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Abstract

In Natural Language Understanding (NLU),
to facilitate Cross-Lingual Transfer Learning
(CLTL), especially CLTL between distant lan-
guages, we integrate CLTL with Machine
Translation (MT), and thereby propose a novel
CLTL model named Translation Aided Lan-
guage Learner (TALL). TALL is constructed
as a standard transformer, where the encoder
is a pre-trained multilingual language model.
The training of TALL includes an MT-oriented
pre-training and an NLU-oriented fine-tuning.
To make use of unannotated data, we imple-
ment the recently proposed Unsupervised Ma-
chine Translation (UMT) technique in the MT-
oriented pre-training of TALL. The experimen-
tal results show that the application of UMT
enables TALL to consistently achieve better
CLTL performance than our baseline model,
which is the pre-trained multilingual language
model serving as the encoder of TALL, with-
out using more annotated data, and the perfor-
mance gain is relatively prominent in the case
of distant languages.

1 Introduction

Virtual assistants, such as Amazon Alexa, Apple
Siri, and Google Assistant, are increasingly popu-
lar due to the convenience they bring to customers.
A core function of virtual assistants is Natural Lan-
guage Understanding (NLU), which is a combo of
slot filling and intent classification. NLU models
behind virtual assistants are generally trained in a
supervised manner, which requires a large amount
of annotated data. Collecting annotated data is not
a big deal for high-resource languages, but difficult
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or even impossible for low-resource languages. As
a result, when ported to a low-resource language,
an NLU model may suffer from the so-called “data
hungriness” (van der Ploeg et al., 2014). This prob-
lem can be alleviated by conducting Cross-Lingual
Transfer Learning (CLTL) (Yarowsky et al., 2001),
where annotated data in a high-resource source lan-
guage is used to bootstrap an NLU model aimed at
a low-resource target language.
The key to CLTL is to learn a shared representation
space for the given source-target language pair. A
traditional way to achieve this goal is to leverage
cross-lingual word embeddings, which are obtained
by mapping the words in both languages to a shared
word embedding space (Zhang et al., 2017; Con-
neau et al., 2017; Artetxe et al., 2018a; Chen et al.,
2018; Chen and Cardie, 2018; Chen et al., 2019).
However, most studies on this topic only consider
similar languages (e.g. English-German) but ignore
distant languages (e.g. English-Japanese), since it
is more challenging to conduct CLTL between dis-
tant languages than between similar languages. Re-
cently, contextualized word embeddings generated
by pre-trained language models have shown signif-
icant advantages over ordinary word embeddings
(Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019). For the purpose of CLTL, many efforts have
been made to develop multilingual variants of pre-
trained language models. These efforts have in turn
brought about pre-trained multilingual language
models, each of which is pre-trained on a multilin-
gual corpus so that the learned representation space
is not only rich in contextual clues but also shared
by all the involved languages (Mulcaire et al., 2019;
Conneau and Lample, 2019; Conneau et al., 2020).
However, in this pre-training, the collection of the
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multilingual corpus is not obviously biased to any
language, thus in the learned representation space,
similar languages are still similar to each other, and
distant languages are still distant from each other.
As a result, although pre-trained multilingual lan-
guage models have greatly promoted CLTL, it is
still more challenging to conduct CLTL between
distant languages than between similar languages.
This opinion has been verified by several empirical
studies on a popular pre-trained multilingual lan-
guage model named Multilingual BERT (M-BERT)
(Devlin et al., 2019), where the CLTL performance
of M-BERT between similar languages is decent,
but that between distant languages is still far from
satisfactory (Pires et al., 2019; Wu and Dredze,
2019; Karthikeyan et al., 2020).
From our point of view, CLTL can be analogized
to the process of a human being learning a foreign
language, where the prior knowledge on the native
language plays an important role. Language educa-
tors believe that a foreign language learner can ben-
efit a lot from translation, since translation not only
involves all aspects of foreign language learning
but also helps to enhance the correlation between
the native language and the foreign language (Witte
et al., 2009). According to our observation and ex-
perience, this is especially the case when the native
language and the foreign language are distant from
each other. Inspired by these thoughts, to facilitate
CLTL, especially CLTL between distant languages,
we propose a novel CLTL model named Translation
Aided Language Learner (TALL), where CLTL is
integrated with Machine Translation (MT). Specifi-
cally, we adopt a pre-trained multilingual language
model, which is now recognized as the state of the
art in CLTL, as our baseline model, and construct
TALL by appending a decoder to it. On this basis,
we directly fine-tune the baseline model as an NLU
model to conduct CLTL, but put TALL through an
MT-oriented pre-training before its NLU-oriented
fine-tuning. We believe that the MT-oriented pre-
training can help TALL to enhance the correlation
between the given source-target language pair in
its representation space, and thus can make CLTL
easier to conduct in its NLU-oriented fine-tuning,
especially in the case of distant languages. To make
use of unannotated data, which is not only large
in amount but also available for every language,
we implement the recently proposed Unsupervised
Machine Translation (UMT) (Artetxe et al., 2018b;
Lample et al., 2018a; Yang et al., 2018; Lample

Figure 1: The NLU-oriented fine-tuning of our base-
line model. MLM means multilingual language model.

et al., 2018b; Liu et al., 2020) technique in the MT-
oriented pre-training of TALL.
To verify the effectiveness of TALL, we carry out a
series of experiments to compare the CLTL perfor-
mance of TALL with that of the baseline model. In
these experiments, we address not only CLTL tasks
between similar languages but also those between
distant languages. For each given CLTL task, we
separately use two popular pre-trained multilingual
language models for model construction. To imple-
ment UMT, we collect unannotated sentences from
Wikipedia dumps. To conduct CLTL, we separately
collect annotated sentences from two multilingual
NLU datasets. The experimental results show that
the application of UMT enables TALL to consis-
tently achieve better CLTL performance than the
baseline model without using more annotated data,
and the performance gain is relatively prominent in
the case of distant languages.

2 Translation Aided Language Learner

2.1 Task Definition

NLU is a combo of slot filling and intent classifi-
cation. Given a sentence x consisting of m words
{w1, . . . , wm}, slot filling is to predict a slot label
yσi for each word wi, and intent classification is to
predict an intent label yι for x. In this paper, NLU
models are required to be trained under a zero-shot
CLTL scenario, where annotated sentences in the
given source language are used for model optimiza-
tion, while those in the given target language are
used for model evaluation.

2.2 Baseline Model

A transformer (Vaswani et al., 2017) is a sequence-
to-sequence model consisting of an encoder and a
decoder. A main feature of transformers is that they
use multi-head self-attention and multi-head cross-
attention to model dependencies in sequential data.
These attention mechanisms enable transformers
to extract long-term contextual clues from text. As
a result, transformers have been intensively used in
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transfer learning to develop pre-trained language
models, which generate contextualized word em-
beddings. For example, some pre-trained language
models, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), are implemented as
transformer encoders, and some other ones, such
as the GPT family (Radford et al., 2018, 2019), are
implemented as transformer decoders.
As a sub-field of transfer learning, CLTL has wit-
nessed the wide application of transformers in de-
veloping pre-trained multilingual language models.
Most of the existing pre-trained multilingual lan-
guage models, such as M-BERT, XLM (Conneau
and Lample, 2019), and XLM-RoBERTa (XLM-R)
(Conneau et al., 2020), are implemented as trans-
former encoders. Actually, these pre-trained multi-
lingual language models are the multilingual vari-
ants of BERT and RoBERTa, since each of them is
identical to either BERT or RoBERTa except being
pre-trained on a multilingual corpus. The represen-
tation space learned through this pre-training is not
only rich in contextual clues but also shared by all
the involved languages. Therefore, in theory, each
of these pre-trained multilingual language models
can be simply fine-tuned to address any CLTL task
between its involved languages.
The pre-trained multilingual language models men-
tioned above are now recognized as the state of the
art in CLTL. To push the state of the art, we adopt
one of them as our baseline model, and fine-tune
it as an NLU model to conduct CLTL. As shown
in Figure 1, in this NLU-oriented fine-tuning, we
feed each given sentence to the baseline model, and
feed the final hidden states of the baseline model
to an NLU predictor. Since the baseline model is
fitted with a sub-word tokenizer, a given sentence x
consisting of m words {w1, . . . , wm} is tokenized
into n tokens (n > m) such that the baseline model
generates n final hidden states {h1, . . . , hn}. For
slot filling, the NLU predictor first performs an av-
erage pooling on the final hidden states related to
each word wi, and then uses a dense layer with a
softmax normalization to map the pooling result to
a slot distribution for wi:

p(yσi | x) = softmax
(
W σfa(hki , . . . , hli) + bσ

)
where W σ is a trainable weight, bσ is a trainable
bias, ki and li separately represent the start position
and end position of the final hidden states related to
wi, and fa(·) represents average pooling. For intent
classification, the NLU predictor first performs an

average pooling on all the final hidden states, and
then uses another dense layer with another softmax
normalization to map the pooling result to an intent
distribution for x:

p(yι | x) = softmax
(
W ιfa(h1, . . . , hn) + bι

)
where W ι is a trainable weight, and bι is a train-
able bias. On this basis, for model optimization, we
minimize the following joint loss through stochas-
tic gradient descent on annotated sentences in the
given source language:

Lnlu = −log
( m∏
i=1

p(yσi | x) · p(yι | x)
)

For model evaluation, we infer the baseline model
on annotated sentences in the given target language
to measure three evaluation metrics, namely Slot
F1, Intent Accuracy, and Semantic Accuracy (i.e.
sentence-level joint accuracy).

2.3 Proposed Model

Since the baseline model is pre-trained on a multi-
lingual corpus, all its involved languages are cor-
related with each other in its representation space.
Normally, the larger such correlation between lan-
guages, the easier it is to conduct CLTL. To equally
treat all possible CLTL tasks, the multilingual cor-
pus used in the pre-training of the baseline model
is collected in a subtle way that is not obviously bi-
ased to any language. However, there are two side
effects of doing so. On the one hand, instead of fo-
cusing on a specific CLTL task, the baseline model
pays equal attention to all possible CLTL tasks. On
the other hand, in the representation space of the
baseline model, the correlation between languages
is proportional to their linguistic similarity, or in
other words, similar languages are still similar to
each other, and distant languages are still distant
from each other. This implies that the CLTL ability
of the baseline model can be pertinently improved
for each given CLTL task, and the room for im-
provement is relatively large when the CLTL task
is between distant languages.
To pertinently improve the CLTL ability of the base-
line model for each given CLTL task, we would
like to transform its representation space, which
is used for all possible CLTL tasks, into a special-
ized one, where the correlation between the given
source-target language pair is expressly enhanced.
This goal can be achieved by resorting to MT, since
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Figure 2: The MT-oriented pre-training and NLU-oriented fine-tuning of our proposed Translation Aided Lan-
guage Learner (TALL).

translation is the most direct way to correlate lan-
guages with each other. As shown in Figure 2, for
MT to be workable, we treat the baseline model as
an encoder and append a decoder to it. Considering
that the encoder is implemented as a transformer en-
coder, we implement the decoder as a transformer
decoder to keep the model architecture consistent.
Besides, as in Vaswani et al. (2017), we also share
the token embeddings between the encoder and
the decoder. The resulting new model can be seen
as a standard transformer, where the encoder is a
pre-trained multilingual language model. We ex-
pect this model to learn the correlation between
the given source-target language pair by addressing
a two-way MT task, and thus name it Translation
Aided Language Learner (TALL).
Before conducting CLTL with TALL, we need to
pre-train it as a two-way MT model that translates
between the given source-target language pair. As
shown in Figure 2, in this MT-oriented pre-training,
we feed each given sentence to the encoder, feed a
prompt for the translated sentence to the decoder,
and feed the final hidden states of the decoder to a
token predictor. Given a sentence x and a prompt
x′ for the translated sentence, suppose the decoder
generates a final hidden state h′i for the i-th token
in x′, then h′i can be seen as a memory of both x
and the first i tokens in x′. The token predictor uses
a dense layer with a softmax normalization to map
this memory to a token distribution for the position
i in the translated sentence:

p(yτi | x, x′) = softmax(W τh′i + bτ )

where W τ is a trainable weight tied to the token
embeddings, and bτ is a trainable bias. Since two-
way MT requires the translated sentence to be in
either the source language or the target language,
which depends on the current direction, we extend
the token vocabulary with two language identifiers,
which separately represent the two languages, and
thereby inform the decoder about the currently re-
quired language by setting the first token of x′ to
the corresponding language identifier. By the way,
since the token vocabulary is highly multilingual,
most probabilities in the above token distribution
are for the tokens beyond the given source-target
language pair and thus make no sense. Therefore,
we ignore these probabilities when inferring TALL
to generate translated sentences.
By convention, the training of MT models is super-
vised and thus requires parallel corpora. However,
parallel corpora are generally expensive to collect,
which makes them scarce or even unavailable for
many source-target language pairs. Since TALL is
designed to be a general-purpose CLTL model, a
supervised training on parallel corpora is not ap-
plicable to its MT-oriented pre-training. Recently,
an unsupervised training technique for MT models,
which is named Unsupervised Machine Translation
(UMT), has been proposed. Instead of relying on
parallel corpora, UMT relies on monolingual cor-
pora of unannotated sentences. This is attractive to
us, since a large amount of unannotated sentences
are always available for every language. Therefore,
we implement the UMT training recipe proposed
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by Lample et al. (2018b) in the MT-oriented pre-
training of TALL. Specifically, for model optimiza-
tion, we collect a source-language corpus S and a
target-language corpus T , each of which is a set of
unannotated sentences. On this basis, we measure
the following two losses:

• Denoising auto-encoding loss. As in Lample
et al. (2018a), we implement a noise injector
fn(·), which injects noise to each given sen-
tence by randomly dropping and swapping its
tokens. For each source-language sentence
s ∈ S, we first run the noise injector to ob-
tain a noise-injected sentence fn(s), which can
be seen as a sentence in a different language,
and then use TALL to translate fn(s) to the
source language, the expected result of which
is s. Besides, we also perform this process
on each target-language sentence t ∈ T . This
is the so-called “denoising auto-encoding”,
whose loss is defined as the cross-entropy loss
on recovering the original sentences from the
noise-injected sentences:

Ldae =Es∈S
[
−log p

(
s | fn(s)

)]
+

Et∈T
[
−log p

(
t | fn(t)

)]
• Back-translation loss. Let us use fm(·) to

represent the inference of TALL, which trans-
lates each given sentence to its opposite lan-
guage in the given source-target language pair.
For each source-language sentence s ∈ S, we
first infer TALL to obtain a TALL-translated
sentence fm(s), which is in the target lan-
guage, and then use TALL to translate fm(s)
to the source language, the expected result of
which is s. Besides, we also perform this pro-
cess on each target-language sentence t ∈ T .
This is the so-called “back-translation”, whose
loss is defined as the cross-entropy loss on
recovering the original sentences from the
TALL-translated sentences:

Lbt =Es∈S
[
−log p

(
s | fm(s)

)]
+

Et∈T
[
−log p

(
t | fm(t)

)]
We sum up the above two losses to obtain a joint
loss, and thereby minimize the joint loss through
stochastic gradient descent. For model evaluation,
we collect another source-language corpus and an-
other target-language corpus, each of which is also
a set of unannotated sentences. On this basis, we

implement the round-trip translation trick proposed
by Lample et al. (2018a), where we first translate
each given sentence to its opposite language in the
current source-target language pair, and then trans-
late the resulting sentence to the original language.
By inferring TALL, we perform this process on all
the sentences in the above two corpora to obtain
two reconstructed corpora. Thereby, we measure
the BLEU score between the two original corpora
and the two reconstructed corpora to evaluate the
translation performance of TALL.
The above MT-oriented pre-training guarantees that
TALL can learn a representation space, where the
given source-target language pair are expressly cor-
related with each other. As a result, it will be easier
to conduct CLTL with the pre-trained TALL than
with the baseline model. This is especially the case
when the given source-target language pair are dis-
tant from each other, since translating between dis-
tant languages reveals more knowledge than trans-
lating between similar languages. However, con-
sidering that the representation space of TALL is
co-carried by the encoder and the decoder, we have
to fine-tune them together as an NLU model when
we conduct CLTL with the pre-trained TALL. To
this end, we implement the fine-tuning approach
of BART (Lewis et al., 2020) in the NLU-oriented
fine-tuning of TALL. Specifically, as shown in Fig-
ure 2, we feed each given sentence to the encoder,
feed this sentence again as a prompt to the decoder
with the corresponding language identifier prefixed
to it, and feed the final hidden states of the decoder
except the last one to the NLU predictor. On this
basis, both the model optimization and the model
evaluation remain the same as in the NLU-oriented
fine-tuning of the baseline model.

3 Related Works

Cross-lingual word embeddings. A traditional
way to conduct CLTL is to leverage cross-lingual
word embeddings, which are usually learned in an
unsupervised manner. For example, Zhang et al.
(2017) formulate the learning of cross-lingual word
embeddings as an adversarial game, and explore
several adversarial training methods to implement
it. Conneau et al. (2017) first use adversarial train-
ing to learn a linear mapping from the word em-
beddings of a source language to those of a target
language, and then use a Procrustes solution to
refine it. Artetxe et al. (2018a) first use an unsu-
pervised initialization scheme to create an initial
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mapping, and then use a self-learning procedure to
iteratively improve it. Chen et al. (2018) propose a
language-adversarial training method, and use it to
address cross-lingual sentiment classification. Be-
sides, there are also several studies on multilingual
word embeddings. For example, Chen and Cardie
(2018) propose an unsupervised approach to learn-
ing multilingual word embeddings, which directly
exploits the relations between all the involved lan-
guages. On this basis, Chen et al. (2019) propose
a multi-source CLTL model, which not only uses
adversarial training to learn language-invariant fea-
tures, but also uses a mixture-of-experts method to
dynamically exploit the similarity between a target
language and multiple source languages.
Pre-trained multilingual language models. The
currently dominant way to conduct CLTL is to
fine-tune pre-trained multilingual language mod-
els, which are multilingual variants of pre-trained
language models, and are each pre-trained on a
multilingual corpus. For example, Mulcaire et al.
(2019) propose Rosita as a multilingual variant of
ELMo, and pre-train it on a multilingual corpus
covering 3 languages. Devlin et al. (2019) pro-
pose M-BERT as a multilingual variant of BERT,
and pre-train it on a multilingual corpus covering
104 languages. Conneau and Lample (2019) pro-
pose XLM as a multilingual variant of BERT, and
pre-train it on a multilingual corpus covering 15
languages. Conneau et al. (2020) propose XLM-R
as a multilingual variant of RoBERTa, and pre-train
it on a multilingual corpus covering 100 languages.
Besides, there are also several empirical studies on
M-BERT. For example, Pires et al. (2019) carry
out a large number of probing experiments to ver-
ify and interpret the zero-shot CLTL performance
of M-BERT. Wu and Dredze (2019) explore the
zero-shot CLTL potential of M-BERT on 5 down-
stream tasks covering 39 languages. Karthikeyan
et al. (2020) provide a comprehensive study on the
contribution of each component of M-BERT to its
CLTL ability, which focuses on the impact of lin-
guistic properties of the languages, the architecture
of the model, and the learning objectives.
UMT technique. The UMT technique is aimed at
reducing the reliance of MT models on parallel cor-
pora. For example, Artetxe et al. (2018b) construct
an MT model consisting of a language-invariant
encoder and two language-specific decoders, and
train it on a non-parallel corpus through denois-
ing auto-encoding and back-translation. Lample

et al. (2018a) construct an MT model consisting
of a language-invariant pair of encoder and de-
coder, and train it on a non-parallel corpus not
only through denoising auto-encoding and back-
translation but also through adversarial training.
Yang et al. (2018) construct an MT model consist-
ing of two pairs of encoder and decoder, which par-
tially share their parameters, and train it on a non-
parallel corpus not only through denoising auto-
encoding and back-translation but also through ad-
versarial training. Lample et al. (2018b) propose a
simple but effective approach based on the above
works, where the constructed MT model only con-
sists of a language-invariant pair of encoder and
decoder, and its training on a non-parallel corpus
only requires denoising auto-encoding and back-
translation. Liu et al. (2020) first pre-train BART
on a non-parallel multilingual corpus through de-
noising auto-encoding, and then fine-tune the pre-
trained BART for downstream MT tasks.

4 Verification Experiments

4.1 Experimental Settings

CLTL tasks. For generality, we address not only
CLTL tasks between distant languages but also
those between similar languages. Specifically, we
separately conduct CLTL between three source-
target language pairs, which include two distant lan-
guage pairs, namely English-Japanese and German-
Japanese, and one similar language pair, namely
English-German.
Pre-trained multilingual language models. For
compatibility, we use different pre-trained multi-
lingual language models for model construction.
Specifically, for each given CLTL task, we sepa-
rately use two popular pre-trained multilingual lan-
guage models, namely M-BERT (base and cased)
and XLM-R (base), to construct both the baseline
model and TALL.
Training data. For practicality, we adopt large-
scale corpora and real-world datasets as training
data. Specifically, to implement UMT, we collect
a source-language corpus of 1M unannotated sen-
tences and a target-language corpus of 1M unanno-
tated sentences from Wikipedia dumps for model
optimization, and also collect a source-language
corpus of 10K unannotated sentences and a target-
language corpus of 10K unannotated sentences
from Wikipedia dumps for model evaluation. To
conduct CLTL, we collect annotated sentences in
real-world domains from two multilingual NLU
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CLTL
Task

Pre-trained
MLM

BLEU
Score

Slot
F1

Intent
Accuracy

Semantic
Accuracy

BSL TALL Gain BSL TALL Gain BSL TALL Gain
EN-JA

(distant)
M-BERT 41.19 56.78 60.87 7.20% 80.37 83.21 3.53% 14.56 16.39 12.57%
XLM-R 39.83 58.21 63.19 8.56% 81.19 83.92 3.36% 16.58 18.47 11.40%

DE-JA
(distant)

M-BERT 38.54 51.28 54.56 6.40% 79.08 81.54 3.11% 11.71 13.24 13.07%
XLM-R 35.11 50.36 53.68 6.59% 78.43 81.12 3.43% 12.76 14.61 14.50%

EN-DE
(similar)

M-BERT 71.21 70.42 72.39 2.80% 89.39 91.16 1.98% 36.53 38.64 5.78%
XLM-R 72.91 75.29 77.14 2.46% 92.82 94.33 1.63% 44.86 47.25 5.33%

Table 1: The translation performance of TALL on Wikipedia and the CLTL performance of both the baseline
model and TALL on MultiATIS++. EN means English. JA means Japanese. DE means German. BSL means the
baseline model. Gain means the CLTL performance gain of TALL over the baseline model. The gain numbers are
in percentage and calculated as (TALL− BSL)÷ BSL.

CLTL
Task

Pre-trained
MLM

Slot
F1

Gain

Intent
Accuracy

Gain

Semantic
Accuracy

Gain
EN-JA

(distant)
M-BERT 53.61% 36.75% 59.45%
XLM-R 50.96% 31.60% 71.86%

DE-JA
(distant)

M-BERT 47.75% 31.46% 55.55%
XLM-R 58.49% 34.45% 69.19%

EN-DE
(similar)

M-BERT 10.42% 9.69% 18.00%
XLM-R 12.75% 7.81% 23.87%

Table 2: The CLTL performance gain of TALL over the
baseline model on the multi-domain multilingual NLU
dataset.

datasets. The first multilingual NLU dataset is
MultiATIS++ (Xu et al., 2020), which is an exten-
sion to Multilingual ATIS (Upadhyay et al., 2018).
It provides 5K annotated sentences for each lan-
guage, which are all in the domain of airline travel.
The second multilingual NLU dataset is a multi-
domain dataset collected from a virtual assistant.
It provides 100K annotated sentences for each lan-
guage, which are evenly distributed in five domains,
namely music, notifications, smart home, weather,
and books. By the way, in the above two multilin-
gual NLU datasets, each word is annotated with a
slot label in the B-I-O format, and each sentence is
annotated with an intent label.

4.2 Implementation details.
We use WikiExtractor (Attardi, 2015) to extract
paragraphs from Wikipedia dumps, use Stanza (Qi
et al., 2020) to split paragraphs into sentences, use
HuggingFace’s Transformers (Wolf et al., 2019) to
tokenize sentences into tokens and load pre-trained
multilingual language models, and use PyTorch
(Paszke et al., 2019) to implement both the base-
line model and TALL. For model optimization, we
apply an AdamW optimizer (Loshchilov and Hut-
ter, 2019) with an initial learning rate of 0.0001,

a weight decay factor of 0.01, and a batch size of
64 in the MT-oriented pre-training of TALL, and
apply another AdamW optimizer with an initial
learning rate of 0.00005, a weight decay factor of
0.01, and a batch size of 256 in the NLU-oriented
fine-tuning of both the baseline model and TALL.
After each epoch, we evaluate the validation per-
formance, which refers to BLEU score in the MT-
oriented pre-training of TALL and Semantic Ac-
curacy in the NLU-oriented fine-tuning of both
the baseline model and TALL. If the obtained per-
formance number is improved, we save the model,
otherwise we cancel the finished epoch by restoring
the model to the last saved version. We decay the
learning rate by 0.5 after each cancelled epoch, and
terminate the model optimization after the 5th can-
celled epoch. For model evaluation, we use NLTK
(Loper and Bird, 2004) to measure BLEU score,
and use the evaluation script for the CoNLL-2000
shared task to measure Slot F1.

4.3 Experimental Results

As shown in Table 1, we carry out a series of experi-
ments on the unannotated sentences collected from
Wikipedia and the annotated sentences collected
from MultiATIS++. Each of these experiments is
aimed at a different combination of CLTL task and
pre-trained multilingual language model, and in-
cludes the corresponding MT-oriented pre-training
of TALL and the corresponding NLU-oriented fine-
tuning of both the baseline model and TALL. On
this basis, we first evaluate the translation perfor-
mance of TALL in its MT-oriented pre-training,
then evaluate the CLTL performance of both the
baseline model and TALL in their NLU-oriented
fine-tuning, and finally calculate the CLTL per-
formance gain of TALL over the baseline model
in percentage. Besides, as shown in Table 2, we
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also repeat the NLU-oriented fine-tuning of both
the baseline model and TALL on the annotated
sentences collected from the multi-domain multi-
lingual NLU dataset, and thereby obtain another
CLTL performance gain of TALL over the baseline
model. The experimental results show that due to
the application of UMT in the MT-oriented pre-
training, TALL consistently achieves better CLTL
performance than the baseline model in the NLU-
oriented fine-tuning without using more annotated
data, and the performance gain is relatively promi-
nent in the case of distant languages.

4.4 Ablation Study

Denoising auto-encoding. In the MT-oriented pre-
training of TALL, we try to discard the denoising
auto-encoding loss and only minimize the back-
translation loss in the UMT training. As a result, we
observe that TALL achieves a very poor translation
performance and a very poor CLTL performance.
This implies that TALL learns little cross-lingual
knowledge through the UMT training without de-
noising auto-encoding.
Back-translation. In the MT-oriented pre-training
of TALL, we also try to discard the back-
translation loss and only minimize the denoising
auto-encoding loss in the UMT training. As a re-
sult, we observe that TALL achieves an almost per-
fect translation performance but a very poor CLTL
performance. This is because the UMT training
without back-translation makes TALL a copying
model instead of an MT model, and a copying
model can work perfectly in the model evaluation
based on round-trip translation.
BART-style fine-tuning. In the NLU-oriented
fine-tuning of TALL, instead of following the fine-
tuning approach of BART, we try to discard the
decoder and only fine-tune the encoder following
the way we fine-tune the baseline model. As a re-
sult, we observe a very poor CLTL performance.
This implies that the decoder of TALL is necessary
for its NLU-oriented fine-tuning.

5 Further Discussion

Is a startup supervision necessary for the back-
translation? In several existing UMT training
recipes, the back-translation is supervised during
its startup stage, where the supervision is provided
by replacing the inference of TALL with a bilin-
gual dictionary (Lample et al., 2018a; Artetxe et al.,
2018b). This startup supervision is aimed at initial-

izing a shared representation space for the given
source-target language pair. However, since the
encoder of TALL is a pre-trained multilingual lan-
guage model, TALL already possesses a properly
initialized representation space, which is shared by
all the involved languages, and thus does not need
a startup supervision. Actually, we tried to use a
parallel corpus generated by a naive MT model to
provide a startup supervision, which is equivalent
to using a bilingual dictionary, but did not observe
any translation performance gain.
How does the UMT training affect the CLTL
performance? The UMT training uses the denois-
ing auto-encoding and the back-translation to en-
hance the correlation between the given source-
target language pair in the representation space of
TALL. Since the encoder of TALL is a pre-trained
multilingual language model, the representation
space of TALL can be seen as an extension to that
of the pre-trained multilingual language model. In
the representation space of the pre-trained multilin-
gual language model, similar languages have been
more correlated with each other than distant lan-
guages. That is to say, in the representation space
of TALL, there is more potential to enhanced the
correlation between distant languages than between
similar languages. As a result, although the CLTL
performance between similar languages is better
than that between distant languages, the CLTL per-
formance gain between distant languages is larger
than that between similar languages.

6 Conclusion

The contribution of this paper is three-fold. First of
all, we construct a novel CLTL model TALL based
on a pre-trained multilingual language model. In
the next place, we train TALL to conduct CLTL
through an MT-oriented pre-training and an NLU-
oriented fine-tuning. Last but not least, we im-
plement UMT in the MT-oriented pre-training of
TALL to make use of unannotated data. Com-
pared with the baseline model, which is the pre-
trained multilingual language model used to con-
struct TALL, TALL consistently achieves better
CLTL performance without using more annotated
data, and the performance gain is relatively promi-
nent in the case of distant languages. In the future,
we will collect unannotated corpora that are linguis-
tically compatible with the downstream NLU tasks
for the UMT training, which we believe can further
boost the CLTL performance of TALL.
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