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Abstract

Though being a primary trend for enhancing

interpretability of neural networks, attention

mechanism’s reliability and validity are still

under debate. In this paper, we try to pu-

rify attention scores to obtain a more faithful

explanation of downstream models. Specifi-

cally, we propose a framework consisting of a

learner and a compressor, which performs fine-

tuning and compressing iteratively to enhance

the performance and interpretability of the at-

tention mechanism. The learner focuses on

learning better text representations to achieve

good decisions by fine-tuning, while the com-

pressor aims to perform compressions over

the representations to retain the most useful

clues for explanations with a Variational in-

formation bottleneck ATtention (VAT) mecha-

nism. Extensive experiments on eight bench-

mark datasets show the great advantages of

our proposed approach in terms of both perfor-

mance and interpretability.

1 Introduction

Attention mechanisms (Bahdanau et al., 2014) have

achieved great success in various natural language

processing (NLP) tasks. They are introduced to

mimic the human eye focusing on important parts

in the inputs when predicting labels. The existing

studies show attention mechanisms can improve

not only the performance but also the interpretabil-

ity of the models (Mullenbach et al., 2018; Xie

et al., 2017; Xu et al., 2015). Li et al. (2016)

pointed the view: “Attention provides an impor-

tant way to explain the workings of neural models”.

Additionally, Wiegreffe and Pinter (2019) showed

that attention mechanisms could help understand

the inner workings of a model.

The basic assumption of understanding of mod-

els with attention scores is that the inputs (e.g.,

words) with high attentive weights are essential for

making decisions. However, as far as we know, it

has not been formally verified. Existing research

(Jain and Wallace, 2019) also shows that attention

is not explicable, and there are a lot of controversy

regarding to the result explanations (Wiegreffe and

Pinter, 2019; Jain and Wallace, 2019). Moreover,

we find that though the attention mechanism can

help improve the performance for text classification

in our experiments, it may focus on the irrelevant

information. For example, in the sentence “A very

funny movie.”, the long short-term memory model

with standard attention (LSTM-ATT) infers a cor-

rect sentiment label while pays more attention to

the irrelevant word “movie”, making the result dif-

ficult to explain.

In general, the attention weights are only op-

timized to encode the task-relevant information

while are not restricted to imitate human behavior.

In order to enhance the interpretability of the at-

tention mechanism, recent studies turn to integrate

the human provided explanation signals into the

attention models. Rei and Søgaard (2018) regular-

ized the attention weights with a small amount of

word-level annotations. Barrett et al. (2018); Bao

et al. (2018) improved the explanation of attention

by aligning explanations with human-provided ra-

tionales. These methods rely on additional labour

consuming labelling for enhancing explanations,

which is hard to extend to other datasets or tasks.

In this paper, we aim to train a more efficient

and effective interpretable attention model without

any pre-defined annotations or pre-collected ex-

planations. Specifically, we propose a framework

consisting of a learner and a compressor, which

enhances the performance and interpretability of

the attention model for text classification1. The

learner learns text representations by fine-tuning

1We focus on the task of text classification, but our method
can be easily extended to other NLP or CV tasks with attention
mechanisms.
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the encoder. Regarding to the compressor, we are

motivated by the effectiveness of the information

bottleneck (IB) (Tishby et al., 1999) to enhance

performance (Li and Eisner, 2019) or detect im-

portant features (Bang et al., 2019; Chen and Ji,

2020; Jiang et al., 2020; Schulz et al., 2020), and

present a Variational information bottleneck ATten-

tion (VAT) mechanism using IB to keep the most

relevant clues and forget the irrelevant ones for

better attention explanations. In particular, IB is

integrated into attention to minimize the mutual

information (MI) with the input while preserving

as much MI as possible with the output, which pro-

vides more accurate and reliable explanations by

controlling the information flow.

To evaluate the effectiveness of our proposed

approach, we adapt two advanced neural models

(LSTM and BERT) within the framework and con-

duct experiments on eight benchmark datasets. The

experimental results show that our adapted mod-

els outperform the standard attention-based models

over all the datasets. Moreover, they exhibit great

advantages with respect to interpretability by both

qualitative and quantitative analyses. Specifically,

we obtain significant improvements by applying

our model to the semi-supervised word-level sen-

timent detection task, which detects the sentiment

words based on attention weights via only sentence-

level sentiment label. In addition, we provide the

case studies and text representation visualization to

have an insight into how our model works.

The main contributions of this work are summa-

rized as follows.

• We propose a novel framework to enhance the

performance and interpretability of the attention

models, where a learner is used to learn good

representations by fine-tuning and a compressor

is used to obtain good attentive weights by com-

pressing iteratively.

• We present a Variational information bottleneck

ATtention (VAT) mechanism for the compressor,

which performs compression over the text rep-

resentation to keep the task related information

while reduce the irrelevant noise via information

bottleneck.

• Extensive experiments show the great advantages

of our models within the proposed framework,

and we perform various qualitative and quanti-

tative analyses to shed light on why our models

work in both performance and interpretability.

2 Related Work

In this section, we survey related attention mech-

anisms (Bahdanau et al., 2014) and review the

most relevant studies on information bottleneck

(IB) (Tishby et al., 1999).

Attention has been proved can help explain the

internals of neural models (Li et al., 2016; Wiegr-

effe and Pinter, 2019) though it is limited (Jain and

Wallace, 2019). Many researchers try to improve

the interpretability of the attention mechanisms.

Rei and Søgaard (2018) leveraged small amounts of

word-level annotations to regularize attention. Kim

et al. (2017) introduced a structured attention mech-

anism to learn attention variants from explicit prob-

abilistic semantics. Barrett et al. (2018); Bao et al.

(2018) aligned explanations with human-provided

rationales to improve the explanation of attention.

Unlike these methods that require prior attributions

or human explanations, the VAT method enforces

the attention to learn the vital information while

filter the noise via IB.

A series of studies motivate us to utilize IB to

improve the explanations of attention mechanisms.

Li and Eisner (2019) compressed the pre-trained

embedding (e.g., BERT, ELMO), remaining only

the information that helps a discriminative parser

through variational IB. Zhmoginov et al. (2019)

utilized the IB approach to discover the salient re-

gion. Some works (Jiang et al., 2020; Chen et al.,

2018; Guan et al., 2019; Schulz et al., 2020; Bang

et al., 2019) proposed to identify vital features or

attributions via IB. Moreover, Chen and Ji (2020)

designed a variational mask strategy to delete the

useless words in the text. As far as we are aware,

we are the first ones to leverage IB into attention

mechanisms to train more interpretable attention

with better accuracy.

3 Our Approach

In this section, we introduce our framework consist-

ing of a learner and a compressor with a Variational

information bottleneck ATtenttion (VAT) mecha-

nism. Given an attention-based neural network

model, we formulate our idea within the framework

of variational information bottleneck (VIB) (Tishby

et al., 1999). Our framework aims to improve the

attention’s interpretalility with better performance

by restricting the attention to capture the crucial

words while filter the useless information.



2154

X

R

X

R

Z

p(Z|R) p

q( |Z)

Learner Compressor

Figure 1: The framework.The learner aims to learn the

good text representation X by fine-tuning, and the com-

pressor aims to learn good attention weights by com-

pressing the attentive representations to capture the im-

portant words while forget the redundant information

via VAT. The blue circles mean the corresponding pa-

rameters of the modules are fixed.

3.1 Overview

Our framework is composed of a learner and a

compressor, which performs fine-tuning and com-

pressing iteratively (Figure 1). The learner aims

to learn a task-specific contextual word representa-

tion by fine-tuning. The compressor enforces the

model to learn task-relevant information while re-

duce irrelevant information via IB. We iteratively

perform the learner and compressor (fine-tuning

and compressing) to improve each other.

Learner. We adopt a basic attention-based neural

network model as a learner to learn representations

of the words based on the good attention weights

learned by the compressor. The model is optimized

by cross-entropy loss to learn the label-relevant

information. In this phase, we fix the attention’s

parameters so that the model will focus on updating

the encoder to learn word representations.

Compressor. To restrict the attention to capture

the vital information while reduce the noise, we

integrate IB into attention mechanisms to compress

the text attentive representation. We fix the en-

coder’s parameters so that the model will focus

on learning the attention weights based on current

representations obtained from the learner.

3.2 Basic Attention Model (Learner)

In this section, we describe our learner, which is an

attention-based neural network model. First, given

a text T “ tw1, w2, ..., w|T |u, where |T | is the

length of text T , we feed it into an encoder with a

Encoder

…

…

X

𝝈𝒖

MLP

𝐘

R

Z

𝜶Min I(Z; R)

Max I(Z; Y) q(𝐘|Z)

Z=u+𝝈⊙ 𝛜  𝛜~𝑵ሺ𝟎, 𝑰ሻ  p(Z|R)

VAT

T

Figure 2: The architecture of our VAT (Compressor).

First, we obtain the input text’s word representations X
via an encoder trained by the learner. Then, we calcu-

late Z by compressing the text representation R that is

the weighted sum of X based on the attention α, while

remaining the maximum information to judge Y by in-

putting Z into a MLP classifier for predicting.

word embedding layer. We adopt LSTM and BERT

models as our encoder, and other models can also

be applied to our framework. We obtain the context-

aware word representations x “ rx1, x2, ..., x|T |s,
where xi is the hidden vector of the word wi.

x “ encoderpT, θencoderq, (1)

where θencoder is the parameters of the encoder.

Based on the contextual word representations,

attention mechanism (Bahdanau et al., 2014) 2 is

utilized to capture the important parts in the text

and obtain the text representation R, which is cal-

culated as,

R “
nÿ

i“1

αixi

αi “ softmaxpvJ
a tanhpWaxiqq

(2)

where θattention “ tva,Wau is the trainable pa-

rameters of the attention, which is not updated

in this step to learn the word representation x
based the good attention learned by the compres-

sor. α “ rα1, α2, ..., α|T |s is the attention weights.

Finally, we input the text representation R into a

2In this paper, we only explore the local attention mech-
anism on our framework, other attention mechanisms (e.g.,
multi-head attention (Vaswani et al., 2017)) can also be ap-
plied. We would like to explore it in future work.
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multi-layer perceptron (MLP) to predict the proba-

bility. The cross-entropy loss is used to optimize

the model.

3.3 Variational Information Bottleneck
Attention (Compressor)

The learner optimizes the sentence representations

by minimizing the cross-entropy loss, which does

not restrict the model to ignore the useless informa-

tion. Thus, we compress sentence representations

R into a latent representation Z that retains most

useful information to infer the label Y . We pro-

pose to accomplish this by integrating VIB into the

attention mechanism (Figure 2).

To ensure Z contains maximum ability to predict

Y (IpZ;Y q) while has the least redundant informa-

tion form R (´IpZ;Rq), we use the standard IB

theory (Tishby et al., 1999) and define the objective

function as:

max
α

IpZ;Y q ´ β ¨ IpZ;Rq (3)

where Ip¨; ¨q means the mutual information and β
is a coefficient to balance two components. The

main challenge is to estimate the lower bound for

IpZ;Y q and the upper bound for IpZ;Rq. 3

The joint probability pθpr, y, zq can be factored

as pprq ¨ ppy | rq ¨ pθpz | rq based on the indepen-

dence assumption 4. By replacing the conditional

distribution pθpy | zq with a variational approx-

imation qφpy | zq, we obtain a lower bound of

IpZ;Y q. qφpy | zq is a simple classifier that runs

on a compressed text representation z.

IpZ;Y qhkkkkkkkkkkkkkikkkkkkkkkkkkkj

Epθpy,zqrlog pθpy | zq
ppyq s ´

lower boundhkkkkkkkkkkkkkikkkkkkkkkkkkkj

Epθpy,zqrlog qφpy | zq
ppyq s

“ EpθpzqrKLppθpy | zq}qφpy | zqqs ě 0

(4)

where KLr¨}¨s represents Kullback-Leibler diver-

gence.

Specifically, we regard ppyq as constant and then

minimize Epθpy,zqrlog qφpy | zqs. Since we must

first sample r to sample y, z from pθpr, y, zq, the

lower bound of IpZ;Y q is computed as,

IpZ;Y q ě Eppr,yqrEpθpz|rqrlog qφpy | zqss (5)

We calculate the upper bound of IpZ;Rq by re-

placing pθpzq with a variational distribution rψpzq,

3We give the main steps as follows and the detailed deriva-
tion is provided in supplementary materials.

4Y Ñ R Ñ Z: Y and Z are independent given R.

upper boundhkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

EpprqrEpθpz|rqrlog pθpz | rq
rψpzq ss ´

IpZ;Rqhkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

EpprqrEpθpz|rqrlog pθpz | rq
ppzq ss

“EpprqrKLpppzq}rψpzqqs ě 0
(6)

The upper bound of IpZ;Rq is computed as,

IpZ;Rq ď EpprqrEpθpz|rqrlog pθpz | rq
rψpzq ss

“ EpprqrKLrpθpz | rq}rψpzqss
(7)

Then, we obtain the lower bound L of IB by

substituting Equation 5 and 7 into Equation 3:

L “ Eppr,yqrEpθpz|rqrlog qφpy | zqs
´ β ¨ KLrpθpz | rq}rψpzqss (8)

The first component in L is to keep the most

useful information in pθpz|rq for inferring y, while

the second one is to regularize pθpz|rq with a pre-

defined prior distribution rψpzq (e.g., Gaussian

distribution). To compute pθpz|rq, we adopt the

reparametrization trick for multivariate Gaussians

(Rezende et al., 2014), which obtains the gradient

of parameters that derive z from a random noise ε.

z “ u ` σ d ε, ε „ Np0, Iq (9)

where d means element-wise multiplication. u and

σ denote the mean and covariance defined by two

functions of R, where R “ α ¨ x that is learned

based on attention. In particular, two MLP are used

to predict u and σ.

Finally, we input the z into a MLP to predict

qφpy | zq and optimize the attention’s parameter

via Equation 8.

4 Experiment Setup

We adopt two typical neural network models,

attention-based LSTM (Hochreiter and Schmid-

huber, 1997) and BERT (Devlin et al., 2019), to

explore our VAT algorithm.

4.1 Datasets and Baselines
Datasets To evaluate the effectiveness of our

VAT model, we conduct the experiments over eight

benchmark datasets: IMDB (Maas et al., 2011),

Stanford Sentiment Treebank with (includes SST-

1 and its binary version SST-2) (Socher et al.,

2013), Yelp (Zhang et al., 2015), AG News (Zhang

et al., 2015), TREC (Li and Roth, 2002), subjec-

tive/objective classification Subj (Pang and Lee,

2005) and Twitter (Rosenthal et al., 2015, 2014).

The statistics information of these datasets are

shown in Table 1.
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IMDB SST-1 SST-2 Yelp AG News Trec Subj Twitter
Class 2 5 2 2 4 6 2 3
Length 268 18 19 138 32 10 23 22
#train 20,000 8,544 6,920 500,000 114,000 5,000 8,000 7,969
#dev 5,000 1,1101 872 60,000 6,000 452 1,000 1,375
#test 25,000 2,210 1,821 38,000 7,600 500 1,000 3,795

Table 1: The statistics information of the datasets, where Class is the number of the class, Length is average text

length, and #train/#dev/#test counts the number of samples in the train/dev/test sets.

IMDB SST-1 SST-2 Yelp AG News Trec Subj Twitter Average
LSTM-base 88.79 45.20 85.45 95.10 91.91 90.00 89.00 71.25 82.09
LSTM-ATT 88.16 46.29 84.73 95.06 91.88 91.00 90.80 70.75 82.33
LSTM-VAT 88.98 47.42 86.22 95.32 92.04 92.80 91.10 71.62 83.19
BERT-base 91.90 51.44 91.60 96.07 93.52 96.60 96.50 75.28 86.61
BERT-ATT 91.81 51.13 91.16 97.20 93.41 96.40 96.20 74.84 86.52
BERT-VAT 92.11 51.99 91.98 97.36 93.71 97.20 96.70 77.13 87.27

Table 2: The main results of text classification.

Baselines We compare our model with two

kinds of models, basic models (LSTM/BERT-base)

and attention-based models (LSTM/BERT-ATT).

LSTM-base takes the max-pooling of the LSTM’s

hidden vectors as text representation. For BERT-

base, the “[CLS]” representation is obtained as the

sentence representation. LSTM-ATT model is a

standard attention-based LSTM model that has the

same structure as the learner. We obtain the BERT-

ATT by replacing the LSTM encoder with BERT

in LSTM-ATT. Our models are marked with VAT

(LSTM-VAT, BERT-VAT), which integrate VIB

into attention-based neural models.

4.2 Implementation Details
For LSTM-based models, we use GloVe embed-

ding (Pennington et al., 2014) with 300-dimension

to initialize the word embedding and fine-tune it

during the training. We randomly initialize all out-

of-vocabulary words and weights with the uniform

distribution Up´0.1, 0.1q. For the BERT-based

models, we fine-tune pre-trained BERT-base model.

The dimension of hidden state vectors of LSTM

is 100 and the max sentence length is 256 in our

experiments. Adam (Kingma and Ba, 2014) is

utilized as the optimizer with learning rate 0.001

(for LSTM-based model) and 0.00001 (for BERT-

based model). We also search different values

β P t0.01, 0.1, 1, 10u.

5 Experiments

First, we perform our models and baselines on eight

benchmark datasets and visualize the text represen-

tation to verify the effectiveness of VAT (Section

5.1). Second, to further investigate our VAT model,

we adopt two popular explanation metrics for quan-

titative evaluation (Section 5.2). Third, we apply

our models to semi-supervision sentiment detec-

tion task to evaluate the explanation of our model

(Section 5.3). Fourth, we explore the influence of

our iteration strategy in Section 5.4 and provide

case studies in Section 5.5. For the limitation of

the space, we may only list the results on parts of

the datasets in some cases since the conclusions are

similar for other datasets. The complete results are

presented in the supplementary materials.

5.1 Main Results

We report the accuracy of our VAT and baselines

based on LSTM and BERT (Table 2). From these

results, we find the following observations: 1) our

models (LSTM/BERT-VAT) outperform all the cor-

responding baselines over all the eight datasets,

which denotes the effectiveness of our VAT on both

LSTM and BERT-based models; 2) compared with

attention-based models (LSTM/BERT-ATT), our

models obtain better results. It indicates reducing

the irrelevant information in input via VAT can

improve the performance of the models.

Furthermore, we visualize the sentence repre-

sentations obtained from LSTM/BERT-ATT and

-VAT models (Figure 3). We randomly select 1000

samples from the test set for each dataset. We can

find that our VAT model can reduce the distance

of the samples in a class and add the distance of

the samples in different classes. For example, it

is hard to split the positive samples from the neg-

ative ones based on the representations obtained

from LSTM-ATT for the IMDB dataset, while the

divider line based on our VAT is clear. These ob-
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(a) IMDB (LSTM) (b) Subj (LSTM) (c) Twitter (LSTM)

(d) IMDB (BERT) (e) Subj (BERT) (f) Twitter (BERT)

Figure 3: Visualization of text representation obtained from LSTM/BERT-ATT and LSTM/BERT-VAT. We use

t-SNE to transfer 100/768-dimensional feature space into two-dimensional space.

IMDB SST-1 SST-2 Yelp AG News Trec Subj Twitter
Accuracy LSTM-base 88.79 45.20 85.45 95.10 91.91 90.00 89.00 71.25

AOPC
Random 0.30 5.97 7.58 1.02 1.87 19.40 1.50 4.72
LSTM-ATT 5.27 12.94 20.54 6.64 5.99 31.00 2.10 19.10
LSTM-VAT 6.13 14.34 21.58 7.12 6.59 37.20 6.30 20.37

Accuracy BERT-base 91.90 51.44 91.60 96.07 93.52 96.60 96.50 75.28

AOPC
Random 0.60 33.26 41.46 3.60 44.20 65.80 45.70 59.21
BERT-ATT 2.81 33.98 41.52 4.73 52.22 71.60 45.70 59.39
BERT-VAT 3.17 34.03 41.52 6.64 54.70 72.20 45.80 59.45

Table 3: The results of AOPC.

(a) IMDB (LSTM) (b) IMDB (BERT)

Figure 4: The influence of Top-K for LSTM/BERT-

based models in terms of AOPC.

servations show our VAT model can learn a better

task-specific representation by enforcing the model

to reduce the task-irrelevant information.

5.2 Quantitative Evaluation

In this section, we evaluate our VAT model us-

ing two metrics, AOPC and post-hoc accuracy,

which are widely used for explanations (Chen and

Ji, 2020). Note that well-trained LSTM/BERT-base

is used for evaluating the performance of classifi-

cation.

AOPC. To evaluate the faithfulness of explana-

tions to our models, we adopt the area over the

perturbation curve (AOPC) (Nguyen, 2018; Samek

et al., 2016) metric. It calculates the average

change of accuracy over test data by deleting top K
words via attentive weights. The larger the value of

AOPC, the better the explanations of the models.

Table 3 displays the results with K “ 5.

We compare our models with random and ba-

sic attention-based models. From the results,

we observe that: 1) basic attention-based models

(LSTM/BERT-ATT) can find the important words

in the sentence to some extent. Comparing with ran-

dom (Random), LSTM/BERT-ATT obtains signifi-

cant improvement; 2) Our models (LSTM/BERT-

VAT) outperform the standard attention-based mod-

els. It indicates that integrating VIB into the atten-

tion mechanism can help improve the interpretabil-

ity of the models by filtering the useless informa-

tion; 3) BERT model is sensitive to the context;

deleting the words will destroy the semantic infor-

mation of the sentence and significantly affect the

model’s performance.

We also explore the influence of top-K (Figure

4). Intuitively, the more words we delete, the larger

accuracy the models reduce. Our models reduce

more performance than random and attention-based
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IMDB SST-1 SST-2 Yelp AG News Trec Subj Twitter
Accuracy LSTM-base 88.79 45.20 85.45 95.10 91.91 90.00 89.00 71.25

Post-hoc
Random 58.48 34.21 71.33 64.74 62.45 71.40 78.40 54.07
LSTM-ATT 83.96 40.56 82.70 87.80 78.96 73.60 87.40 70.20
LSTM-VAT 84.41 43.39 84.35 88.82 81.43 79.20 89.10 71.23

Accuracy BERT-base 91.90 51.44 91.60 96.07 93.52 96.60 96.50 75.28

Post-hoc
Random 51.50 20.27 50.52 50.21 26.74 26.60 50.60 40.50
BERT-ATT 51.72 29.19 58.92 53.63 37.53 34.20 61.90 53.68
BERT-VAT 53.40 30.23 61.34 56.58 43.08 36.80 65.40 56.05

Table 4: The results of post-hoc accuracy.

(a) IMDB (LSTM) (b) IMDB (BERT)

Figure 5: The influence of Top-K for LSTM-based

models in terms of post-hoc.

models. For the IMDB dataset, when deleting top

20 words (average length is 268), the accuracy re-

duces about 19 points for our LSTM-VAT model

while it is about 2 points for the random model.

Post-hoc Accuracy. We also adopt the post-hoc

accuracy (Chen et al., 2018) to evaluate the influ-

ence of task-specific essential words on the perfor-

mance of LSTM-based and BERT-based models.

For each test sample, we select the top K words

based on their attentive weights as input to make a

prediction and compare it with the ground truth.

Table 4 presents the performance with K “ 5.

First, it is interesting to find that the post-hoc ac-

curacy with five most important words on Sbuj

dataset (89.10) is even better than the original sen-

tence (89.00). Additionally, we obtain comparable

results with only five words for SST-1, SST-2, and

Twitter datasets. These show that our model can re-

duce the noise information since most of the words

are useless for predictions in some cases. Second,

for BERT-based models, the context words are also

important for classification even though they may

not be task-specific.

Similarly, we investigate the influence of top-K
for post-hoc (Figure 5). The LSTM-base model

with top-10 words selected by our LSTM-VAT

model can achieve comparable results with the orig-

inal samples in most cases. Additionally, for the

IMDB dataset, the accuracy of LSTM-base with

one word selected by our VAT model is even better

than the one with 20 words selected randomly.

5.3 Semi-Supervised Word-Level Sentiment
Detection

We perform semi-supervised word-level sentiment

detection in Twitter (Rosenthal et al., 2015, 2014)

to evaluate the interpretability of our VAT. This task

requires to detect the sentiment words in a tweet

via the sentiment polarity of the whole tweet. In

the following example from the dataset, positive

words (“good” and “fantastic”) are marked with a

bold font and the overall polarity of the tweet is

positive:

Good morning becky! Thursday is going to be
fantastic!

We use the SemEval 2013 Twitter dataset, which

contains word-level sentiment annotation. We re-

move the samples with the neutral sentiment. We

report word-level precision, recall, and F-measure

for evaluating the models (Table 5), the same as

(Rei and Søgaard, 2018). Note that we select the

top-K (we set it as 1 and 5 here) words according

to the attention weights as the sentiment words.

We compare our VAT model with random and

attention-based models. The results show attention-

based models can capture the important words in

the text, to a certain extent. Since our VAT can re-

duce irrelevant information, it performs better than

the standard attention model. Also, LSTM-based

models outperform BERT-based models for this

task in most cases. It is because that BERT learns

much semantic information from the text, and con-

text information plays a vital role in prediction.

5.4 Influence of Iteration

We propose to train the learner and compressor

iteratively so that the learner optimizes the word

representations based on the good attention, and

the compressor optimizes the attention based on the

good word representations. To have a deep look at

how it works, we first provide our VAT model’s ac-

curacy with different iterations (Table 6). From the

results, we can find that the model’s performance

will improve at first, then it will converge.
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Positive Negative
P@1 R@1 F1@1 P@5 R@5 F1@5 P@1 R@1 F1@1 P@5 R@5 F1@5

Random 14.88 4.78 6.56 14.59 23.34 16.06 20.52 5.61 8.19 17.18 23.68 17.97
LSTM-ATT 58.70 26.04 32.73 30.30 54.17 34.70 47.13 15.74 21.39 28.24 42.04 30.33
LSTM-VAT 65.20 29.38 36.60 33.04 58.40 37.77 60.00 21.42 28.76 32.70 49.19 35.35
BERT-ATT 46.44 16.52 21.82 33.13 52.52 35.66 37.74 9.19 13.46 30.82 39.65 30.23
BERT-VAT 55.24 20.62 26.90 37.26 58.39 40.09 43.83 11.15 16.20 36.42 44.55 35.30

Table 5: The results of semi-supervision word-level sentiment detection in twitter.

(a) AG News (LSTM)

(b) AG News (BERT)

Figure 6: Visualization of text representation obtained from LSTM/BERT-VAT with different iterations. We use

t-SNE to transfer 100/768-dimensional feature space into two-dimensional space.

Method Text Prediction
LSTM-ATT I admired this work a lot. Positive  √
LSTM-VAT I admired this work a lot. Positive  √
LSTM-ATT That sucks if you have to take the sats tomorrow. Neutral   

LSTM-VAT That sucks if you have to take the sats tomorrow. Negative √

Figure 7: Two examples of attention visualization. Red denotes the attentive weights of the words. A deeper color

indicates a larger value.

Dataset 0 1 2 3 4 5

LSTM-VAT
Twitter 70.75 71.62 70.96 70.67 71.06 70.98
IMDB 88.16 88.98 88.22 88.84 88.14 88.60

BERT-VAT
Twitter 74.84 75.26 77.71 77.13 76.68 76.76
IMDB 91.81 92.06 92.11 92.09 91.92 91.96

Table 6: The accuracy with different iteration number

with our LSTM/BERT-VAT model.

Also, we draw change of the sentence represen-

tation with different iterations (Figure 6). Similarly,

we observe that fine-tuning and compressing iter-

atively can improve the sentence representations.

The samples with the same class are close, and the

samples with different classes have a large distance.

5.5 Case Studies

To understand why our proposed VAT model is

more effective than the standard attention-based

model, we visualize two examples of LSTM-based

models using attention heatmaps (Figure 7). First,

the standard attention-based LSTM model focuses

on the wrong words (e.g., “this”, “work”) even

though it predicts the right sentiment while our

VAT model finds the correct words (e.g., “admired”,

“lot”). It indicates integrating IB into attention can

help it focus on the key words and reduce the noisy

information. Second, our proposed model can also

improve the attention’s performance by capturing

the critical words accurately. For example, in the

sentence “That sucks if you have to take the sats

tomorrow.”, our model predicts the right class label

by attending the words “sucks” and “have to.”

6 Conclusions and Future Work

This paper proposes a VAT-based framework to

improve the performance and interpretability of at-

tentions via both fine-tuning and compressing. The

experimental results on eight benchmark datasets

for text classification verify the effectiveness of
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our models within this framework. In addition,

we apply the framework for sentiment detection,

which further demonstrates the superiority in terms

of interpretability. It is also interesting to find that

training the models by fine-tuning and compressing

iteratively is effective to improve the text represen-

tations. In the future, we will investigate the effec-

tiveness of our proposed attention framework for

other tasks and areas, such as machine translation

and visual question answering.
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