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Abstract

Prior knowledge plays a critical role in
decision-making, and humans preserve such
knowledge in the form of natural language
(NL). To emulate real-world decision-making,
artificial agents should incorporate such
generic knowledge into their decision-
making framework through NL. However,
since policy learning with NL-based action
representation is intractable due to NL’s
combinatorial complexity, previous studies
have limited agents’ expressive power to only
a specific environment, which sacrificed the
generalization ability to other environments.
This paper proposes a new environment-
agnostic action framework, the language-
based general action template (L-GAT). We
design action templates on the basis of general
semantic schemes (FrameNet, VerbNet, and
WordNet), facilitating the agent in finding a
plausible action in a given state by using prior
knowledge while covering broader types of
actions in a general manner. Our experiment
using 18 text-based games showed that our
proposed L-GAT agent which uses the same
actions across games, achieved a performance
competitive with agents that rely on game-
specific actions. We have published the code
at https://github.com/kohilin/lgat.

1 Introduction

The incorporation of natural language processing
(NLP) and reinforcement learning (RL) is an
important research field for using knowledge,
represented in the form of language, in the
decision-making of artificial agents (Luketina
et al., 2019). One critical topic is the capability
to describe an agent’s actions with natural
language (NL) (Narasimhan et al., 2015; Yuan
et al., 2019). An agent with such a capability
can estimate the plausibility of actions on the
basis of prior knowledge accessible through
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Figure 1: Common action templates and L-GAT.

language (Narasimhan et al., 2018). Suppose
that an agent receives a request, “give me some
water”; a common sense idea like “water exists
in the kitchen” will definitely help the agent
determine the right direction to go in. If actions
are represented in language, for example, GO

TO KITCHEN, we can straightforwardly connect
knowledge to actions by referring to language
resources (Fulda et al., 2017). NL is useful for
accessing knowledge to achieve plausible decision-
making, and this language capability would be
fundamental in developing intelligent agents.

However, NL is complicated for current RL
agents to acquire due to its high expressive
power (Hausknecht et al., 2020). The rich
vocabulary and complex grammar of NL result
in a huge action space that is intractable for
existing RL algorithms. Although we can train
an agent by restricting the expressive power to a
specific environment (Narasimhan et al., 2015; He
et al., 2016), such constraints sacrifice the inherent
advantage of using NL as the action representation
for domain-independent learning. Our objective is
to make better trade-offs between expressive power
and the learnability of NL-based RL.

Interactive fiction (IF) games serve as a practical
testbed for NL-based RL, where an agent and
environment communicate with each other through

https://github.com/kohilin/lgat
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textual information (Côté et al., 2019). The
agent needs to understand a textual state and
generate an appropriate NL action command.
In the experiments of previous studies, various
constraints on the action space have been used
for the convergence of learning, such as simple
grammar and vocabulary (Narasimhan et al., 2015),
effective ground-truth actions for a state (He et al.,
2016), and game-specific templates (Hausknecht
et al., 2020). These constraints are problematic,
especially when applying the same algorithm to
other environments. There are several studies
that address this by implementing heuristic
rules (Hausknecht et al., 2019) or training an action
generator with observation-action pairs of human-
play (Yao et al., 2020), but they still have a non-
trivial bias toward IF games.

In terms of prior knowledge, word embeddings
and language models have shown success
at reducing the action space (Fulda et al.,
2017; Yao et al., 2020). Although such
continuous representations have achieved notable
performances for broader NLP tasks, they
are basically trained with word co-occurrences.
We cannot flexibly manipulate the knowledge
contained in these continuous representations
because it is difficult to selectively encode the
desired knowledge into them (Zhou et al., 2020).
To make the most of prior knowledge expressed
in NL, we should take advantage of other
linguistic resources as well that provide fine-
grained information more explicitly, such as the
hierarchical structure of words (Miller, 1998), the
semantics of a sentence (Fillmore et al., 2003), and
common sense (Speer et al., 2017).

Thus, we propose a new environment-agnostic
action framework on the basis of general semantic
schemes, the language-based general action
template (L-GAT). Figure 1 shows the overall

architecture compared with the environment-
dependent action templates commonly used, and
Figure 2 illustrates the flow of generating an
action with L-GAT. The agent with L-GAT first
determines “what to do” at an abstractive level
with generally defined action templates and then
specifies “how to do it” by generating a concrete
action on the basis of connected prior knowledge.

Our contributions with L-GAT are three-
fold. First, we propose an environment-agnostic
action framework based on general semantic
schemes such as FrameNet (Fillmore et al., 2003),
VerbNet (Schuler, 2006), and WordNet (Miller,
1998). Second, we develop a hierarchical action-
generation algorithm in which the agent performs
abstractive decision-making and then generates a
concrete action command. Third, we introduce
a method for dynamically reducing the action
space with static knowledge from multiple external
resources and contextual information from a
state. We have published the code with which
future studies can easily use L-GAT as an action
generation module.

2 Related Work

The action space problem of NL-based actions
has been addressed in previous work. LSTM-
DQN (Narasimhan et al., 2015) enables an agent
to learn a policy in a simple verb-object format
in synthetic environments. DRRN (He et al.,
2016) is a ranking-based method in which the
agent selects an action from among admissible
actions given by a game engine. Game-specific
templates were proposed for Jericho (Hausknecht
et al., 2020). The agent selects one of the
templates and fills in the gaps in the chosen
template. TDQN (Hausknecht et al., 2020)
and KGA2C (Ammanabrolu and Hausknecht,
2020) agents have used these templates and
succeeded at learning a policy in various games.
NAIL (Hausknecht et al., 2019) solves IF games
with action generation heuristics.

Language resources have also been used for
reducing the action space. Fulda et al. (2017)
extracted the affordances of words with word
embeddings and restricted objects that can be taken
for a specific verb. A language model is leveraged
to filter non-plausible word combinations (Kostka
et al., 2017). Recently, Yao et al. (2020) proposed
the contextual action language model (CALM),
which trains a language model with human-play
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transcriptions and uses it as an action candidate
generator. By combining it with a ranking-based
method, CALM showed significant performance
even without a ground-truth for admissible actions.

3 Problem Setting

In this section, we formally define our problem
setting, RL agents with NL-based actions. An NL-
based action a, such as GO TO KITCHEN and GIVE

SOME WATER TO JOHN, consists of N words: a =
{w1, w2, . . . , wN}, wi ∈ V , where each wi is a
word and V is vocabulary. Given a state s, we
represent an optimal NL-based action in the state
with a∗(s) and the words composing it with w∗(i,s),
respectively. Following the previous studies, each
w ∈ V is estimated with an independent Q-function
asQ(i)(s, w), where i is the position of a word, and
Q(s, a) is defined as ΣiQ(i)(s, w). A policy π is
evaluated with a cumulative reward as:

V π(s) = E

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
,

where R is a reward function for a state-action pair,
and γ is a discount factor. Then, the Q-functions
Q∗, Q∗ corresponding to the optimal policy are
learned by minimizing the following loss:

L = (R(s, a) + γQ̄∗(s′, a′)−Q∗(s, a))2,

where Q̄∗(s′, a′) = Σi maxw′ Q̄
∗
(i)(s

′, w′) with the
next state s′, the next word w′, and the target Q-
function Q̄. Then, we obtain each word of the
optimal action as: w∗(i,s) = arg maxwQ

∗
(i)(s, w).

However, this optimization could be intractable
depending on N and the size of V due to the
exponential complexity O(|V|N ).

Hence, we consider restricting the vocabulary
space for each position i for the action and state
s to make this optimization problem tractable.
Specifically, we want to find a subset V(i,s)
of V for each (i, s) such that |V(i,s)| is much
smaller than |V|. Also, V(i,s) must include the
optimal word w∗(i,s) for the original optimization
problem because replacing V with V(i,s) should
not change the optimal solution. Assuming that
we have V(i,s) ⊂ V , the computational complexity
decreases from O(|V|N ) to O(

∏N
i=1 |Vi|), where

Vi is one of the largest V(i,s) for all s.
To define V(i,s), we use knowledge K:

V(i,s) = ϕ(i, s,K,V),

where ϕ is a set-valued function. Then, we need to
determine the function ϕ that minimizes |V(i,s)| but
keeps the i-th word of an optimal NL-based action
in V(i,s):

min |V(i,s)|, s.t. w∗(i,s) ∈ V(i,s).

Note that, although the above formulation
assumes that V(i,s) always contains the optimal
words w∗(i,s), it is practically impossible because
the optimal words are unknown a priori and
estimated through the learning process. Therefore,
we need to approximate ϕ so that the estimated
V(i,s) is likely to contain w∗(i,s) as much as
possible. We introduce our implementation of the
approximation in Section 4.4.

4 Method

We now introduce our proposed method; the
language-based general action template (L-GAT).
L-GAT is a framework of NL-based actions for
environment-agnostic RL agents. In L-GAT, we
define actions on the basis of general semantic
schemes, such as FrameNet (Fillmore et al., 2003),
VerbNet (Schuler, 2006), and WordNet (Miller,
1998), which enables an agent to use connected
knowledge to reduce the action space.

In this section, we first provide an overview of
L-GATand then give details on its action command,
definition, and generation algorithm.

4.1 Overview
L-GAT adopts hierarchical modeling for action
generation to handle the vast space of NL-based
action. Specifically, an agent with L-GAT first
determines “what to do” at an abstractive level (e.g.,
decide to give) and then next determines “how to do
it” at a concrete level (e.g., decide to give tomato to
mom) as shown in Figure 2. This two-step strategy
is intuitive and natural as a general procedure for
decision-making (Lazaridou et al., 2020). From the
viewpoint of RL, we can reduce the action space
because the number of abstractive actions is much
smaller than that of all possible words in the whole
vocabulary. Also, the chosen abstractive action
further restricts the words available for generating
a complete action (e.g., we cannot eat a table)

To use such hierarchical modeling, L-
GAT defines the Abstractive Action Template
with a hierarchical structure consisting of
three components: Frame, Role, and Lexicon.
Figure 3 illustrates the hierarchical structure of
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Figure 3: Abstractive action template GO and its
hierarchical components; Frame, Role, and Lexicon.

an abstractive action template, GO. The frame
defines the semantics of GO (e.g., move oneself
to somewhere), the role represents a conceptual
argument required to perform the action (e.g.,
Destination), and the lexicon represents
concrete words that can be used for one of the roles
in the frame (e.g., west, down, and kitchen). Using
the generation algorithm, the agent selects an
appropriate word from the lexicon for each frame’s
role in the chosen abstractive action template.

FrameNet and VerbNet inspired the hierarchical
structure of L-GAT. Both resources provide
semantic schemes that describe our daily behaviors
conceptually. For example, similar to the GO

template, FrameNet has a relevant scheme, “self-
motion”, with required arguments such as Goal and
Source. Also, we connect the lexicon of L-GAT to
WordNet to represent the hierarchical relationships
of words. The word hierarchy enables agents to
generalize candidate words (e.g., hyponyms of
“direction,” such as “west,” can be used for the GO

template) and interact with diverse environments.
Thus, by designing actions on the basis of these
general semantic schemes, we can naturally make
L-GAT environment-agnostic and familiar with
general prior knowledge.

Note that the templates of L-GAT are easily
configurable depending on the environment. Such
customizability is practically essential to applying
the scheme to diverse domains, which is costly or
difficult for an environment-dependent action set
or language model-based generator.

4.2 Action Command

L-GAT generates an action command in a fixed
format as: a = v + n1 + p + n2, with at most
four slots for a verb (v), two nouns (n1, n2),
and a preposition (p). An action command is
generated by the action templates explained in the
next section, and n1, n2, and p are not necessarily
used depending on the template. To prevent the
exponential growth of the action space, we decided
to add these hard constraints to a generable format.

However, we consider the aforementioned format
to be able to cover most of the primary actions
demanded by agents, such as go kitchen and put
cup on table.

4.3 Action Definition

This section introduces the abstractive action
template and its components. In this paper, we
manually defined 41 abstractive action templates
for L-GAT (see Appendix A). For the construction
of each template, we chose relevant semantic
schemes from FrameNet and VerbNet, and then
aggregated them in a compatible form with the
actions of RL agents. Table 1 shows three templates
as references, and we will refer to them throughout
this section.

Abstractive Action Template. A template T is
defined as a tuple T = 〈f, r(v), r(n1), r(p), r(n2)〉
where f is the frame, and r(v|n1|p|n2) are the roles
for each slot. The frame defines the template’s
semantics. The roles represent required arguments
for performing an action. Each word in an action
command is an instance of its corresponding role
and selected from the lexicon explained later.

Frame. Each frame has connections to
semantically relevant entities in FrameNet (called
Semantic Frames), and ones in VerbNet optionally
(called Verb Classes). For example, the GIVE

template is related to the semantic frame Giving
and the verb class give-13.1. We use FrameNet as
the basis because the granularity of the descriptions
is more suitable for our purpose than VerbNet.

Role. For the definition of our roles, we borrow
VerbNet’s Thematic Roles, which refer to the
semantic relationship between a predicate and its
argument. VerbNet defines 30 thematic roles in
total, and L-GAT uses 15 of them by taking into
account their frequency and meaning. FrameNet
also has a similar concept called Frame Elements;
however, it is too fine-grained for RL agents’
actions. Therefore, we use the thematic roles
of VerbNet as the basis and annotate the related
frame elements as additional information. We
also define three special roles: Predicate,
Preposition, and Null. Predicate is used
only for the verb slot and references to verb nodes
in WordNet. We selected these nodes on the
basis of the representative verbs given by the
connected frame entities of FrameNet and VerbNet
(e.g., we chose “go.v.02” and “enter.v.01” for the
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f r(v) r(n1) r(p) r(n2)

L-GAT GO Predicate Destination Null Null

FrameNet Self-motion - Goal, Place, Area, Path - -
VerbNet - - Destination - -
WordNet - go.v.02, enter.v.01 location.n.01, ... - -

L-GAT GIVE Predicate Theme Preposition Recipient

FrameNet Giving - Theme - Recipient
VerbNet give-13.1 - Theme - Recipient
WordNet - give.v.01 object.n.01 (to) people.n.01, person.n.01

L-GAT EAT Predicate Patient Null Null

FrameNet Ingestion - Food - -
VerbNet eat-39.1-1 - Patient - -
WordNet - eat.v.01 food.n.01 - -

Table 1: Examples of abstractive action templates in L-GAT with connections to FrameNet, VerbNet, and WordNet.

Predicate of the GO template on the basis of
representative verbs given by the semantic frame
“self-motion”). Preposition has prepositions
available that often accompany verbs in a frame,
and we manually defined these prepositions. Null
means not using the slot for action generation. For
example, the GO template uses only v and n1.

Lexicon. The simplest way of defining the
lexicon is to list all possible words manually or
statistically; however, such a procedure would
be non-scalable or hard to configure. Therefore,
we decided to annotate nodes in WordNet as the
representation. We selected general nodes such as
“location.n.01” for the Destination of the GO

template and “food.n.01” for the Patient of the
EAT template. The hierarchical word relations in
WordNet enables L-GAT to structurally determine
candidate words such as by choosing the hyponyms
of annotated nodes.

4.4 Action Generation

We propose three techniques for action generation
with L-GAT: Hierarchical Prediction, Word
Masking, and Template Masking. An agent with
L-GAT generates an action as follows. The agent
determines the abstractive action template and then
selects a word for each slot from among candidates
(Hierarchical Prediction). The candidates for each
slot are filtered by using information from the
state and the chosen template (Word Masking).
By precomputing Word Masking for all templates
in advance of the template selection, L-GAT can
provide possible templates for a state by excluding
templates that cannot generate any action command
(Template Masking). The algorithm is described

Algorithm 1 Action Generation with L-GAT.
1: Input: s, Output a
2: V(·,∗,s) ← compute the restricted vocabulary for all

templates
3: T ← exclude templates with empty V(·,T,s)

4: T ← select a template from T
5: v, n1, p, n2 ← select words from V(·,T,s)

6: a← decode with v, n1, p, n2

in Algorithm 1 and Figure 4. L-GAT has five Q-
functions; one for estimating the template Q(s, T ),
and the others for estimating words Q(·)(s, w)
where (·) denotes one of the slots v, n1, p, or n2.

4.4.1 Hierarchical Prediction
L-GAT first selects a template T with Q(s, T ) and
then generates words for each slot as: w(·) =
arg maxŵQ(·)(s, ŵ), ŵ ∈ V(·,T,s), where V(·,T,s)
is vocabulary that is restricted for the target slot
of the template T in the state s. L-GAT computes
V(·,T,s) as: V(·,T,s) = {w | m(·, s, T, w) = 1, w ∈
V}, where m is a masker function that returns 1 for
a generable word in the target slot by considering s
and T . The masker function is our approximation
of ϕ explained in Section 3, and we introduce the
details in the next section.

4.4.2 Word Masking
We included five sub-masker functions; Role
masker, Language Model (LM) masker, Part-
of-Speech (PoS) masker, Stopword masker, and
Observation masker. Each of them returns 1 for
generable words. Then, we define m(·, s, T, w) =
1 only when all the sub-maskers return 1. Next we
give the definitions of the five sub-maskers.

Role masker. The Role masker filters words that
are not semantically compatible with a given role
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Figure 4: L-GAT model without Template Masking.

by referring to the annotated WordNet nodes as
mentioned in §4.3. For the noun slots, it enables
hyponym words of the reference nodes to be
produced. For example, for the n1 slot of the
EAT template, it returns 1 for hyponym words
of the food.n.01 node such as water and tomato
(see Table 1). For the v slot (i.e., Predicate),
it returns 1 for lemmas of the annotated nodes
themselves such as go.v.01 = go and enter.v.01 =
enter. All words have 1 in the p slot, and no words
have 1 in any Null slot.

LM masker. The LM masker filters contextually
irrelevant candidates with an LM. The LM takes
an observation suffixed with a verb of the template
as the input (an example is given in Appendix B),
and it predicts the following word. On the basis
of the estimated probability of next words, the LM
masker returns 1 for the top-k words. At the v and
p slots, all words have 1. We used a pre-trained
GPT-2 (Radford et al., 2019) and set k = 50.

PoS, Stopword, and Observation maskers.
The PoS masker filters words in which a PoS is
not matched with the expected one. Specifically, it
returns 1 for verbs in the v slot, for nouns in the
n1 and n2 slots, and for prepositions in the p slot.
The word-PoS mapping follows WordNet in terms
of verbs and nouns, and we prepared a fixed list of
prepositions. The Stopword masker prohibits the
generation of stopwords such as determiners (e.g.,
a, the) and pronouns (e.g., he, them). We prepared
a fixed list, and the masker returns 1 for words that
are not on the list. The Observation masker filters
unseen words from observation. It returns 1 for
words that appeared in the last observation.

4.4.3 Template Masking
L-GAT also filters unavailable templates in a state
with the V(·,T,s) of each template. V(·,T,s) is empty

Limitations Methods

TD KG NA CA LG

Game-specific vocab y y y n y
Game-specific template y y n n n
Admissible actions y y n n n

Human play data n n n y n
Tuned Rules for IFGs n n y n n
Exclude no-effect acts y y n y n

Table 2: Limitations in action generation. Method
names come from their first two characters.

when one of the sub-maskers denies the use of a
word, and this occurs for all words in V . An empty
V(·,T,s) means that no appropriate objects exist for
performing the action (e.g., we cannot eat anything
if no eatable objects exist.). Thus, L-GAT selects a
template as: T = arg maxT∈T Q(s, T ), where T
is a set of templates in which V(·,T,s) is not empty
for all slots except for NULL slots.

5 Experiment

In our experiment, we measured performance in
IF games in Jericho (Hausknecht et al., 2020).
We compared our L-GAT agent with agents who
rely on environment-dependent actions. We also
performed detailed analysis such as on action
coverage and action space reduction and masker
ablation study on L-GAT. Furthermore, to evaluate
the generalization ability of L-GAT, we also
conducted an extended experiment in which a
single agent solved all games.

5.1 Settings

Game environment. We selected 18 games in
Jericho on the basis of the performance in previous
studies. We did not select any game that was too
hard for most of the existing agents to learn.

Baselines. There were four existing agents tested
in Jericho; TDQN (Hausknecht et al., 2020),
KGA2C (Ammanabrolu and Hausknecht, 2020),
NAIL (Hausknecht et al., 2019), and CALM (Yao
et al., 2020). The limitations related to their action
generation are summarized in Table 2 (see also §2).

In the experiments with TDQN, KGA2C,
and CALM, these methods preselected steps by
excluding no-effect actions that do not change
the world state for faster and stable learning.
This limitation is not appropriate for testing
general action sets such as L-GAT because the
game engine explicitly restricts the action space.
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Games Max Score TDQN KGA2C CALM NAIL TDQN+ L-GAT Cover Ratio (#)(w/ step preselection) (w/o step preselection)

balances 51 4.8 10.0 9.1 10.0 9.8 8.8 53% (89)
deephome 300 1.0 1.0 1.0 13.13 13.2 14.9 87% (100)
detective 360 169.0 207.9 289.7 136.9 270.9 214.1 100% (46)
enchanter 400 8.6 12.1 19.1 0.0 22.9 0.0 73% (105)
gold 100 4.1 - - 3.0 0.0 0.0 86% (331)
inhumane 90 0.7 3.0 25.7 0.6 0.0 0.0 95% (84)
jewel 90 0.0 1.8 0.3 1.6 0.6 0.0 74% (81)
library 30 6.3 14.3 9.0 0.9 4.1 7.6 69% (29)
ludicorp 150 6.0 17.8 10.1 8.4 11.9 6.1 97% (152)
omniquest 50 16.8 16.8 6.9 5.6 4.4 5.0 88% (75)
reverb 50 0.3 - - 0.0 0.0 1.0 82% (65)
snacktime 50 9.7 0.0 19.4 0.0 10.0 0.0 88% (26)
spellbrkr 600 18.7 21.3 40.0 40.0 37.6 39.4 57% (109)
spirit 250 0.6 1.3 1.4 1.0 1.5 1.7 89% (209)
temple 35 7.9 7.6 0.0 7.3 2.6 5.0 94% (80)
zork1 350 9.9 34.0 30.4 10.3 4.7 17.1 95% (203)
zork3 7 0.0 0.1 0.5 1.8 0.3 0.4 92% (192)
ztuu 100 4.9 9.2 3.7 0.0 3.6 4.9 62% (78)

Norm Avg. - 9.8% 14.1% 15.5% 8.0% 9.9% 8.9% 82%

Table 3: Average scores of last 100 episodes. Those of TDQN, KGA2C, NAIL, and CALM come from their
respective papers. TDQN, KGA2C, and CALM cannot be fairly compared with L-GAT because of step preselection
by excluding no-effect actions. TDQN+ and L-GAT are our implementations containing all steps regardless of
action effectivity. Cover ratio shows proportion of generable walkthrough actions with L-GAT, and number in
parentheses is total number of effective walkthrough actions.

To focus on the comparison of environment-
dependent and agnostic action templates, we re-
implemented the TDQN algorithm in our code
base (denoted as TDQN+), in which all steps
were counted regardless of action effectivity. Also,
we implemented TDQN+ without the admissible
action limitation; the difference in the above
limitations between TDQN+ and L-GAT is their
template types only (i.e., game-specific or general
templates). Thus, we mainly compared NAIL,
TDQN+, and L-GAT. Although a comparison with
the original scores of TDQN, KGA2C, and CALM
would not be fair, we also add them as references
for completeness.

Note that the vocabulary limitation is practically
needed because any action containing unknown
words for a game engine cannot be accepted even
though the action command is semantically correct.
CALM overcame this vocabulary issue by learning
the word distribution of action commands used in
IF games from human-play transcriptions.

Model and training details. Following the
works of Hausknecht et al. (2020); Yao et al. (2020),
we used a bidirectional GRU as our observation
encoder, and the observation string was augmented
by combining the observations returned by the
“look” and “inventory” commands. All Q-functions
were implemented with a multi-layered perceptron

with the same hyperparameters. In an episode, we
limited the number of steps to 100 at most and
ran agents with ten environments in parallel. In
addition to the rewards given by the games, we gave
an exploration bonus of 1 when an agent found an
unseen state in the episode (Yuan et al., 2019). We
put the hyperparameter details in Appendix C. We
trained three agents with different random seeds
and used their average score for the evaluation.

5.2 Results
We report the results of the game performance,
action coverage by L-GAT, action space reduction
by L-GAT, and an ablation study on Word Masking.
Finally, we introduce the results of a single agent
that solved multiple games.

Game performance. Following the previous
studies, we calculated the average score of the last
100 episodes, and the results are shown in Table 3.
The average normalized score (raw score divided
by the maximum score) was 8.0% for NAIL, 9.9%
for TDQN+, and 8.9% for L-GAT. Even though
the action templates of L-GAT were designed in
a general manner, our agent achieved reasonable
performance across games and outperformed NAIL
and TDQN+ in six games.

NAIL and L-GAT performed poorly in enchanter
and snacktime compared with TDQN+. In these
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games, a number of critical actions for advancing
the story were missing because their generable
actions are defined outside of a specific game.
For example, artificial words like spells (e.g.,
frotz, gnusto) appear in enchanter, and they are
intractable with L-GAT, which uses only common
language. As an additional investigation, we
added a “SPELL” action to L-GAT for producing
these spell words and re-trained an agent with
the enchanter game; the score of L-GAT then
increased to 20.0, which was close to the score
of TDQN+ (22.9).

The scores of KGA2C (14.1%) and CALM
(15.5%) were significantly higher. This suggests
that their techniques, such as the dynamic state
graph encoding and the domain adaptation of LM’s
outputs, are promising, and we will investigate their
importance for our framework as future work.

Walkthrough coverage. Jericho provides an
action trajectory called a walkthrough that solves
a game. We assessed how much L-GAT covered
walkthrough actions. The detailed procedure of
this assessment is explained in Appendix C. The
right-most column in Table 3 shows the cover ratio
of the walkthrough actions for L-GAT. The average
coverage across games was 82%, and around 90%
or more of the actions were covered in half of
the games. A lower coverage ratio (< 70%) was
observed in balances (53%), spellbrkr (57%), ztuu
(62%), and library (69%). In their walkthrough
actions, we frequently found artificial words (e.g.,
rezrov), named entities such as person’s name (e.g.,
give card to Alan), and modifiers for objects (e.g.,
wear fur suit, take ticket 2306). Although the first
case might be out-of-scope of L-GAT, the second
and third are critical because they must appear in
an interaction with real-world environments.

Action space reduction. We evaluated how
much the action space was reduced in L-GAT by
applying Word Masking (4.4.2) and Template
Masking (4.4.3). For each slot in each available
template (v, n1, p, and n2), we counted the number
of words that were accepted by these techniques.
Compared with the size of the whole vocabulary,
the number of words was significantly reduced by
94% for v (24.8 words on average after reduction),
82% for n1 (117.9 words), 99% for p (7.7 words),
and 59% for n2 (292.2 words).

Masker ablation. Figure 5 shows the learning
curves of the L-GAT agents without one of the
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Figure 5: Masker ablation of L-GAT in zork1.

Game Multi-task Zero-shot
TDQN+ L-GAT TDQN+ L-GAT

balances 0.0 1.5 0.0 0.8
deephome 1.0 1.1 1.0 1.1
detective 39.0 42.7 16.7 25.2
enchanter 0.0 0.0 0.0 1.4
gold 0.0 0.0 0.0 0.0
inhumane 0.0 0.0 0.0 0.0
jewel 0.0 0.0 0.0 0.0
library 0.3 0.0 0.0 0.0
ludicorp 4.2 4.1 2.8 2.3
omniquest 1.6 2.1 0.0 0.5
reverb 0.0 0.2 0.0 0.0
snacktime 0.1 0 0.0 0.0
spellbrkr 6.1 14.7 2.0 8.2
spirit 0.7 0.2 0.0 0.1
temple 0.0 0.0 0.0 0.0
zork1 0.0 0.4 0.0 0.0
zork3 0 0.0 0.0 0.0
ztuu 0 2.3 0.0 0.6

Norm avg. 1.1% 1.5% 0.4% 0.7%

Table 4: Average scores of last 100 episodes in game-
independent agent experiments.

sub-maskers for Word Masking in zork1. A
significant effect was observed with the Role
masker. Specifically, the agent without the Role
masker took more episodes to find the scored
trajectory and degraded the overall performance.
The PoS and Stopword maskers were not critical,
which might be because their restrictions are
already covered by the Role masker. The LM
and Observation maskers had non-trivial effects.
Since the Role masker enables relatively broader
words in noun slots (i.e., hyponyms of a general
word), contextual restrictions given by the LM
and Observation maskers helped the agent identify
available objects.

Game-independent agent To investigate the
generalization ability of L-GAT, we conducted a
multi-task experiment where a single agent solved
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all the games. We prepared two types of agents: 1)
a multi-task agent, who learns with all 18 games
and solves each game, and 2) a Zero-shot agent,
who learns with 17 games and solves the remaining
unseen game. Note that L-GAT can be naturally
applicable to this experimental setting. In terms of
the implementation of TDQN+, we accumulated
all the unique templates used in training games
as available templates. Table 4 shows the game
scores. Both TDQN+ and L-GAT largely decreased
in score compared with Table 3, in which we
trained and tested a specific agent for each game.
Also, as expected, the zero-shot situation was more
difficult. Whereas L-GAT outperformed TDQN+,
the scores were far from achieving the goal. It was
still challenging to obtain an environment-agnostic
agent even though the action set itself is defined in
a general manner.

6 Limitations and Future Work

Although L-GAT showed a better performance in
our experiment, there is still room for improvement
to enhance its language capability. We here discuss
L-GAT’s limitations and future improvements.

Experiments in environments other than text-
based games. One of the advantages of L-GAT is
its action generality. Jericho is a reasonable testbed
for L-GAT because of the diverse games and strong
NL interpreter. However, the performance in other
environments such as dialogue systems (Dinan
et al., 2019) and 3D video games (Gordon
et al., 2018) will also be critical metrics because
objectives for IF-game agents are not necessarily
compatible with ones for real-world agents. Testing
with real-world like environments will lead to
insights for improving L-GAT.

Enhancement of expressive power. In our
experiment, L-GAT had a high action coverage
in the IF games. However, the format of
generable actions is fixed, and we observed several
critical disabilities with generating frequently used
expressions. For example, L-GAT cannot cope
with multi-word expressions (e.g., turn on, New
York) and modified nouns (e.g., red cup, dog
in the room). Note that we can make them
generable without adding extra slots, such as by
inserting multi-word expressions in the vocabulary
and integrating a reference resolution module. A
technique that increases the expressive power but
keeps or decreases the action space would be a

desirable enhancement.

Zero-shot learning in L-GAT The general-
purpose property of L-GAT can be seen as a
zero-shot learning problem. Recently, Jain et al.
2020 proposed a new experiment to assess the
adaptability of an RL agent to unseen states such as
by using a new tool with the knowledge of known
tools. L-GAT potentially can work for such a zero-
shot situation. For example, let us assume that an
L-GAT agent has a learned policy for attacking a
monster with a hammer, and he then encounters
a monster, but only a sword is available. Even
if the agent did not know how to or even use a
sword at all, he may be able to use it because L-
GAT has knowledge on attacks with “weapon” (i.e.,
the Instrument role of the ATTACK template
has a weapon node in WordNet, and “sword” is a
hyponym of “weapon”; see Table 1 in Appendix A).
Investigation into the adaptability to unseen states
would be a promising analysis for L-GAT.

Connection to wide NLP resources and tools.
Although we developed L-GAT on top of general
semantic schemes such as FrameNet, VerbNet,
and WordNet, the required information for
efficient decision-making cannot be covered with
only those resources. Intelligent agents must
comprehend common sense, causality, and world-
knowledge (Luketina et al., 2019). Research on
NLP has created various resources such as for
retrieving information from Wikipedia (Chen et al.,
2017), inferring the next action from a current
state (Zellers et al., 2018), and using a common-
sense database (Speer et al., 2017). Integration of
such resources into L-GAT is critical future work,
and the three general semantic schemes would be
helpful for bridging different knowledge bases.

7 Conclusion

We proposed L-GAT as an environment-agnostic
language-based action framework for RL agents.
We designed L-GAT so that an agent can have
a higher language capability to generate its own
actions while keeping the action space tractable
by using prior knowledge. Our experiment with
multiple IF games showed that the L-GAT agent
competitively performed against agents with game-
specific actions. We discussed the current
limitations of L-GAT and its future improvements.
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Ethical Consideration

Our research is on defining a new action framework
for RL agents. Our proposed method, L-GAT, is for
generating actions of RL agents, which is unlikely
to produce ethically problematic sentences such
as those in hate speech. Also, we can control the
vocabulary so that an agent with L-GAT does not
produce such problematic sentences. Therefore,
we consider the ethical risks of L-GAT to be low
and controllable.
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A Definitions of Action Templates

We manually defined 41 abstractive action
templates in total, and Table 6 shows extended
examples. We give definitions of all of
the templates at https://github.com/kohilin/
lgat.

B Masker Function Details

Input for LM masker. The input of the LM
masker is an observation string suffixed with one
of the verbs in the template. For example, in the
case of GIVE with the observation “You have a cup
of water. A boy stands in front of you.”, the input
for the n1 slot is “... front of you. You gave the,”
and that for the n2 slot is “... front of you. You gave
it to the.”

Mask for primitive actions. L-GAT allows an
agent to produce primitive actions, related to
movement and belongings, regardless of the
outputs of the masker function. Specifically, we
forcibly assign 1 for direction words (up, down,
north, south, east, west, northwest, northeast,
southwest, southeast) to the n1 slot in the GO

template and all to the n1 slots in the GET and
DROP templates.

C Experimental Details

Hyperparameters. Table 5 shows our
experimental hyperparameters and values
searched for in the hyperparameter search. We
tuned the α decay and initial ε, minimum ε, and
ε decay for each game and each method. The
other parameters were determined by testing with
detective, temple, and zork1, and we applied the
same settings to all of the games.

Machine specifications. We ran our experiment
on Red Hat Enterprise Linux with an Intel(R)
Xeon(R) CPU E5-2690 v4 at 2.60 GHz with
500GB of RAM and a single GPU, an NVIDIA
TESLA K80.

Training time. Training with one game took
approximately 10 ˜15 hours for the L-GAT agents,
and 4 ˜6 hours for the TDQN+ agents depending
on the game.

Model size. The number of trainable parameters
for the L-GAT agent was about 10 million, which
slightly changed depending on the vocabulary size
of the games.

Type Name Value Search

State
Encoder

Algorithm GRU -
Embedding size 256 128, 256
Layer 2 -
Hidden units 256 128, 256

Tokenizer Algorithm BERT subwording -
Max length 256 50, 256

Q-function

Layer 2 -
Hidden units 200 -
Activation ReLU -

Environment
Training episodes 1000 -
Max steps 100 -
Batch size 10 -

Optimizer

Algorithm Adam -
Initial α 1e-3 1e-2, 1e-3
α decay 0.5 or None -
α decay interval 100 episodes -

Experience
Replay

Buffer Prioritized -
Replay batch size 128 128, 256
Replay interval 5 steps -
Memory capacity 10000 -

Exploration

Algorithm ε-greedy -
Initial ε 1.0 or .5 -
Minimum ε .05, .1, .2, or .3 -
ε decay .9975, .995, or .99 -
ε decay interval 1000 steps -

Loss
Loss function Smoothed L1 -
Discount factor .95 -
Reward clipping -10, 10 -

Table 5: Hyperparameter settings and values in
hyperparameter search.

Walkthrough experiment. In the experiment,
we investigated how many walkthrough actions
were covered by L-GAT. The same transition can
be possible with different action strings. Therefore,
for each state, we tried all generable strings of
L-GAT and checked that at least one of them
could produce the same transition with the gold
walkthrough action. To judge if two transitions
were the same or not, we used the game state
hash provided by Jericho. Several walkthrough
actions did not change the world state hash. We
excluded such no-effect walkthrough actions from
the evaluation since completely different actions
were classified as replaceable for them.

D Learning Curves of Each Game

Figure 6 shows learning curves of the L-GAT and
TDQN+ agents in each game.

E Game play Example in zork1

Table 7 shows the best play trajectory of our L-
GAT agent in zork1.

https://github.com/kohilin/lgat
https://github.com/kohilin/lgat
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f r(v) r(n1) r(p) r(n2)

L-GAT ASK PREDICATE PATIENT PREPOSITION THEME

FrameNet Questioning - Addressee - Topic
VerbNet inquire-37.1.2 - Patient - Theme
WordNet - ask.v.05 people.n.01, person.n.01 about object.n.01, ...

L-GAT ATTACH PREDICATE THEME PREPOSITION DESTINATION

FrameNet Attaching - Items - Goal
VerbNet shake-22.3-2-1 - Theme - Destination
WordNet - attach.v.01 attachment.n.04 to object.n.01

L-GAT ATTACK PREDICATE PATIENT PREPOSITION INSTRUMENT

FrameNet Attack - Assailant - Weapon
VerbNet - - Patient - Instrument
WordNet - attack.v.01, kill.v.01 monster.n.01, ... with weapon.n.01

L-GAT BREAK PREDICATE THEME NULL NULL

FrameNet Cause to fragment - Whole patient - -
VerbNet break-45.1 - Theme - -
WordNet - break.v.02 object.n.01 - -

L-GAT BUY PREDICATE THEME NULL NULL

FrameNet Commerce buy - Goods - -
VerbNet get-13.5.1 - Theme - -
WordNet - buy.v.01 object.n.01 - -

L-GAT CHECK PREDICATE LOCATION NULL NULL

FrameNet Scrutiny - Ground - -
VerbNet investigate-35.4 - Location - -
WordNet - check.v.01, examine.v.02 entity.n.01 - -

L-GAT CLEAN PREDICATE THEME NULL NULL

FrameNet Emptying - Theme, Source - -
VerbNet clear-10.3 - Theme - -
WordNet - clean.v.01 area.n.01, instrumentality.n.03 - -

L-GAT CLOSE PREDICATE THEME NULL NULL

FrameNet Closure - Container portal - -
VerbNet - - Theme - -
WordNet - close.v.01 window.n.01, ... - -

L-GAT COOK PREDICATE THEME NULL NULL

FrameNet Cooking creation - Produced food - -
VerbNet cooking-45.3 - Theme - -
WordNet - make.v.03, cook.v.01 food.n.01 - -

L-GAT CUT PREDICATE PATIENT NULL NULL

FrameNet Cutting - Item - -
VerbNet cut-21.1-1 - Patient - -
WordNet - cut.v.01 food.n.01, hair.n.01 - -

L-GAT DROP PREDICATE THEME NULL NULL

FrameNet Abandonment - Theme - -
VerbNet leave-51.2 - Theme - -
WordNet - drop.v.01 physical entity.n.01 - -

L-GAT EAT PREDICATE PATIENT NULL NULL

FrameNet Ingestion - Ingestibles - -
VerbNet eat-39.1-1 - Patient - -
WordNet - eat.v.01 food.n.01 - -

L-GAT FILL PREDICATE DESTINATION PREPOSITION THEME

FrameNet Filling - Goal - Theme
VerbNet fill-9.8-1 - Destination - Theme
WordNet - fill.v.01 container.n.01 with fluid.n.01

L-GAT GET PREDICATE THEME NULL NULL

FrameNet Taking - Theme - -
VerbNet get-13.5.1 - Theme - -
WordNet - get.v.01, take.v.01 physical entity.n.01 - -

Table 6: Extended examples of abstractive action templates in L-GAT.
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Figure 6: Learning curves of L-GAT (blue) and TDQN+ (orange).
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Observation Action Score

West of House You are standing in an open field west of a white house, with a boarded front door. There is a small mailbox ... examine mailbox 0

The small mailbox is closed. go north 0

North of House You are facing the north side of a white house. There is no door here, and all the windows are boarded ... go east 0

Behind House You are behind the white house. A path leads into the forest to the east. In one corner of the house there ... go east 0

Clearing You are in a small clearing in a well marked forest path that extends to the east and west. go west 0

Behind House go east 0

Clearing go east 0

Canyon View You are at the top of the Great Canyon on its west wall. From here there is a marvelous view of the ... go west 0

Forest This is a dimly lit forest, with large trees all around. go west 0

Forest This is a forest, with trees in all directions. To the east, there appears to be sunlight. go east 0

Forest Path This is a path winding through a dimly lit forest. The path heads north-south here. One particularly large tree ... go up 0

Up a Tree You ... Beside you on the branch is a small bird’s nest. In the bird’s nest is a large egg encrusted with precious ... eat egg 5

(Taken) I don’t think that the jewel-encrusted egg would agree with you. drop all 5

jewel-encrusted egg: The egg falls to the ground and springs open, seriously damaged. There is a golden clockwork canary ... get bird 5

The songbird is not here but is probably nearby. You hear in the distance the chirping of a song bird. get all 5

bird’s nest: Taken. You hear in the distance the chirping of a song bird. drop all 5

bird’s nest: The bird’s nest falls to the ground. go up 5

You cannot climb any higher. go down 5

Forest Path There is a bird’s nest here. There is a somewhat ruined egg here. There is a golden clockwork canary nestled in ... go south 5

North of House go east 5

Behind House open window 5

With great effort, you open the window far enough to allow entry. open white 15

Kitchen You are in the kitchen of the white house. A table seems to have been used recently for the preparation of food ... go west 15

Living Room You are in the living room. There is a doorway to the east, a wooden door with strange gothic lettering to the ... get all 15

trophy case: The trophy case is securely fastened to the wall. sword: Taken. brass lantern: Taken. carpet: The rug is ... drop all 15

brass lantern: Dropped. sword: Dropped. ignite lantern 15

What do you want to ignite the lantern with? push lantern 15

Pushing the brass lantern doesn’t seem to work. light lantern 15

(Taken) The brass lantern is now on. drop all 15

brass lantern: Dropped. go east 15

Kitchen On the table is an elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The glass bottle ... go west 15

Living Room There is a brass lantern (battery-powered) here. There is a sword here. get all 15

brass lantern: Taken. sword: Taken. trophy case: The trophy case is securely fastened to the wall. carpet: The rug is ... drop lantern 15

Dropped. drop all 15

sword: Dropped. go east 15

Kitchen On the table is an elongated brown sack, smelling of hot peppers. A bottle is sitting on the table. The glass bottle ... open sack 15

Opening the brown sack reveals a lunch, and a clove of garlic. take all 15

brown sack: Taken. glass bottle: Taken. go west 15

Living Room There is a sword here. There is a brass lantern (battery-powered) here. drop all 15

glass bottle: Dropped. brown sack: Dropped. move rug 15

With a great effort, the rug is moved to one side of the room, revealing the dusty cover of a closed trap door. open cover 15

The door reluctantly opens to reveal a rickety staircase descending into darkness. ask case 15

You can’t talk to the trophy case! wait 15

Time passes... get all 15

brown sack: Taken. glass bottle: Taken. sword: Taken. brass lantern: Taken. trophy case: The trophy case is securely ... go down 15

The trap door crashes shut, and you hear someone barring it. Cellar You are in a dark and damp cellar with a narrow ... - 40

Table 7: Best play trajectory of L-GAT agent in zork1 until reaching best score of 40. For simplicity, we excluded
steps with no-effect actions in this table.


