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Abstract
We consider a joint information extraction
(IE) model, solving named entity recognition,
coreference resolution and relation extraction
jointly over the whole document. In particu-
lar, we study how to inject information from a
knowledge base (KB) in such IE model, based
on unsupervised entity linking. The used KB
entity representations are learned from either
(i) hyperlinked text documents (Wikipedia), or
(ii) a knowledge graph (Wikidata), and ap-
pear complementary in raising IE performance.
Representations of corresponding entity link-
ing (EL) candidates are added to text span rep-
resentations of the input document, and we ex-
periment with (i) taking a weighted average
of the EL candidate representations based on
their prior (in Wikipedia), and (ii) using an
attention scheme over the EL candidate list.
Results demonstrate an increase of up to 5%
F1-score for the evaluated IE tasks on two
datasets. Despite a strong performance of the
prior-based model, our quantitative and quali-
tative analysis reveals the advantage of using
the attention-based approach.

1 Introduction

Information extraction (IE) comprises several sub-
tasks, e.g., named entity recognition (NER), coref-
erence resolution (coref), relation extraction (RE).
State-of-the-art results mainly report performance
on single tasks, usually solving them on a sentence
level (especially NER, RE). However, in practice,
IE system decisions should be consistent on the
document level, e.g., when processing news arti-
cles to automatically link entities (aside from po-
tentially learning, e.g., new relations). Yet, the
challenge of solving the tasks jointly on a docu-
ment level has not received as much attention and
remains hard (Durrett and Klein, 2014; Yao et al.,
2019; Zaporojets et al., 2021).

∗Equal contribution

On the other hand, it is well established that
IE models benefit from incorporating background
information of knowledge bases (KBs). Still, so far
this has been shown from the perspective of solving
individual tasks such as relation classification or
entity typing (e.g., Peters et al. (2019); Liu et al.
(2020)). Integrating KBs in joint models, realizing
and analyzing the more complex end-to-end setting,
has been left unexplored.

In terms of the nature of KBs adopted in IE, cur-
rent approaches use either (i) structured knowledge
graphs comprising (subj,rel,obj) triples,
e.g., Wikidata (Yang and Mitchell, 2017; Han
et al., 2018; Zhang et al., 2019), or (ii) textual
descriptions, usually in hyperlinked documents,
e.g., Wikipedia (Martins et al., 2019; Yamada et al.,
2020). It has not been established to what extent
KB-text and KB-graph entity representations com-
plement each other in boosting IE performance.

We address both research gaps of (a) integrating
KB information into a joint end-to-end IE model
for solving named entity recognition, coreference
resolution and relation extraction, and (b) analyz-
ing what KB representation is more beneficial for
IE, either KB-graph trained on Wikidata, or KB–
text trained directly on Wikipedia. We particularly
contribute: (i) a first span-based end-to-end archi-
tecture incorporating KB knowledge in a joint en-
tity-centric setting, exploiting unsupervised entity
linking (EL) to select KB entity candidates, (ii) ex-
ploration of prior- and attention-based mechanisms
to combine the EL candidate representations into
the model, (iii) assessment of the complementar-
ity of KB-graph and KB-text representations, and
(iv) consistent gains of up to 5% F1-score when
incorporating KB knowledge in 3 document-level
IE tasks evaluated on 2 different datasets.
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Figure 1: Joint information extraction (IE) model with addition of a knowledge base (KB) module.

2 Model

Figure 1 illustrates our model architecture. Input
document tokens are represented using concate-
nated GloVe (Pennington et al., 2014) and charac-
ter embeddings (Ma and Hovy, 2016) and pushed
through a BiLSTM to obtain contextualized token
representations, which are combined into spans.
Similar to Luan et al. (2019); Zaporojets et al.
(2021), a span pruner limits the number of spans
for downstream modules. The KB module (§2.2)
combines span representations with KB entity rep-
resentations (§2.1), trained either on Wikidata (KB-
graph) or Wikipedia (KB-text). The KB-enriched
span representations then serve as input for joint
predictions on downstream IE tasks (§2.3).

2.1 Entity Representations

We experiment with 3 possible entity representa-
tions: KB-text, KB-graph, and concatenating both.
KB-text: We follow Yamada et al. (2016) to obtain
the entity representations using a skip-gram archi-
tecture (Mikolov et al., 2013a,b), training to jointly
predict (i) the linked entities (through Wikipedia hy-
perlinks) given the target entity, and (ii) the neigh-
boring words for a given entity hyperlink.
KB-graph: We adopt Joulin et al. (2017) to train
the entity embeddings directly on Wikidata triples
(subj,rel,obj) by optimizing a linear classi-
fier to predict the obj entity from the subj entity
and the relation type rel.

2.2 KB module

For a span si from token l to r, we obtain the repre-
sentation gi as input to the KB module by concate-
nating the respective hidden LSTM states hl and
hr, and an embedding ψr−l for the corresponding

span width r − l:

gi = [hl; hr;ψr−l]. (1)

We look up a given span si in a dictionary built
from Wikipedia, to determine its candidate entities
set1 Ci, as well as the prior probability pij for each
cij ∈ Ci, as per Yamada et al. (2016, §3).

To combine the KB candidates cij , we either
use (i) a uniform average (Uniform), (ii) the prior
weights pij (Prior), (iii) an attention scheme (At-
tention), or (iv) attention with prior information
(AttPrior). The unnormalized attention scores for
Attention and AttPrior are:

ΦAttention(si, cij , K) = FA ([gi; ξK(cij)]) (2)

ΦAttPrior(si, cij , K) = FAP
(
[gi; ξK(cij); pij ]

)
(3)

where K ∈ {KB-text,KB-graph, both} refers to the
entity representations from §2.1, ξK returns such
representation for cij , and F∗ is a feed-forward
neural network (FFNN). The KB representation for
span si is a weighted average of its candidates Ci:

eK
i =

∑
cij∈Ci

αij · ξK(cij) (4)

where weights αij either are uniform (1/ |Ci|), the
prior pij , or softmax-normalized attention scores
(softmax over Φ from eq. (2) or eq. (3)). The con-
catenation [gi; eK

i ] forms the KB-enriched represen-
tation for span si, as input for IE modules (§2.3).

2.3 Joint IE model

The joint IE model comprises 3 modules (Fig. 1) us-
ing the same KB-enriched representations [gi; eK

i ],

1We limit this to the 16 most frequent ones.
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Dataset
# Entity # Entity

# Relations
# Relation

clusters types types

DWIE 23,130 311 21,749 65
DocRED 98,610 6 50,503 96

Table 1: Dataset statistics.

and using a weighted combination of the 3 module
losses to minimize during training. Note that NER
and RE are framed as multi-label classification.
NER module: We use a FFNN on each span si to
produce scores ΦNER(si) ∈ R|LE |, with LE the set
of possible entity types. At inference, we accept
type l ∈ LE for span si if ΦNER(si)l > 0.
Coref module: We use the coreference scheme
proposed by Lee et al. (2017), using a FFNN to pro-
duce scores Φcoref(si, sj): at inference time, the
highest scoring antecedent of span sj is then cho-
sen (potentially sj itself). Indeed, to allow for sin-
gletons we accept self-references (sj , sj) if NER
predicts the span sj to be an entity.
RE module: Similar to Luan et al. (2019, 2018),
we use a FFNN to produce scores ΦRE(si, sj) ∈
R|LR| for each pair of spans (si, sj), with LR the
set of relation types. We accept relation l ∈ LR for
pair (si, sj) if ΦRE(si, sj)l > 0.
IE unification: Above modules make span level
predictions. We obtain entity-centric predictions
using the coref clusters, by assigning the union of
predicted entity/relation types within a coref cluster
to all its members, as do Zaporojets et al. (2021).

3 Experimental Setup

We evaluate our proposed models2 on entity-centric
multi-task datasets, summarized in Table 1: DWIE
(Zaporojets et al., 2021) and DocRED (Yao et al.,
2019). We report on coreference resolution (coref),
NER and relation extraction (RE). For coref, we
report the average of 3 common F1 scores, as im-
plemented by Pradhan et al. (2014): MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998) and
CEAFe (Luo, 2005). Since we focus on entity-
centric, document-level IE, for NER and RE we
use hard metrics (Zaporojets et al., 2021) on the
level of entity clusters (i.e., aforementioned coref
clusters): predictions are counted as correct only
if (i) all mentions (with exact boundary match) are
present in the entity cluster, and (ii) the predicted
entity type (for NER) or relation type between two

2Code and models available at https://github.
com/klimzaporojets/e2e-kb-ie.

clusters (for RE) is correct.
Our experiments address 2 main questions (see

Fig. 1): (Q1) Which type of KB representation is
most helpful for IE (KB-text, KB-graph, or both;
see §2.1)? (Q2) Which weighting scheme to use for
α (Uniform, Prior, Attention, AttPrior; see §2.2)?

4 Results

We summarize the comparison of various model
choices for both DWIE and DocRED datasets in
Table 2. First, looking into (Q1), we note that in-
cluding background information from KB-graph
and KB-text significantly boosts performance com-
pared to the Baseline without any KB. Additionally,
our model outperforms the results from Zaporojets
et al. (2021) (not listed in the table) by about 2
percentage points F1, using the same input (GloVe)
representations. Furthermore, we observe a gen-
eral improvement in results when combining both
representations, suggesting that a (hyper)text cor-
pus (Wikipedia) and a knowledge graph (Wikidata)
embed complementary information for raising IE
performance.

Deeper analysis reveals that adding KB repre-
sentations mainly benefits performance for “rare”
entity types: e.g., limiting the test set to entity types
that occur ≤50 times in the training set for DWIE,
compared to Baseline, F1 for NER goes up by
+13.9 for KB-both with AttPrior, while the benefit
gradually decreases for more frequently occurring
entity types. For RE, we note that overall we also
see a clear performance gain from adding KB infor-
mation (e.g., +5.1% F1 for both KB sources with
AttProp compared to Baseline for DWIE), yet the
boost is not as clear for relations with fewer train-
ing instances. (The latter makes sense, since we
inject KB representations of entities rather than ex-
plicitly also for relations; we leave studying adding
relation embedding information for future work.)

Second, for (Q2), we note that the AttPrior
scheme is the overall winner among the different
EL candidate weigthing schemes. We observed
that in terms of ranking EL candidates, Prior per-
forms quite well on DWIE — for 86.5% of entity
mentions it assigns the highest score to the cor-
rect EL candidate, while Attention and AttPrior
achieve it for 46.2%, resp. 77.2% of the mentions
— which basically confirms that DWIE has a simi-
lar entity distribution as Wikipedia.3 Yet, it seems
necessary to include alternative candidates, and

3DWIE is a news article corpus.

https://github.com/klimzaporojets/e2e-kb-ie
https://github.com/klimzaporojets/e2e-kb-ie
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DWIE DocRED

KB Source Setup Coref NER RE Coref NER RE

– Baseline 90.0±0.2 71.7±0.5 47.0±1.4 81.9±0.3 68.5±0.3 23.5±0.6

Uniform 90.7±0.2 73.5±0.5 48.5±1.1 82.9±0.1 70.7±0.2 24.5±0.3

KB-text Attention 90.7±0.3 73.4±0.8 49.0±0.4 83.4±0.1 71.2±0.1 24.5±0.3

AttPrior 90.7±0.3 73.7±0.6 49.6±0.8 83.2±0.2 71.3±0.2 24.8±0.4

Prior 90.7±0.2 73.8±0.5 49.4±0.4 82.9±0.2 70.9±0.3 25.3±0.4

Uniform 91.0±0.3 73.6±0.4 48.0±1.2 83.3±0.2 71.1±0.2 24.9±0.2

KB-graph Attention 91.2±0.3 73.9±0.5 50.1±1.1 83.7±0.1 71.6±0.1 25.0±0.4

AttPrior 91.3±0.2 74.6±0.3 50.5±1.0 83.5±0.3 71.5±0.2 25.1±0.2

Prior 90.8±0.3 73.6±0.6 49.6±1.1 83.4±0.1 71.1±0.1 25.2±0.2

both Uniform 91.1±0.1 74.1±0.5 49.3±0.5 83.5±0.1 71.3±0.2 24.8±0.1

(KB-graph + Attention 91.2±0.3 74.3±0.6 51.3±1.3 83.5±0.2 71.5±0.1 24.8±0.3

KB-text) AttPrior 91.5±0.2 75.0±0.4 52.1±1.2 83.6±0.2 71.8±0.3 25.7±0.7

Prior 90.8±0.1 73.8±0.2 49.8±1.2 83.2±0.1 71.2±0.1 25.1±0.3

Table 2: Main results of the experiments in F1 scores grouped by the background KB source. We report Avg. F1
scores of MUC, B3 and CEAFe for Coref, and hard F1 metrics for NER and RE. Bold font indicates the best results
for each of the different KB source types. Additionally, the best overall results are underlined.

NASA's Mars rover, "Curiosity" will [...] continue 
exploring the surface of the Red Planet.

Figure 2: Illustration of EL candidate weighting: the
α weights for top candidates for “Red Planet” from the
example sentence at the top. Attention-based weight-
ing (Attention, AttPrior) correctly identify the “Mars”
entity, while the Wikipedia-based Prior fails, as most
of Wikipedia’s “Red Planet” links refer to the film.

the attention-based schemes thus can correct EL
mistakes of Prior, as illustrated in Fig. 2. This cor-
rection leads to a resulting boost for the IE tasks
as reported in Table 2. E.g., we found that for
DWIE, looking at clusters with entity mentions
for which Prior makes wrong EL predictions, the
AttPrior weighting scheme retrieves +3.7% more
of the gold standard annotated named entities (as
opposed to just +0.6% in the clusters with correct
Prior EL candidates). Perfecting the EL prediction

would potentially boost IE performance even more.

5 Related Work

As stated earlier, we studied how to integrate
(i) knowledge base information into IE, and partic-
ularly (ii) end-to-end IE combining multiple tasks
(NER, relation extraction, coreference resolution),
while (iii) taking an entity-centric perspective, i.e.,
focus on making consistent decisions on the docu-
ment level. For (i), integrating KB into IE has been
applied for individual tasks: relation classification
(Poerner et al., 2020; Zhang et al., 2019; Yang and
Mitchell, 2017), entity typing (Peters et al., 2019)
and NER (Yamada et al., 2020). For (ii), recently
span-based architectures (Lee et al., 2017; Luan
et al., 2019; Wadden et al., 2019; Fei et al., 2020)
have been proposed. Our work unifies the KB inte-
gration concept into such span-based IE system, in
particular an entity-centric one (as per (iii)), build-
ing on Jia et al. (2019); Zaporojets et al. (2021).
For the KB integration approach, we exploit en-
tity representations trained on a hypertext corpus,
as in (Yamada et al., 2016; Ganea and Hofmann,
2017; Yamada et al., 2020) or learnt from a knowl-
edge graph (Yang and Mitchell, 2017; Han et al.,
2018; Zhang et al., 2019). Our results show that
both offer complementary value for IE. Similarly
to our work, Yamada and Shindo (2019) also ex-
plore using an attention-weighted combination of
entity representations, but they use it to build a full
document representation (with mentions having
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the entities as candidates) for a text classification
task. In contrast, our span-based attention model is
able to “inject” knowledge in each of the mentions
separately, for more fine-grained downstream IE
tasks that are mention-dependent, e.g., coreference
resolution, relation extraction and NER.

6 Conclusion

We propose an end-to-end model for joint IE (NER
+ relation extraction + coreference resolution) incor-
porating entity representations from a background
knowledge base (KB), using a span-based system.
We find that representations built from a knowledge
graph and a hypertext corpus are complementary
in boosting IE performance. To combine candidate
entity representations for text spans, we explore var-
ious weighting schemes: an attention-based combi-
nation is successful in combining prior frequency
information from a hypertext corpus with contex-
tual information to identify the relevant entity, and
achieves highest IE performance.
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