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Abstract

Accurate detection and classification of online
hate is a difficult task. Implicit hate is particu-
larly challenging as such content tends to have
unusual syntax, polysemic words, and fewer
markers of prejudice (e.g., slurs). This prob-
lem is heightened with multimodal content,
such as memes (combinations of text and im-
ages), as they are often harder to decipher than
unimodal content (e.g., text alone). This paper
evaluates the role of semantic and multimodal
context for detecting implicit and explicit hate.
We show that both text- and visual- enrichment
improves model performance, with the mul-
timodal model (0.771) outperforming other
models’ F1 scores (0.544, 0.737, and 0.754).
While the unimodal-text context-aware (trans-
former) model was the most accurate on the
subtask of implicit hate detection, the multi-
modal model outperformed it overall because
of a lower propensity towards false positives.
We find that all models perform better on con-
tent with full annotator agreement and that
multimodal models are best at classifying the
content where annotators disagree. To con-
duct these investigations, we undertook high-
quality annotation of a sample of 5,000 mul-
timodal entries. Tweets were annotated for
primary category, modality, and strategy. We
make this corpus, along with the codebook,
code, and final model, freely available.

1 Introduction

Although its prevalence is fairy low (Vidgen et al.,
2019), the effects of online hate can be deeply per-
nicious, risking real harm on targeted victims and
their communities (Müller et al., 2019; Guadagno
et al., 2013). A 2021 survey by Anti-Defamation
League found that 81% of Americans agree social
media companies should do more to counter online
hate (Anti-Defamation League, 2021).

∗Work performed while at the University of Oxford

Research into automated hate detection has pri-
marily focused on explicit varieties. However,
many purveyors of hate have adopted more com-
plex and nuanced strategies, such as dog whistling:
the use of intentionally ambiguous rhetorical tech-
niques to express hateful messages which only
some audiences will recognize. For instance, calls
by right-wing American political figures to “protect
the suburbs” cloak racial grievances and concerns
about whiteness in more prosaic concerns about
community protection.

Performance in online hate classification has
improved substantially from static methods like
GloVe and fastText through the use of context-
aware word embeddings, in particular those com-
puted by transformer-models with self-attention
(Badjatiya et al., 2019; Mozafari et al., 2020; Polig-
nano et al., 2019; Sabat et al., 2019; Zampieri
et al., 2019; Yang et al., 2019; Sohn and Lee, 2019;
Kennedy et al., 2020; Vidgen et al., 2020). How-
ever, most hate detection models are text-only and
cannot be applied to non-textual content (such as
images and audio) and do not account for non-
textual information contained in multimodal con-
tent (such as memes). This is a problem of both task
definition and modeling; most hateful content train-
ing datasets do not take into account non-textual
features when annotations are made, which means
that non-textual systems cannot be trained and eval-
uated on them. The lack of detailed- and expertly-
annotated datasets means that many key aspects of
multimodal content classification have not yet been
explored.

We address these gaps in research, making three
primary contributions. First, we present a newly
annotated dataset of 5,000 multimodal tweets, with
labels for primary category, modality, and strat-
egy. We make the annotation guidelines, code, and
best performing models publicly available. Sec-
ond, we show that as models better take into ac-
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count contextualization, from context-invariant to
context-aware and unimodal to multimodal, how
accurately they detect hateful content significantly
improves. Though the unimodal-text context-aware
model performs the best on the implicit hate sub-
task, the multimodal model is better overall due to a
lower propensity towards false positives. Third, we
show that all models perform considerably worse
on ambiguous content (as determined by annotator
disagreement).

2 Related Work

The networked structure of online platforms means
that hate is often able to spread far beyond the
author’s original intended audience (Walther et al.,
2011). These “masspersonal” (O’Sullivan and Carr,
2018) networks blur the divide between public and
private discourse, resulting in “context collapse”
as multiple audiences converge towards a singular
unbounded one (Marwick and boyd, 2010; boyd,
2017). This can increase the social costs of spread-
ing hateful messages as wider audiences and plat-
form moderators may disapprove of this content.
Consequentially, hateful actors are incentivized to
employ implict rhetorical strategies to circumvent
these costs. Whereas explicit forms of hate (e.g.,
slurs or calls to violence) are likely to draw atten-
tion, subtle forms of hate, such as dog whistles, can
be effective in avoiding detection.

Dog whistles comprise a range of strategies
anchored in polysemy including pseudo-factual
claims (Meddaugh and Kay, 2009), normative state-
ments (Pettigrew and Meertens, 1995), coded hate
terms (Magu et al., 2017), and artistic license and
humor (Milner, 2013) to create implied meanings.
This enables hateful actors to target their messages
at different audiences such that the hateful elements
are only recognized by people who are predisposed
to respond favorably (Albertson, 2015). This gives
their speakers plausible deniability, allowing them
to avoid any social, legal, or platform-based pun-
ishment for the content they produce.

Multimodal communication, in particular,
memes, are susceptible to co-optation by hateful
actors for use as dog whistles because of its ability
to convey incongruent ideas through each modal-
ity (‘modal dissonance’). Hateful content can be
passed under the façade of a shared, seemingly be-
nign, meme macro (or ‘template’) (Zannettou et al.,
2018). For instance, Vidgen et al. (2019) describe
how a non-hateful image (e.g., a group of Mus-

lims in prayer) can be combined with a non-hateful
text (e.g., the words ‘Woken up yet?’) to express
prejudice. If the words or images were changed to
something benign then the meme would no longer
be hateful). This has led to a culture of ’shit posting’
and trolling (Pelletier-Gagnon and Pérez Trujillo
Diniz, 2018; Phillips, 2012).

Previous research on automated detection of
hate has primarily relied on unimodal approaches
with text-based features. These features have been
passed through a variety of classification models
(Fortuna and Nunes, 2018; Schmidt and Wiegand,
2017). Neural network architectures harnessing
advances in convolutions (Gambäck and Kumar
Sikdar, 2017; Ribeiro and Da Silva, 2019; Zhang
et al., 2018), recurrence (Pitsilis et al., 2018), long-
term memory (Badjatiya et al., 2019; Pitsilis et al.,
2018), and bidirectionality (Caselli et al., 2018;
Qian et al., 2018) have been applied to improved
accuracy. However, a shift towards fine-tuning
large, pre-trained models has yielded the best re-
sults with BERT and its varieties being the models
of choice (Sohn and Lee, 2019; Zampieri et al.,
2019; Mozafari et al., 2020; Polignano et al., 2019;
Vidgen et al., 2020, 2021).

Despite these strides, many challenges persist
as real-world interactions are noisy, varied, and
multimodal. Most applications of multimodal
hate speech detection have combined text with
meta-information like user characteristics, com-
ment thread information, and network connections
(Chandrasekharan et al., 2017; Fehn Unsvåg and
Gambäck, 2018; Gao and Huang, 2017; Qian et al.,
2018; Vijayaraghavan et al., 2019). Early examples
of combining text and image data yielded mixed re-
sults (Gomez et al., 2020; Sabat et al., 2019; Yang
et al., 2019) leading companies like Facebook to
initiate financial awards for improved performance
(Kiela et al., 2020). Success in other domains like
identifying pro-eating disorder content (Chancellor
et al., 2017), gang activity on social media (Bland-
fort et al., 2019), demographic inference (Wang
et al., 2019), and cyberbullying (Zhong et al., 2016)
highlight the potential positive effects of multi-
modal approaches.

3 Schema

Our taxonomy comprises three main categories: (1)
Primary attribute, (2) Modality, and (3) Strategy.
The taxonomy and definitions were developed by
reviewing existing theoretical frameworks for on-
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line hate and multimodal content (Vidgen et al.,
2019; Waseem and Hovy, 2016; Kiela et al., 2020;
Citron and Norton, 2011) and by iteratively investi-
gating samples of tweets from the dataset.

Primary For the Primary attribute annotators se-
lected one of four options: Hate, Counterspeech,
Reclaimed, and Neutral. Similar to Davidson et al.
(2017, p. 512), “Hate” is defined as “language that
is used to express hatred towards a targeted group
or is intended to be derogatory, to humiliate, or
to insult the members of the group.” This defi-
nition’s grounding in group identity differentiates
hate from other forms of abusive content (such
as interpersonal abuse) and corresponds with the
definitions enforced by digital platforms like Face-
book, Google, and Twitter (YouTube, 2020; Twitter,
2020; Facebook, 2020).

“Counterspeech” is defined as any response to
hateful speech that undermines it or expresses sup-
port to a group that it targets. This category is
needed as models trained on datasets with only
a ‘Neutral’ category may struggle to differentiate
between pro-social (Galinsky et al., 2013) tweets
and hateful ones if they have similar lexical con-
tent. “Reclaimed” is defined as the use of slurs
self-referentially, whereby oppressive language is
reappropriated for in-group use. This category is
particularly important given well-established bi-
ases in classification models, whereby they dis-
proportionately classify the vernacular of African
Americans (and other groups) as hate (Sap et al.,
2019; Davidson et al., 2019). “Neutral” is defined
as content which did not fall into the other three
categories.

Modality For the Modality attribute annotators
labeled the modality (image, text, or both) that was
informative when making the Primary annotation.
This was needed because although all entries con-
tained both a text and image, both modes were not
always used to express hate. In some cases the hate
was expressed solely by the text or by the image,
and in others both were used together.

Strategy The Strategy attribute captures the
rhetorical devices used to convey hate. It ex-
pands upon the implicit/explicit distinction pro-
posed by Waseem et al. (2017) and adopted by
others, such as Caselli et al. (2020) and Zampieri
et al. (2019). Strategy is hierarchical: if annota-
tors identify Hate then they can select “Explicit”,
“Psuedo-factual”, “Normative statements”, “Coded

Strategy Text Image

Explicit

<user>
<user> suck
a pig dick cunt
<url>

Pseudo-
factual

<user> ille-
gal criminals
protected
by liberals.
#buildthewall
<url>

Normative

<user>
<user> come
on booker
bring in the
“race” card
you always do.
<url>

Coded

best #npc
meme
#npcmeme
#sjw <url>

Creative

good morn-
ing tweeps
#friday
#teamtrump
#buildthewall

<url>

Table 1: Examples of tweets for each implicit strategy.

language”, or “Creative expressions” (see Table
1). The latter four were collapsed into a single
“Implicit” category. These strategies reflect previ-
ous research on the varieties of implicit hate (Med-
daugh and Kay, 2009; Dvorak, 1999; Poynting and
Noble, 2003; Hughey and Daniels, 2013).

4 Dataset and annotation

The dataset used to train and evaluate the mod-
els originates from the MMHS150K collected by
Gomez et al. (2020). It comprises 150,000 English-
language tweets which all contain text and an im-
age, and have been annotated for hate (split into 5
subcategories: racist, sexist, homophobic, religion
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based attacks or attacks to other communities).1

We enrich a sample of 5,000 multimodal tweets
from the MMHS150K dataset with re-annotation.2

Half of the dataset (2,500 tweets) was sampled
using a 17-term query to provide more coverage
of hateful tweets, especially covert ones.3 The
other half (2,500 tweets) was randomly sampled to
ensure heterogeneity and to offset biases associated
with focused sampling (Wiegand et al., 2019).

Annotation process
The annotators were given a detailed codebook
to inform their decisions, with definitions, pro-
totypical examples, and edge cases. Each tweet
was labeled by two annotators. All annotators had
prior experience annotating online hate, and each
completed a minimum of four weeks of training.
Given the frequency of mislabeled hate speech due
to a lack of domain expertise (van Aken et al.,
2018), we prioritized annotator experience over
more scalable crowdsourcing options like Amazon
Mechanical Turk. All entries with disagreement
were sent for review by an expert annotator. The
expert was a PhD student researching online and
offline hate, who had previously worked on two
annotation projects.

The Kappa score for the dataset is 0.40, indicat-
ing low to moderate agreement. However, it is a
nearly three-fold increase from the MMHS150k’s
Kappa of 0.15 despite the increased difficulty of
the task. This is equivalent to other hate speech
datasets. For instance, Wulczyn et al. (2017) re-
port Krippendorf’s alpha of 0.45 and Sanguinetti
et al. (2018) report category-wise Kappas of 0.37
for offense and 0.54 for hate.

In 51% of cases annotators disagreed on any of
the Primary, Modality, or binarized Strategies – all
of which were sent for review by the expert. The
annotators agreed on labels far more frequently for
tweets in the “None” category (68.8% of the time)
than the others. Initial agreement (i.e. before ex-
pert adjudication) was 29% for Hateful, 15% for
Counterspeech and 14% for Reclaimed. These rela-
tively low agreement levels were primarily because
broader situational context is often needed to make
these judgments.

1The dataset can be accessed at: https://gombru.
github.io/2019/10/09/MMHS/

2The 5,000 tweet dataset can be downloaded from https:
//github.com/botelhoa/Dog_Whistle_Hate

3The terms are: wall, card, confederate, maga, islam, sjw,
gender, crim, npc, normie, ))), muslim, illegal, caravan, obama,
hillary, america.

Annotations Label Breakdown

Primary Hateful: 1850 (37.0%), Coun-
terspeech: 113 (2.3%), Re-
claimed: 366 (7.3%), None:
2,671 (53.4%)

Modality Unimodal-text: 874 (37.5%),
Unimodal-image: 25 (1.1%),
Multimodal: 1,430 (61.4%)

Strategy Explicit: 31.8%, Norma-
tive: 30.4%, Coded: 22.3%,
Creative: 7.8%, Psuedo-
factual: 7.7%

Table 2: Dataset label breakdown.

Annotators agreed less on “Multimodal” tweets
than “Unimodal-Text” tweets. This suggests the
richer semantic context from the different modali-
ties helps annotators to clarify what is being ex-
pressed. Unexpectedly, agreement was higher
when labeling implicit rather than explicit hate
(note that this is only for whether implicit hate
was expressed, rather than identifying the partic-
ular technique used). This may be because the
codebook contained more explanation of implicit
hate, given we anticipated difficulties in annotating
for them or because it can be difficult to ascertain
when explicit slurs are hateful versus reclaimed
when few signals pointing to the author’s identity
are available.

Dataset composition

The final labeled dataset is 37.0% Hateful, 2.3%
Counterspeech, 7.3% Reclaimed, and 53.4% None
(Table 2). Annotators relied on both modalities
in a majority of cases (61.4%). In terms of strat-
egy, of the tweets marked Hateful, 36.9% were
explicitly hateful and 63.1% were implicitly hate-
ful. The implicit strategies were Normative claims
(30.4%), Coded language (22.3%), Creative (7.8%),
and Psuedo-factual (7.7%).

5 Model implementation

All models were evaluated using the same 80/10/10
train, validation, and test split, stratified by class
across the sets. Computation was completed using
a single CUDA-enabled Nvidia Tesla K80 GPU in
Google Colab.

https://gombru.github.io/2019/10/09/MMHS/
https://gombru.github.io/2019/10/09/MMHS/
https://github.com/botelhoa/Dog_Whistle_Hate
https://github.com/botelhoa/Dog_Whistle_Hate
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5.1 Input features
The curators of the MMHS150k dataset represented
all graphics (images, GIFs and video) as thumb-
nails. They were resized to be a pixel dimension of
500 in the smallest direction while maintaining the
original aspect ratio. Textual features are derived
from two sources: the tweet body and the image
text, extracted using OCR. Both text sources un-
derwent the same pre-processing procedure, using
the Ekphrasis Python library.4 We de-noised the
data by replacing hyperlinks, mentions, and dates
with tags, decomposing hashtags into their con-
stituent words, and normalizing elongated words
and punctuation, in line with Mozafari et al. (2019)
and Sohn and Lee (2019). To retain indicators of
sentiment, variables were added for whether capital
letters were used, elongated words and punctuation
(Hutto and Gilbert, 2014). The remaining text was
truncated to a length of 100 tokens. Longer tweets
were abridged while shorter ones were padded.

5.2 Models
Four classes of models with varying levels of
semantic contextualization were trained, includ-
ing three classes of unimodal models—unimodal-
image models, context-invariant unimodal-text
models (LSTM), and context-aware unimodal-text
models (Transformers)—and multimodal models.
Only the best performing model in each class is
reported and their tuning described. Full results are
available in the supplemental materials.

For unimodal-image models, Xception, NASNet,
and Inception-ResNet V2 (Chollet, 2017; Szegedy
et al., 2016a; Zoph et al., 2018) were tested and
Xception had the highest performance as mea-
sured by the weighted F1 score. For context-
aware unimodal-text models, albert-xxlarge-v2,
bert-large-uncased, electra-large-discriminator, and
roberta-large (Lan et al., 2019; Clark et al., 2020;
Liu et al., 2019) were tested with roberta-large per-
forming best. For multimodals, the intermediate
concatenations approaches of Gomez et al. (2020)
and Sabat et al. (2019) and a joint representation ap-
proach (“MMBT”) (Kiela et al., 2019) were tested
with the joint representation approach performing
best.

5.2.1 Unimodal-Image
The first level of semantic contextualization con-
sists of only image information. The extraction

4The documentation is available at https://github.
com/cbaziotis/ekphrasis

of image features was conducted with Xception
(Chollet, 2017). Xception decouples the mapping
of cross-channel and spatial correlations by per-
forming a depthwise convolution before a point-
wise convolution. This improves Top-1 and Top-5
accuracy on ImageNet compared to Inception and
a significant increase in performance on the larger
JFT image corpus despite maintaining the same
number of model parameters (Chollet, 2017). It has
yet to be applied to the task of hateful image recog-
nition but outperforms methods that have (Gomez
et al., 2020; Yang et al., 2019; Sabat et al., 2019)
in general image recognition tasks (Soo Ko, 2020).

The weights pre-trained on ImageNet were
downloaded from the Keras library.5 Data aug-
mentation was applied to the images in the train
set prior to passing them through the network, in-
cluding slight random rotations, height and width
shifts, and horizontal flips. The images were passed
in batch sizes of 32, following the approach of
Szegedy et al. (2016b). The weights in the bottom
layers were frozen while updates occurred only
on the top 5%. A classifier was placed atop the
CovNet which used two-dimensional Global Av-
erage Pooling followed by a fully connected layer
of 1024 nodes with ReLU activation and a Soft-
Max output layer with dropout. During training,
the same hyperparameters proposed by the origi-
nal paper for the ImageNet task were applied with
the addition of the early stopping regularization
technique.

5.2.2 Unimodal-Text
In order to understand the impact of textual con-
textualization on the detection of implict hate, two
approaches to text-only classification were imple-
mented: (1) a context-invariant LSTM model and
(2) context-aware transformer-based models.

Context-Invariant LSTM The baseline context-
invariant model consists of a bi-LSTM with pre-
trained fastText embeddings (Schuster and Pali-
wal, 1997). This is the strongest alternative to
a transformer model because it considers future
context (Graves and Schmidhuber, 2005) and ap-
proximately represents OOV words via character n-
grams (Bojanowski et al., 2016; Joulin et al., 2016).

The LSTM comprised an embedding layer of
length 300, two bidirectional LSTM layers of 256
hidden nodes with a dropout of 0.2, and a fully con-

5These weights can be found here: https://keras.
io/api/applications/

https://github.com/cbaziotis/ekphrasis
https://github.com/cbaziotis/ekphrasis
https://keras.io/api/applications/
https://keras.io/api/applications/
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nected output layer. It was trained over 50 epochs
with early stopping of a 10-epoch patience and
0.01 minimum average validation loss improve-
ment using mini-batches of size 64 bucketed by
length to reduce the need for padding. Parameters
were optimized using the weighted ADAM algo-
rithm (Loshchilov and Hutter, 2017) with a Cross
Entropy Loss function. A hyperparameter search
was conducted across the learning rates ∈ { 0.0001,
0.001, 0.01, 0.1, 1}.

Context-Aware Transformer The context-
aware model applies a transformer architecture,
namely roberta-large (Liu et al., 2019). Within
the transformer, each use of a word is treated
independently from its other uses. This means that,
in principle, it can distinguish between the phrase
“race card” when used in horse racing versus in
reference to the view that racial prejudice can be
advantageous to its victims. The Transformer
model was coded in PyTorch with pre-trained
weights loaded through the HuggingFace library.6

It was trained for 10 epochs with early stopping
of a two-epoch patience and 0.005 minimum
average validation loss improvement. Parameters
were optimized using the weighted ADAM
algorithm (Loshchilov and Hutter, 2017) with a
0.1 weight decay and slanted triangular schedule
(Howard and Ruder, 2018) with a warmup of
0.06. Backpropagation was conducted using Cross
Entropy Loss. A hyperparameter search borrowed
from (Liu et al., 2019) was implemented across the
learning rates ∈ { 1e-5, 2e-5, 3e-5} and mini-batch
sizes ∈ { 16, 32, 64}.

5.2.3 Multimodal
Lastly, deeper semantic contextualization may be
achieved through the inclusion of multimodal data.
Such models should, in theory, more accurately
identify implicit hate by drawing from informa-
tion contained by both the image, text, and their
interaction. Recent approaches use a transformer’s
attention mechanism to generate joint representa-
tions of images and text (Kiela et al., 2019; Li et al.,
2019; Lu et al., 2020).

The MMBT first encodes image data using
ResNet-152 with a generalized final pooling layer
pre-trained on the ImageNet dataset. The image
embeddings are combined with the tokenized text
and passed through a bidirectional transformer ar-

6These are available at https://huggingface.co/
transformers/.

chitecture that was initialized using pre-trained
BERT weights before an output layer with Soft-
Max activation makes the classification (Kiela
et al., 2019). This was implemented using the
Simple Transformers library.7 A batch size of
eight was used, with a learning rate of 1−5 trained
with early stopping, weighted ADAM optimization
(Loshchilov and Hutter, 2017) with 0.1 weight de-
cay, and a slanted triangular schedule (Howard and
Ruder, 2018) with a warmup of 0.06.

6 Results

6.1 Inter-modal Performance Comparisons
Performance for the strongest models in each of
the four modality types is displayed in Table 3.
Metrics were computed with a weighted average to
accommodate class imbalances. The multimodal
model performed the best across the four metrics,
albeit only marginally so compared to the sec-
ond best model, the unimodal-text context-aware
model. Both unimodal-text models noticeably out-
performed the unimodal-image model.

6.2 Performance by Strategy
To assess the secondary effects of defining training
objectives, accuracy based on the Strategy annota-
tion was calculated. These labels were not shown
to the model to demonstrate performance variations
hidden by oversimplified label categories.

The unimodal-text context-aware model had the
highest accuracy when identifying both “Explicit”
and “Implicit” hate (Table 3). By contrast, the
unimodal-image model most accurately identifies
non-hateful tweets, but struggles with hateful ones.

6.2.1 Ambiguity
Ambiguity is the final characteristic for which per-
formance was assessed (Table 4). A decision in the
Primary annotation is considered ambiguous if the
two annotators provided conflicting decisions.

All models had significantly higher F1 scores
on data deemed unambiguous. The multimodal
model dealt the best with ambiguity (0.692) fol-
lowed closely behind by the unimodal-text context-
aware model (0.682). The unimodal-image model
was most affected (0.758 vs 0.398) by ambiguity.

7 Error Analysis

We conducted a qualitative analysis on the errors of
the multimodal model similar to the one in Vidgen

7https://github.com/ThilinaRajapakse/simpletransformers

https://huggingface.co/transformers/
https://huggingface.co/transformers/
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Overall Accuracy by Strategy

Accuracy Precision Recall F1 Non-Hateful Explicit Implicit

Unimodal-Image 0.604 0.560 0.544 0.544 0.760 0.273 0.370
Unimodal-Text
Context-Invariant 0.737 0.707 0.737 0.719 0.713 0.742 0.798
Context-Aware 0.765 0.759 0.765 0.754 0.678 0.864 0.941

Multimodal 0.785 0.763 0.785 0.771 0.732 0.833 0.899

Count 502 502 502 502 317 66 119

Table 3: Overall performance of models and performance split by strategy. The multimodal model performs best
overall. The context-aware unimodal-text model performs best on both implicit and explicit forms of hate.

Unambiguous Ambiguous

Unimodal-Image 0.758 0.398
Unimodal-Text

Context-Invariant 0.827 0.643
Context-Aware 0.875 0.682

Multimodal 0.845 0.692

Count 272 230

Table 4: Model F1 Score by ambiguity. Entries where
annotators disagree are considered ambiguous and en-
tries with full agreement are considered unambiguous.
All models perform better on Unambiguous content.
The multimodal model performs best on ambiguous
content.

et al. (2020). Errors were inductively categorized
into “mutually exclusive and collectively exhaus-
tive” groups (Vidgen et al., 2020, p. 7). This is
visualized in the Tree Diagram in Figure 1.

The first branch on the tree is the annotator er-
rors. This occured when the model’s classification
better represented the tweet’s content, based on
the annotation codebook (as determined by this pa-
per’s authors). This represented 25% of the errors
and suggests that model performance could be im-
proved further if annotator errors were eradicated.
Model errors were the most frequent, accounting
for 66%. Lastly, in some cases we determined that
the true label was a classification other than those
provided by the annotators or the model, which
account for 9% of errors.

Model errors were further subdivided, as shown
on the tree diagram branches. Hate when None in-
cludes instances where the model classified “None”
content as “Hateful”. This was likely caused by
an over reliance on the use of slurs (i.e., a slur
being used non-hatefully), misidentification of in-

Sources of errors (N=108)

Annotators (27)

Model (71)

Hate when None (23)

Over-reliance on potential slur (12)

Over-reliance on potential code (5)

Interpersonal abuse (3)

Descriptive (3)

None when Hate (17)

Tonal (5)

Indeterminable (5)

Uses of “Nigga” (4)

Hate toward hegemonic group (3)

Reclaimed and counter-speech (31)

Missed known sender id (19)

Missed counter-speech (7)

Assumed unknown sender id (5)

Both (10)

Figure 1: Sources of classification errors for the multi-
modal model.

terpersonal abuse or confusion caused by content
which describes/reports on (but does not endorse)
hateful activities. None when Hate is the inverse.
It includes all instances where the model classi-
fied “Hateful” content as “None”. This was likely
caused by a combination of tone misjudgements
(e.g., hateful language which had positive senti-
ment), uses of the word Nigga8, hate towards a

8When the identity of the speaker was unknown and the
use was not evidently “Hateful”, annotators were instructed to
treat the tweet as “None” to avoid penalizing language most
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hegemonic group (e.g., referring to White people as
Hillbillies), and, in select cases, indeterminable rea-
sons. The final category, Reclaimed and Counter-
speech, comprises confusion beyond the “None”–
“Hateful” distinction. These were caused by miss-
ing the sender’s identity when it was knowable (i.e.,
“Reclaimed” language was classified as “None”),
assuming the sender’s identity when it was unknow-
able (i.e., “None” content was classified as “Re-
claimed”, and failing to predict “Counterspeech”.
This final type did not exhibit systematic misclassi-
fications, likely because there were few instances
overall.

8 Discussion

As hypothesized, the unimodal-text context-aware
model outperformed the unimodal-text context-
invariant model. The 3.5 percentage point increase
in F1 scores when distinguishing between Primary
labels (“Hate”, “Counterspeech”, “Reclaimed”,
and “None”) is in line with other results which
range from 0–8 percentage point improvements de-
pending on the dataset (Vidgen et al., 2019; Sohn
and Lee, 2019; Zampieri et al., 2019; Mozafari
et al., 2019).

When isolating performance by hate strategy,
this gap substantially widens to 12.2 (“Explicit”)
and 14.3 (“Implicit”) percentage points. This
demonstrates the value of semantic contextualiza-
tion for accurately identifying hate speech grows as
its overtness diminishes. This is not the case with
non-hateful content. On those, the unimodal-text
context-invariant model is 3.5 percentage points
more accurate.

Content modalities interact in ways that can cre-
ate more subtle forms of hate. For this reason, the
multimodal model was expected to outperform uni-
modal ones. This is marginally supported by the
1.7 percentage point gap in F1 score on the Pri-
mary labels between the multimodal model and the
best performing unimodal model. This improve-
ment is larger than that achieved by Gomez et al.
(2020); Sabat et al. (2019); Yang et al. (2019), but
smaller than that by Kiela et al. (2020) in similar
hate speech detection tasks. Improvements from
the incorporation of image data are minor com-
pared to the gains from the transformer model. This
may either signal underlying patterns in how mul-
timodality is used in online content or reflect the

commonly used by Black communicators. Ergo, the model
may associate its use with “None”.

data collection methods which relied on text-based
query methods through the Twitter API.

However, it is the context-aware unimodal-text
model that performs the best when assessing by
Strategy. The gaps between the unimodal-text
model and multimodal model are 2.8 percentage
points (“Non-Hateful”), 3.1 percentage points (“Ex-
plicit”), and 4.2 percentage points (“Implicit”). The
models which only consider image data are more
attuned to “Non-Hateful” tweets to the determinant
of hate identification. This implies a dissonance
between modalities which mitigates, sometimes
rightly and other times wrongly, hateful signals
from the text.

All models more accurately identify implicit
than explicit hate. This is a surprising result which
may reflect their higher representation within the
training data rather than any inherent property that
makes them more detectable.

9 Conclusion

This paper substantiates the need to consider vary-
ing forms of hate with different modalities and lev-
els of overtness. It investigates the value of context-
aware textual and multimodal features finding that
both improve model F1 score with the multimodal
model performing the best (0.771). Further, we find
that model performance is directly contingent upon
annotator agreement levels (referred to as ‘ambigu-
ity’ in the main body of the paper). These findings
are generated from a newly-annotated dataset of
5,000 tweets containing information on each en-
try’s primary attribute, modality, and strategy. This
dataset along with the annotation codebook, model
training code, and model weights are available to
encourage future research on the topic.

Acknowledgments

This work was supported by Wave 1 of The UKRI
Strategic Priorities Fund under the EPSRC Grant
EP/T001569/1, particularly the “Criminal Justice
System” theme within that grant, and by The Alan
Turing Institute. We are grateful to all our annota-
tors and appreciate the feedback from our reviewers
as well as that from the 2020 cohort of the MSc in
Social Data Science at the University of Oxford.



1904

References
Betty van Aken, Julian Risch, Ralf Krestel, and Alexan-
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