positive passage and a
hard-negative passage. In total, we have 4 thresh-
old settings (as shown in Table 5) and 800 query-
passage pairs. We ask two experts to manually
annotate the query-passage pairs and evaluate the
quality of pseudo-labeled data, the Cohen’s Kappa
of experts is 0.9. As shown in the first two columns
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of Table 5, we can observe that when spos = 0.9
and sneg = 0.1, the data quality is relatively good.
Additionally, when setting a low value of spos and
a high value of sneg, the data quality becomes
worse.

The last three columns of Table 5 also present
the retrieval performance w.r.t. different thresh-
old settings. When choosing a low value of spos
and a high value of sneg, the retrieval performance
drops. Hence, our approach is configured with a
strict threshold setting (spos = 0.9, sneg = 0.1) in
experiments to achieve good performance.

5 Conclusion and Future Work

This paper presented a novel dense passage re-
trieval approach that leverages both query-centric
and passage-centric similarity relations for captur-
ing more comprehensive semantic relations. To
implement our approach, we made three important
technical contributions in the loss formulation,
training data augmentation and effective training
procedure. Extensive results demonstrated the ef-
fectiveness of our approach. To our knowledge,
it is the first time that passage-centric similarity
relation has been considered for dense passage re-
trieval. We believe such an idea itself is worth ex-
ploring in designing new ranking mechanism. In
future work, we will design more principle rank-
ing functions and apply current retrieval approach
to downstream tasks such as question answering
and passage re-ranking.

6 Ethical Impact

The technique of dense passage retrieval is effec-
tive for question answering, where the majority
of questions are informational queries. Semantic
crowdedness problem of passages, and term mis-
match between questions and passages are typi-
cal problems, which bring barriers for the machine
to accurately find the information. Our technique
contributes toward the goal of asking machines
to find the answer passages to natural language
questions from a large collection of documents.
With these advantages also come potential down-
sides: Wikipedia or any potential external knowl-
edge source will probably never fully cover the
breadth of user questions. The goal is still far from
being achieved, and more efforts from the commu-
nity is needed for us to get there.
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