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Abstract

It is well known that human is not good at de-
ception detection because of a natural inclina-
tion of truth-bias. However, during a conversa-
tion, when an interlocutor (interrogator) is be-
ing asked explicitly to assess whether his/her
interacting partner (deceiver) is lying, this per-
ceptual judgment depends highly on how the
interrogator interprets the context of the con-
versation. While the deceptive behaviors can
be difficult to model due to their heteroge-
neous manifestation, we hypothesize that this
contextual information, i.e., whether the inter-
locutor trusts or distrusts what his/her partner
is saying, provides an important condition in
which the deceiver’s deceptive behaviors are
more consistently distinct. In this work, we
propose a Judgmental-Enhanced Automatic
Deception Detection Network (JEADDN) that
explicitly considers interrogator’s perceived
truths-deceptions with three types of speech-
language features (acoustic-prosodic, linguis-
tic, and conversational temporal dynamics fea-
tures) extracted during a conversation. We
evaluate our framework on a large Mandarin
Chinese Deception Dialog Database. The re-
sults show that the method significantly out-
performs the current state-of-the-art approach
without conditioning on the judgements of
interrogators on this database. We further
demonstrate that the behaviors of interrogators
are important in detecting deception when the
interrogators distrust the deceivers. Finally,
with the late fusion of audio, text, and turn-
taking dynamics (TTD) features, we obtain
promising results of 87.27% and 94.18% accu-
racy under the conditions that the interrogators
trust and distrust the deceivers in deception
detection which improves 7.27% and 13.57%
than the model without considering the judge-
ments of interlocutor respectively.

1 Introduction

Deception behaviors frequently appear in human
daily life, such as politics (Clementson, 2018),
news (Conroy et al., 2015a; Vaccari and Chadwick,
2020), and business (Grazioli and Jarvenpaa, 2003;
Triandis et al., 2001). Despite its frequent occur-
rences, researchers have repeatedly shown that hu-
mans are not good at detecting deceptions (it’s 54%
accuracy on average for both police officers and
college students (Vrij and Graham, 1997)), even
for highly-skilled professionals, such as teachers,
social workers, and police officers (Hartwig et al.,
2004; Vrij et al., 2006). Due to the difficulty in
identifying deceptions by human, researchers have
also developed an automatic deception detection
(ADD) systems applied in various fields, such as
cybercrime (Mbaziira and Jones, 2016), fake news
detection (Conroy et al., 2015b), employment inter-
views (Levitan et al., 2018b,a), and even court deci-
sion (Venkatesh et al., 2019; Pérez-Rosas, Verónica
and Abouelenien, Mohamed and Mihalcea, Rada
and Burzo, Mihai, 2015). Although many works
have studied approaches of automatic deception de-
tection, few works, if any, has investigated whether
judgements of human can help provide a condition
that enhance ADD recognition rates.

In recent years, ADD has gained popularity and
attention; however, almost all studies (if not all)
on ADD pay attention to western cultures (coun-
tries), and there are very few literates that focus
on eastern cultures (countries). Deception behav-
ior often varies with different cultures (Aune and
Waters, 1994), and every culture has its way to
deceive others. Additionally, Rubin (2014) sug-
gested that researchers need to study and under-
stand more deception behaviors in the Asian area.
Besides, many researchers have utilized various be-
havioral cues to build an ADD system, like facial
expressions (Thannoon et al., 2019), internal physi-
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ological measures (Ambach and Gamer, 2018) and
even functional brain MRI (Kozel et al., 2009a,b).
While these indicators can be useful in detecting
deceptions, many of them require expensive and
invasive instrumentation that is not practical for
real-world applications. Instead, speech and lan-
guage cues carry substantial deceptive cues that can
be modeled in ADD tasks for potential large-scale
deployment (Zhou et al., 2003; Chou et al., 2019).
Hence, the proposed method modeled the speech
and language cues of humans with real-world data
in Mandarin Chinese.

Despite these important advances in understand-
ing and automatically identifying deceptions, there
has been little work investigating whether the per-
formance of ADD models can be significantly im-
proved if considering the behaviors and perceptions
of interrogators. Several questions remain: is there
a difference in linguistic and acoustic-prosodic
characteristics of an utterance from both interlocu-
tors given trusted/distrusted judgments of interroga-
tors? How do the judgments of interrogators help
the ADD model detect deceptions? To investigate
these questions, we firstly follow the previous stud-
ies (Chou et al., 2019) to segment a dialog into
Questioning-Answering (QA) pair turns and then
extract acoustic-prosodic features, linguistic fea-
tures (e.g., Part-Of-Speech taggers (POS), Named
Entity Recognition (NER), and Linguistic Inquiry
and Word Count (LIWC)), conversational tempo-
ral dynamics (CTD) features. Then, we trained
machine learning and deep learning classifiers us-
ing a large set of lexical and speech features to
automatically identify deceptions and evaluated the
results in the Daily Deceptive Dialogues corpus of
Mandarin (DDDM). Also, to investigate the differ-
ences between interlocutor’s behaviors, we perform
Welch’s t-test (Delacre et al., 2017) on the charac-
teristics of utterances from both interlocutors given
three different scenarios: (A) human-distrusted de-
ceptive and truthful statements, (B) human-trusted
deceptive and truthful statements, and (C) success-
ful/unsuccessful deceptive and truthful statements.

In our further analyses, we found that (i) the judg-
ments of human are indeed helpful to significantly
improve the performance of the proposed method
on detecting deceptions, (ii) the behaviors of in-
terrogators should be considered into the model
when the interrogator distrusted the deceivers, and
(iii) the additional evidence indicates that human
is bad at detecting deceptions – there are very few

significant indicators that overlap between trusted
truths-deceptions and successful-unsuccessful de-
ceptions. We believe that these overlap-indicators
could be useful for training humans to detect de-
ceptions more successfully. Finally, we summarize
our 3 main contributions as below.
• We are the first work to include the judge-

ments of the interrogator as a condition to
help improve the recognition rates of decep-
tion detection model.

• We demonstrate that the features of inter-
rogators are more effective and useful to de-
tect deceptions than the deceivers’ ones un-
der the condition that the interrogator disbe-
lieves the deceiver.

• The proposed model has high potentials
for practical deception detection applications
and impact on the ADD area.

2 Related Work

Automatic deception detection in a dialogue Pre-
vious studies have trained a deception detector with
various features in a dialog. Levitan et al. (2018a)
extracted acoustic features of utterances to build
the detection framework using a global-level la-
bel as the ground truth in employment interviews.
Chou et al. (2019) indicated that the interlocutor’s
vocal characteristics and conversational dynamics
should be jointly modeled to better perform de-
ception detection in dialogues. The grammatical
and syntactical POS features has been widely used
in the automatic deception detection (Pérez-Rosas,
Verónica and Abouelenien, Mohamed and Mihal-
cea, Rada and Burzo, Mihai, 2015; Levitan et al.,
2016; Abouelenien et al., 2017; Kao et al., 2020).
In addition, Liu et al. (2012); Levitan et al. (2018b)
modeled the behaviors of language use from the
LIWC features. Gröndahl and Asokan (2019);
Chou et al. (2021) used textual embeddings ex-
tracted from the pre-trained BERT model for recog-
nizing deceptions during an interrogator-deceiver
conversation. Thannoon et al. (2019) used facial
expression features to catch micro-variations on the
face during the deceiver is telling either the lies or
truths in the setting of interview conversation. Wu
et al. (2018) had fused multimodal data including
acoustic features, LIWC-embeddings, and facial-
expression information to train a classifier for de-
tecting deception, and Pérez-Rosas, Verónica and
Abouelenien, Mohamed and Mihalcea, Rada and
Burzo, Mihai (2015) trained the deception detec-
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tion model using multimodal data with promising
accuracy (92.20% area under the precision-recall
curve, AUC) during a conversation in the court.
However, most of the above-mentioned studies
only model the behaviors of deceivers.
The interrogator’s behaviors for detecting de-
ceptions In criminal psychology, Dando and Bull
(2011); Sandham et al. (2020) found that policies
can be trained to identify criminal liars with ad-
vanced interrogation strategies (e.g, tactical use pro-
cedure) because these interview techniques maxi-
mize deceivers’ cognitive load (Dando et al., 2015).
In addition, Chou and Lee (2020) tried to learn
from the behaviors of both interlocutors for identi-
fying perceived deceptions, but their learning tar-
gets are from the perception of the interrogators not
from the deceivers. Therefore, to our best knowl-
edge, we are the first work to take the interrogators’
behaviors for detecting deceptions automatically.
The perceptions of interrogators for detecting
deceptions Levitan et al. (2018b) had studied the
perception (judgment) of deception by identifying
characteristics of statements that are perceived as
truths or lies by interrogators, but they did not use
the perceptions for detecting deceptions. Klein-
berg and Verschuere (2021) used the LIWC vari-
ables and POS frequencies as input features to train
a random forest classifier respectively, and then
asked subjects to mark the scores ranging from 0
(certainty truthful) to 100 (certainty deceptive) on
the deceptive or truthful text data. Finally, they
presented the output probabilities of two trained
classifiers on each data for the subjects to change
the probabilities of the data. Their results showed
that the perceptions of human impair the automatic
deception detection models. However, we are dif-
ferent from Kleinberg and Verschuere (2021). The
main difference is the way how judgements is be-
ing utilized; in our work, this is used to provide a
condition in improving the prediction results.

Table 1: Distribution of the annotated data in the
DDDM Database.

Data Distribution
Deceiver

Total
Truth Deception

Interrogator
Trusted (2) 97 (1) 86 183

Distrusted (3) 47 (4) 53 100

Figure 1: The illustration of Questioning-Answering
(QA) pair turns. We only used complete QA pair turns
and excluded some questioning turns if we cannot find
the corresponding answering turns. To be noticed that
each turn could have multiple utterances.

3 DDDM Database

We used conversational utterances from the Daily
Deceptive Dialogues corpus of Mandarin (DDDM)
(Huang et al., 2019). The entire DDDM con-
tains about 27.2 hours of audio recordings from
96 unique speakers and 283 “question-level” con-
versational data samples. This corpus is particu-
larly useful for our study, and all annotations in
the DDDM come from “human” raters. Most de-
ception databases lack recordings and perceptions
(judgments) of the interrogators, while DDDM
recorded the whole interrogator-deceiver conver-
sations and the judgements of both interlocutors,
allowing us to study deception detection given the
judgements of the interrogators. With the judge-
ments of both interlocutors, we group the data sam-
ples into four classes (shown in Table 1) as fol-
lows: (1) successful deceptions, (2) trusted truths,
(3) distrusted truths, and (4) unsuccessful decep-
tions. We follow Chou et al. (2019) to transform the
7126 utterances into 2764 complete Questioning-
Answering (QA) pair turns (shown in Figure 1)
because the interrogator tended to ask follow-up
questions for judging the deceiver’s statements.

4 Problem Definition

4.1 The definition of deception

Deception is different from lying. Deception is
human behavior that aims to make receivers be-
lieve true (or false) statements that the deceiver
believes to be false (or true) with the conscious
planning acts, such as sharing a mix of truthful and
deceptive experiences to change the perceptions of
the interrogators when being inquired to answer to
questions. However, lying is just saying that some-
thing is true (or false) when in fact that something
is false (or true) (Mitchell, 1986; Sarkadi, 2018).
Hence, it is challenging for the interrogators to de-
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tect deceptions through the behaviors of deceivers.
Human needs to engage in higher-order cognitive
processing to detect these consciously planned de-
ceptions (Street et al., 2019). The deceiver can act
in a way to change the perceptions of that poten-
tial deception detector. This then shifts a heavier
burden onto the interrogator’s cognitive processing.
Hence, the interrogator must necessarily engage
in “higher-order” cognitive processing to detect
these advanced lies because they usually cannot
just detect the behavior (e.g., signs of nervousness
invoice), but must interpret why this individual may
be nervous, including the honest reason why (e.g.,
afraid of being disbelieved).

4.2 Deception detection with judgments of
human

Humans rarely perform better than chance on de-
tecting deceptions, but the interrogators make their
judgements according to context information in an
interrogator-deceiver conversation. People might
be hard to remember the whole detailed informa-
tion, but their judgements might consist of some
context-general information based on their own
experience, which results in a truth-bias. There-
fore, we build the deception detection models based
on the conditional perceptions of humans (human-
trusted or human-distrusted). We use judgements
of human as criteria to define the following condi-
tions (we also include the condition that we have no
judgements of human, and the most conventional
studies on ADD are in this condition):

(i) Truthful and deceptive statements detec-
tion: detecting deceptions without perceptions
of interrogators (judgements of human)
(ii) Trusted truthful and deceptive statements
detection: detecting deceptions with believed
judgments of interrogators
(iii) Distrusted truthful and deceptive state-
ments detection: detecting deceptions with dis-
believed judgments of interrogators

5 Methodology

5.1 JEADDN: Judgmental-Enhanced
Automatic Deception Detection Network

Figure 2 illustrates the Judgmental-Enhanced Au-
tomatic Deception Detection Network (JEADDN)
whose main structure is BLSTM-DNN (Chou et al.,
2019) containing one bidirectional long short-term
memory (BLSTM) layer with an attention mech-
anism and two fully-connected layers. In our

Figure 2: The overview of Judgmental-Enhanced Auto-
matic Deception Detection Network (JEADDN) (The
WS and TTD mean a word segmentation and turn-
taking dynamics respectively).

method, judgements of human are criterion in
choosing the classifiers for certain conditions to
detect deceptions (not as the features). That is,
when the interrogator believes the deceiver’s state-
ments, we use the condition (ii) classifier. Instead,
when the interrogator disbelieves the deceiver, we
can use the condition (iii) classifier. We fuse the
best feature set from each modality by late fusion
with additional three dense layers. Besides, there
are two main goals. One is to investigate the ef-
fectiveness and robustness of speech and language
features of both interlocutors. The other is to show
whether the model performance of detecting decep-
tions with the judgements of interrogators could be
better than the model without them.

More specifically, we split four-class sample data
in Table 1 into two conditions based on judgements
of interrogators (human-trusted/human-distrusted).
The unit of features of interrogators/deceivers in-
corporates all of the utterances from the complete
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Table 2: The table summarizes 8 turn-level feature sets introduction used in this paper.

Modality Denotation Feature Set Dimension Extraction Tool

Audio
Emobase Emobase 988 openSmile (Eyben et al., 2010)
XLSR XLSR-53 7680 XLSR-53 (Conneau et al., 2020)

Text

NER Named Entities Recognition 17 CKIP Tagger (Li et al., 2020)
POS Part-Of-Speech Tagger 50 CKIP Tagger (Li et al., 2020)
BERT BERT-Base in the Chinese version 768 BERT (Devlin et al., 2019)
RoBERTa RoBERTa-Base in the Chinese version 768 RoBERTa (Cui et al., 2020)
LIWC Linguistic Inquiry and Word Count 2015 82 LIWC 2015 (Pennebaker et al., 2015)

TTD CTD Conversational Temporal Dynamics 20 Proposed by Chou et al. (2019)

QA pair because interrogators would like to ask
questions to seek detailed information. The clos-
est previous study is Chou and Lee (2020). They
have investigated perceived deception in the con-
dition that the deceiver is telling either truths or
deceptions, but they only focus on perceived de-
ception recognition. Our objective is to detect the
deceiver’s answers corresponding to each question.
In contrast, the learning targets of Chou and Lee
(2020) are from the interrogator’s guessed answers.
Therefore, our learning targets are different from
them. Moreover, their work is not useful in real
life since they have to know the judgements of the
deceivers, and it is impractical and impossible to
be applied in the real world. In this paper, we hy-
pothesize that (i) we can get better performance if
the model takes judgements of interrogators into
account, and (ii) there are differences in both inter-
locutors’ behaviors between the trusted/distrusted
truthful and deceptive dialogues. In the rest of the
sections, we will describe the feature extraction in
detail (notice that all types of the following feature
sets are normalized to each speaker using z-score
normalization) and the use of a deception detection
framework.

5.1.1 Turn-level Feature Extraction
Table 2 summarized 8 various feature sets, which
were extracted from the acoustic and linguistic
characteristics of all speakers based on question-
ing turns of interrogators and answering turns of
deceivers within QA pairs. In this work, we use
the features extracted from audio and text record-
ings data to build the models, and we describe each
feature set one by one as below.
Audio Recordings
• Emobase: we followed (Chou et al., 2019; Chou

and Lee, 2020) to extracted 988-dimensional
acoustic-prosodic features from questioning turns
(answering turns) by “emobase.config” of openS-

MILE toolkit (Eyben et al., 2010).
• CTD: Chou et al. (2019) firstly proposed the

conversational temporal dynamics (CTD) feature
set within complete QA pairs. Additionally, Chou
et al. (2021) incorporated CTD, Emobase, and
BERT to achieve the state-of-the-art result of
DDDM, so we also extract CTD for comparison.
Also, CTD can extract the temporal turn-taking
dynamics (TTD) of both interlocutors during a
conversation. We list a part of features of CTD
as below, and more detailed information about
CTD is in Chou et al. (2019).
– Utterance-duration ratio: the reciprocal ra-

tio between the utterances length (u) and the
turn duration (d), denoted as Intud and Intdu
respectively.

– Silence-duration ratio: the reciprocal ratio
between the silence (s) duration and the turn
duration, denoted as Intsd and Intds respec-
tively.

– Silence-utterance ratio: the reciprocal ratio
between the silence duration and the utterance
lengths, denoted by Intsu and Intus respec-
tively.

– Silence times (st): the number of times that
a subject produces a pause that is more than
200ms, denoted as Intst and Decst.

• XLSR: Due to the scarcity of deception
databases in Mandarin Chinese, we use the mul-
tilingual pre-trained model, XLSR-53 (Conneau
et al., 2020), to extract acoustic representation.
XLSR-53 is trained for acoustic speech recog-
nition (ASR) task with more than 56,000 hours
of speech data in 53 different languages includ-
ing Chinese-Taiwan (Mandarin Chinese) based
on wav2vec 2.0 (Baevski et al., 2020). The di-
mension of the feature vector is 512 per frame,
and then the feature vector per frame is applied
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to the 15 statistics1 to generate the final 7680-
dimensional feature vectors.

Text Recordings
• BERT: we utilize BERT-Base in the Traditional

Chinese version pre-trained model (Devlin et al.,
2019) to extract turn-level 768-dimensional fea-
ture vectors. BERT was trained with a large
amount of plain text data publicly available on the
web using unsupervised objective functions (like
masked-language modeling objective (MLM))
and works at the character level. We do not have
to perform word segmentation when extracting
representations.

• RoBERTa: we also use RoBERTa (Cui et al.,
2020) to extract textual features. Its main compo-
nent is the same as BERT (Devlin et al., 2019),
but RoBERTa used a Whole-Word-Masking
(WWM) technique and was trained on 10 times
more data than BERT model. Although BERT
has another version (BERT-WWM), there is no
available pre-trained model in the Chinese lan-
guage, so we only extract the features by both
BERT and RoBERTa pre-trained models in this
work.

• POS: we extracted 50-dimensional POS taggings
excluding all punctuation-related dimensions by
CKIP Tagger (Li et al., 2020) and then convert
all POS predictions into feature vectors by calcu-
lating the number of word counts.

• NER: we use CKIP Tagger to extract 17-
dimensional named entity recognition (NER) fea-
tures, and convert the predictions into feature vec-
tors by calculating the number of word counts.
To our best knowledge, the NER feature set has
never been used to train the deception detector.
We are inspired by the findings of psychologist’s
studies on crime interrogation to use the NER fea-
ture set as input features for detecting deceptions.
Vrij et al. (2021) suggest that the interrogators
need to manipulate and design questions to ask
the deceivers for detailed information, complica-
tions, because truth-tellers often reported more
complications than lie tellers in each stage of the
interview. A complication refers to details as-
sociated with personal experience or knowledge
learned from any personal experience. In the
DDDM, most recruited subjects are university

1(1): amean, (2): 1th percentile, (3): 99th percentile, (4):
kurtosis, (5): 99th percentile minus first percentile, (6): max,
(7): maxPos, (8): min, (9): minPos, (10): quartile1, (11):
quartile3, (12): range, (13): skewness, (14): stddev, (15)
median.

students, and the three designed questions the re-
searchers assigned each subject to ask are mainly
about general activities or experiences of an av-
erage college student. For instance, scores of
department border cups, professional knowledge
about instruments, and detailed process of any
events held by different clubs are regarded as per-
sonal experiences. Therefore, we extracted the
NER features to capture the detailed information.

• LIWC: we use LIWC 2015 toolkit to extract 82-
dimensional features (excluding all punctuation-
related feature dimensions and total word counts
(WP)) in this work after performing word seg-
mentation pre-processing by CKIP Tagger.

6 Experiment

6.1 Experimental Setup

We conduct our experiments to show whether
judgements and speech and language cues of inter-
rogators are helpful to detect deceptions. The clos-
est deception database is the Columbia X-Cultural
Deception (CXD) Corpus (Levitan et al., 2015),
but we have no access to the CXD corpus. To com-
pare and show the baseline results, we compare all
the models that had been used in the CXD corpus
to reveal overall performance on the DDDM cor-
pus. These baseline models include Support Vector
Machines (SVM), Random Forest (RF), Logistic
Regression (LG), and feedforward neural network
(DNN). All baseline classifiers settings in this work
are the same as Levitan et al. (2018b); Mendels et al.
(2017).

Moreover, to compare with the state-of-the-art
performance in the DDDM (Chou et al., 2021),
we also use the same model proposed by (Chou
et al., 2019), BLSTM-DNN, consisting of one fully-
connected layer in a network with Rectified Linear
Unit (ReLU) activation function, one BLSTM layer
with an attention mechanism, one fully-connected
layer with ReLU activation function, and then one
prediction layer with a softmax activation func-
tion. We also include LSTM-DNN model in (Chou
et al., 2021) as baseline classifier. All settings of
LSTM-DNN and BLSTM-DNN are the same as
(Chou et al., 2021). The whole framework is imple-
mented by Pytorch (Paszke et al., 2019). The eval-
uation metric is macro F1-score based on the dyad-
independent 10-fold cross-validation. We use the
zero-padding to ensure each data sample’s times-
tamp is the same if the length is less than the maxi-
mum timestamp (40). Several hyper-parameters for
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Table 3: Results on the produced deception detection on the DDDM database in macro F1-score (%). The Who’s
Feature column implies that the feature comes from whom, such as the interrogator (Int.), the deceiver (Dec.), or
both of interlocutors (directly concatenate the features of interlocutors in feature-level).

Modality Feature Who’s
Feature

(i) (ii) (iii)
RF

(2018b)
LR

(2018b)
SVM

(2018b)
DNN

(2018b)
LSTM-DNN

(2019)
BLSTM-DNN

(2019)
BLSTM-DNN

Audio

Emobase
Int. 51.35 47.03 52.29 63.31 59.98 59.80 70.06 83.72
Dec. 54.42 54.52 51.03 66.56 63.95 66.84 76.92 80.49
Both 51.92 50.54 51.09 65.45 57.70 60.85 72.00 81.17

XLSR
Int. 48.83 43.47 50.20 65.02 60.52 59.74 74.32 83.10
Dec. 49.83 45.78 53.15 64.06 60.54 61.37 75.25 80.36
Both 48.26 44.52 52.49 64.38 59.64 58.79 74.82 79.75

Text

NER
Int. 44.03 55.15 48.68 64.40 55.29 57.94 59.66 64.15
Dec. 57.03 48.21 55.74 65.04 68.10 66.19 74.78 72.61
Both 55.01 56.00 52.10 66.67 65.18 65.37 74.77 75.61

POS
Int. 51.18 50.23 57.32 66.34 60.96 60.89 71.06 72.41
Dec. 51.23 55.90 57.08 66.83 64.74 61.29 75.19 77.14
Both 50.05 55.00 56.13 67.09 64.72 62.99 74.77 77.32

LIWC
Int. 51.25 50.87 55.14 65.00 64.29 65.10 76.27 80.51
Dec. 52.75 54.81 57.26 68.36 64.18 64.19 74.32 82.44
Both 50.63 49.37 57.68 67.36 63.79 62.54 75.40 77.10

BERT
Int. 54.61 58.61 54.47 68.30 65.98 63.15 77.38 85.53
Dec. 60.77 62.38 57.76 71.03 70.83 72.00 82.14 82.77
Both 61.99 62.62 57.69 71.05 70.82 71.63 77.52 83.30

RoBERTa
Int. 52.43 53.00 55.93 69.04 66.96 65.78 73.46 80.80
Dec. 56.22 59.22 57.79 70.45 73.13 74.31 79.88 86.59
Both 58.21 61.33 61.10 71.35 73.17 73.56 75.43 81.83

TTD CTD Both 50.65 47.04 47.83 65.11 59.86 56.19 71.90 64.00

the LSTM-DNN and BLSTM-DNN models as be-
low are grid-searched: the number of nodes in the
LSTM and BLSTM layers is ranging in [2, 4, 8],
and the batch size is ranging in [16, 32], the learn-
ing rates is ranging in [0.01, 0.005] with adjusting
mechanism by multiplying 1√

1+epoch
per epoch. Fi-

nally, the maximum epoch is 10000. These hyper-
parameters are chosen with early stopping criteria
in all conditions to minimize cross-entropy with
balanced class weights on the validation set.

6.2 Experimental Results

Table 3 presents a summary of the complete re-
sults in three different conditions. There are 283,
183, and 100 question-level data samples under
conditions (i), (ii), and (iii) respectively. The more
detailed information about the portion of DDDM is
shown in Table 1. Besides, the human performance
is 54.7% macro F1-score in the DDDM corpus.
The performance of DNN (Mendels et al., 2017) is
very competitive, but modeling time-series informa-
tion is important for conversation setting. Hence,
we only present the results with the BLSTM-DNN
model in the conditions (ii) and (iii).

In Table 3, the performances of the BLSTM-
DNN with judgments of interrogators are consis-

tently higher than the models without the judg-
ments of interrogators, and the findings show cor-
roborating evidence of the ALIED theory (Street,
2015; Street et al., 2019) which claimed that the
perceptions of human could be potential lie de-
tector even though the judgments of human are
error-prone. We also found that the interrogators’
features seem more contributing to deception de-
tection in condition (iii). This finding demonstrates
that we could consider the interrogators’ features
when the interrogators distrust the deceivers for
building deception detection models. However, the
performances of most models trained with the fea-
ture sets of the deceivers in the condition (i) and
(ii) consistently surpass the ones trained with the
features from the interrogators or both interlocu-
tors.

6.3 Ablation Study

To investigate the effectiveness of audio, text, and
turn-taking dynamics (TTD) modalities, we take
the feature set according to the best performance
in Table 3. We take Emobase, BERT, and CTD
to represent the audio, text, and TTD modalities
respectively. In the condition (i) and (ii), Emobase
and BERT are from the deceivers. On the other
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Table 4: Ablation results on three modalities, Emobase,
BERT, and CTD feature sets.

Modality Audio Text TTD Condition
Feature Set Emobase BERT CTD (i) (ii) (iii)

Single
Modality

V 66.84 76.92 83.72
V 72.00 82.14 85.53

V 56.19 71.90 64.00

Late
Fusion

V V 78.68 86.79 91.32
V V 74.92 84.99 87.63

V V 77.83 85.90 90.16
V V V 80.61 87.27 94.18

hand, the counterparts are from the interrogators in
the condition (iii). In the fusion method, we follow
Chou et al. (2021) to firstly freeze the weights of
all models trained with the above-mentioned fea-
ture sets and concatenate their final dense layers’
outputs as the input of the additional three-layer
feed-forward neural network to perform late fusion.
Table 4 summarizes the results of the ablation study,
and the text modality is the most effective modal-
ity. Finally, we get the promising results 87.27 %
and 94.18 % and significant improvements 7.27%
and 13.57% than the model without judgements of
human in the condition (ii) and (iii) respectively.

7 Analyses

Having established the presence and characteris-
tics of each speech and language cue, we were
interested in exploring the differences in both of
interlocutors’ speech and language cues on the dif-
ferent judgements of the interrogators given three
different scenarios: (A) human-distrusted decep-
tive and truthful statements, (B) human-trusted
deceptive and truthful statements, and (C) suc-
cessful/unsuccessful deceptive and truthful state-
ments. We firstly performed Welch’s t-test (Delacre
et al., 2017) for each speaker’s turn (e.g., ques-
tioning/answering turns) within QA pairs that rep-
resented a question and answer from the 3 daily
questions. The QA pairs shown in Figure 1 were
marked manually, and each deceivers’ answer was
labeled as truth or deception using the daily life
questionnaire response sheet. This resulted in 2764
QA pairs. Using this data, the significant indica-
tors after performing Welch’s t-test between each
feature set on the different conditions are shown in
Appendix A.1 Table A.1. Then, we calculate the ra-
tio of significant features in each feature set divided
by its dimension base because every feature set has
different dimensions, i.e., in the NER feature set
under the scenario (A), there are 7 significant indi-

cators and its dimension base is 17, so the ratio is
calculated by 7 divided by 17. Additionally, while
XLSR, NER, POS, BERT, and RoBERTa are all
extracted by not zero-error-rate pre-trained mod-
els and LIWC is also calculated the word counts
afterword segmentation by CKIP Tagger, they all
have significant indicators whose p-value is smaller
than 0.05 among them. For example, BERT and
RoBERTa from the deceivers have a high propor-
tion of significant indicators. However, since the
meaning of XLSR, BERT, and RoBERTa repre-
sentations are difficult to explain intuitively, so we
focus on other feature sets to examine the following
research questions.

Is there a difference in both interlocutors’ be-
haviors between distrusted truths and decep-
tions (Scenario A)? According to the experimental
results in Table 3, we understand that the features
of interrogators are significant indicators to detect
deceptions. After performing the Welch’s t-test on
each feature set between distrusted truthful and
deceptive interlocutor’s questioning/answering re-
sponses (there are 898 QA pairs in scenario A), we
found that the feature sets of NER, POS, and LIWC
have a higher ratio of statistically significant indi-
cators. Moreover, we check the predictions of them
in the DDDM, and we observe that the interroga-
tors tend to ask more complex questions to inquire
detailed information about the statements of de-
ceivers. That is, the interrogators would check the
numbers information about scores of games, fre-
quency of presentation, or length of music concerts
(PERCENT, QUANTITY, Neqb, and DM), things
about musical instrument or events about concert
presentations and ball games (EVENT, PRODUCT,
and WORK OF ART), and places/locations (i.e., el-
ementary schools and universities) (Nc). This result
is very interesting because the psychologist studies
had also shown that how interrogators interrogate
the deceivers in details would affect the success in
catching liars. Besides, there are some significant
indicators in LIWC, such as the words describing
the movements in the sport game (death: “殺”球
(殺球 means kill and spike)) and the words to ask
the deceivers to provide more detailed information
(focusfuture: “然後”你之後還有繼續打球/彈樂
器嗎? (“then”, did you keep playing balls/musical
instrument afterward?)).
Is there a difference in both interlocutors’ be-
haviors between trusted truths and deceptions
(Scenario B)? In scenario B, the results of Welch’s
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t-test reveal that NER consists of the highest ra-
tio of significant indicators than others. When
we go back to read the data in the DDDM (Ap-
pendix A.1) Table A.1, we observe that the truthful
statements have more detailed descriptions than
the deceptive ones, such times/dates of ball games
and concerts (DATE and Nd), numbers to describe
the scores of games (CARDINAL and PERCENT),
and names about musical instrument and sport
equipment (PRODUCT). Besides, the significant
indicators of Emobase shown in Appendix A.1
Table A.2 includes the first derivative of the in-
tensity of the deceivers. This result is similar to
the previous study on the English database (Chen
et al., 2020). That is, the interrogator tended to
judge high-intensity utterances as truths because
the louder utterances might be perceived as more
confident even though these utterances could be
deceptive in fact. Additionally, the significance
test shows that some CTD features of interroga-
tors are important indicators indicating whether the
deceiver is telling the truth or not when the inter-
rogator trusted the deceivers. For example, in the
Appendix A.2 Table A.3, we can find that the in-
terrogator spends more time to come up with more
complex questions to inquire the deceiver; however,
the interrogator eventually believes the deceiver’s
statements, but the proposed method can success-
fully detect the deceptions by the interrogator’s
temporal TTD behaviors. This finding is the same
as the previous study (Chou et al., 2019).
Is there any common significant indicator
between the one from distrusted truths
and deceptions and the other from success-
ful/unsuccessful deceptions (Scenario C)? In
this analysis, we demonstrate additional evi-
dence indicating that human is poor at detecting
deceptions–there are very few indicators that
overlap in all feature sets in this condition in
Appendix A.1 Table A.1 (the rightmost column).
However, the results repeatedly show that the ways
how the interrogators ask questions about detailed
information (MONEY, PRODUCT, and DM),
and the meaningful information in the deceivers’
answering statements (A (one of POS features)
means the words to describe the noun, such as
female, big, small, to name a few). Hence, the
more detailed information we have, the higher
chances to detect deceptions.

8 Conclusion and Future Work

This paper investigates whether judgements and
speech and language cues of interrogators in con-
versation are useful and helpful to detect decep-
tions. We analyzed a full suite of acoustic-prosodic
features, linguistic cues, conversational temporal
dynamics given different conditions. Finally, with
the late fusion of audio, text, and turn-taking dy-
namics (TTD) modality features, JEADDN obtains
promising results of 87.27% and 94.18% accuracy
under the conditions that the interrogators trust
and distrust the deceivers in deception detection
which improves 7.27% and 13.57% than the model
without considering the interlocutor’s judgements
respectively.

While there is some research in studying per-
ceived deception detection, this is one of the
first studies that have explicitly modeled acoustic-
prosodic characteristics, linguistic cues, and con-
versational temporal dynamics using judgments of
interrogators in conversations for detecting decep-
tions. Furthermore, we provide analyses on the sig-
nificance of different feature sets in three different
scenarios and show additional evidence indicates
that human is bad at detecting deceptions. Espe-
cially, the content of questions the interrogators ask
is an indicator for telling deceptions or truths when
the interrogators distrust the deceivers. Verigin
et al. (2019) also reveal that truthful and deceptive
information interacts to influence detail richness
provides insight into liars’ strategic manipulation
of information when statements contain a mixture
of truths and lies.

In the immediate future work, we aim to ex-
tend our multimodal fusion framework to combine
semantic information to enhance the model robust-
ness and the predicting powers within multiple QA
pairs. That is, we observe that some interrogators
finally trusted the deceivers after many follow-up
questions while the statements of the deceivers
were deceptive. Kontogianni et al. (2020) also
pointed out that follow-up open-ended questions
prompt additional reporting. However, practition-
ers should be cautious to corroborate the accuracy
of new reported details.
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Tommi Gröndahl and N. Asokan. 2019. Text Analy-
sis in Adversarial Settings: Does Deception Leave a
Stylistic Trace? 52(3).

Maria Hartwig, Pär Anders Granhag, Leif A.
Strömwall, and Aldert Vrij. 2004. Police Officers’
Lie Detection Accuracy: Interrogating Freely Versus
Observing Video. Police Quarterly, 7(4):429–456.

Chih-Hsiang Huang, Huang-Cheng Chou, Yi-Tong Wu,
Chi-Chun Lee, and Yi-Wen Liu. 2019. Acoustic In-
dicators of Deception in Mandarin Daily Conversa-
tions Recorded from an Interactive Game. In Proc.
Interspeech 2019, pages 1731–1735.

https://doi.org/10.1145/3019612.3019644
https://doi.org/https://doi.org/10.1016/B978-0-12-812729-2.00001-X
https://doi.org/https://doi.org/10.1016/B978-0-12-812729-2.00001-X
https://doi.org/https://doi.org/10.1016/B978-0-12-812729-2.00001-X
https://doi.org/https://doi.org/10.1016/0147-1767(94)90026-4
https://doi.org/https://doi.org/10.1016/0147-1767(94)90026-4
https://doi.org/https://doi.org/10.1016/0147-1767(94)90026-4
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://doi.org/10.1162/tacl_a_00311
https://doi.org/10.1162/tacl_a_00311
https://ieeexplore.ieee.org/abstract/document/9306359
https://ieeexplore.ieee.org/abstract/document/9306359
https://ieeexplore.ieee.org/abstract/document/9306359
https://ieeexplore.ieee.org/abstract/document/9306359
https://doi.org/10.1109/APSIPAASC47483.2019.9023050
https://doi.org/10.1109/APSIPAASC47483.2019.9023050
https://doi.org/10.1109/APSIPAASC47483.2019.9023050
https://doi.org/10.1109/APSIPAASC47483.2019.9023050
https://doi.org/10.1017/ATSIP.2021.6
https://doi.org/10.1017/ATSIP.2021.6
https://doi.org/10.1017/ATSIP.2021.6
https://doi.org/10.1177/0261927X17744004
https://doi.org/10.1177/0261927X17744004
http://arxiv.org/abs/2006.13979
http://arxiv.org/abs/2006.13979
http://arxiv.org/abs/2006.13979
https://doi.org/https://doi.org/10.1002/pra2.2015.145052010082
https://doi.org/https://doi.org/10.1002/pra2.2015.145052010082
https://doi.org/https://doi.org/10.1002/pra2.2015.145052010082
https://doi.org/https://doi.org/10.1002/pra2.2015.145052010082
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.18653/v1/2020.findings-emnlp.58
https://doi.org/10.1002/jip.145
https://doi.org/10.1111/lcrp.12016
https://doi.org/10.1111/lcrp.12016
https://doi.org/10.1111/lcrp.12016
https://doi.org/10.5334/irsp.82
https://doi.org/10.5334/irsp.82
https://doi.org/10.5334/irsp.82
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1145/3310331
https://doi.org/10.1145/3310331
https://doi.org/10.1145/3310331
https://doi.org/10.1177/1098611104264748
https://doi.org/10.1177/1098611104264748
https://doi.org/10.1177/1098611104264748
https://doi.org/10.21437/Interspeech.2019-2216
https://doi.org/10.21437/Interspeech.2019-2216
https://doi.org/10.21437/Interspeech.2019-2216


1856

Yi-Ying Kao, Po-Han Chen, Chun-Chiao Tzeng, Zi-
Yuan Chen, Boaz Shmueli, and Lun-Wei Ku. 2020.
Detecting Deceptive Language in Crime Interroga-
tion. In HCI in Business, Government and Organi-
zations, pages 80–90, Cham. Springer International
Publishing.

Bennett Kleinberg and Bruno Verschuere. 2021. How
humans impair automated deception detection per-
formance. Acta Psychologica, 213:103250.

Feni Kontogianni, Lorraine Hope, Paul J. Taylor,
Aldert Vrij, and Fiona Gabbert. 2020. “tell me
more about this. . . ”: An examination of the efficacy
of follow-up open questions following an initial ac-
count. Applied Cognitive Psychology, 34(5):972–
983.

F Andrew Kozel, Kevin A Johnson, Emily L Grenesko,
Steven J Laken, Samet Kose, Xinghua Lu, Dean
Pollina, Andrew Ryan, and Mark S George. 2009a.
Functional MRI detection of deception after commit-
ting a mock sabotage crime. Journal of forensic sci-
ences, 54(1):220—231.

F. Andrew Kozel, Steven J. Laken, Kevin A. Johnson,
Bryant Boren, Kimberly S. Mapes, Paul S. Morgan,
and Mark S. George. 2009b. Replication of Func-
tional MRI Detection of Deception. Open forensic
science journal, 2(1):6–11.

Sarah I. Levitan, Guzhen An, Mandi Wang, Gideon
Mendels, Julia Hirschberg, Michelle Levine, and
Andrew Rosenberg. 2015. Cross-Cultural Produc-
tion and Detection of Deception from Speech. In
Proceedings of the 2015 ACM on Workshop on Mul-
timodal Deception Detection, WMDD ’15, page
1–8, New York, NY, USA. Association for Comput-
ing Machinery.

Sarah Ita Levitan, Guozhen An, Min Ma, Rivka Levi-
tan, Andrew Rosenberg, and Julia Hirschberg. 2016.
Combining Acoustic-Prosodic, Lexical, and Phono-
tactic Features for Automatic Deception Detection.
In Interspeech 2016, pages 2006–2010.

Sarah Ita Levitan, Angel Maredia, and Julia Hirschberg.
2018a. Acoustic-Prosodic Indicators of Deception
and Trust in Interview Dialogues. In Proc. Inter-
speech 2018, pages 416–420.

Sarah Ita Levitan, Angel Maredia, and Julia Hirschberg.
2018b. Linguistic Cues to Deception and Perceived
Deception in Interview Dialogues. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1941–1950, New Orleans, Louisiana.
Association for Computational Linguistics.

Peng-Hsuan Li, Tsu-Jui Fu, and Wei-Yun Ma. 2020.
Why Attention? Analyze Bilstm Deficiency and Its
Remedies in the Case of Ner. In Proceedings of the
AAAI Conference on Artificial Intelligence.

X. Liu, K. Tang, J. Hancock, J. Han, M. Song, R. Xu,
V. Manikonda, and B. Pokorny. 2012. Socialcube: A
text cube framework for analyzing social media data.
In International Conference on Social Informatics
(SocialInformatics), pages 252–259, Los Alamitos,
CA, USA. IEEE Computer Society.

A Mbaziira and J Jones. 2016. A Text-based Decep-
tion Detection Model for Cybercrime. In Int. Conf.
Technol. Manag.

Gideon Mendels, Sarah Ita Levitan, Kai-Zhan Lee, and
Julia Hirschberg. 2017. Hybrid Acoustic-Lexical
Deep Learning Approach for Deception Detection.
In Proc. Interspeech 2017, pages 1472–1476.

Robert W Mitchell. 1986. A framework for discussing
deception. Deception: Perspectives on human and
nonhuman deceit, pages 3–40.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
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A Appendix

A.1 Welch’s T-test Results
The Welch’s t-test results are shown in Table A.1
and Table A.2 based on speakers’ turns within QA
pairs in three different scenarios as follows: (A)
human-distrusted deceptive and truthful statements,
(B) human-trusted deceptive and truthful state-
ments, and (C) successful/unsuccessful deceptive
and truthful statements. Emobase contains the fun-
damental frequency (F0) and its envelope, intensity
(INTENSITY), loudness (LOUDNESS), 12 MFCC,
probability of voicing (VOICEPROB), 8 line spec-
tral frequencies (LSPFREQ), zero-crossing rate
(ZCR), and delta regression coefficients. Then,
these LLDs and their delta coefficients are applied
to the following statistics 2 to generate the final
feature vector. The number (ratio) represents the
number of signatures in each feature set divided by
its dimension base because every feature set has
different dimensions. For instance, in the NER fea-
ture set under scenario (A), there are 7 significant
indicators and its dimension base is 17, so the ratio
(number) is calculated by 7 divided by 17.

A.2 A Real Example in the DDDM database
Table A.3 summarizes a real example in the DDDM
database, and we also show its duration, transcripts
in Mandarin Chinese, and translation in English.
This data sample is grouped into (1) class in Table 1.
The interrogator trusts the deceiver but the deceiver
tells deception in fact.

2(1): amean, (2): iqr1-2, (3): iqr1-3 , (4): iqr2-3, (5):
kurtosis, (6): linregc1, (7): linregc2, (8): linregerrA, (9):
linregerrQ, (10): max, (11): maxPos, (12): min, (13): minPos,
(14): quartile1, (15): quartile2, (16): quartile3, (17): range,
(18): skewness, (19): stddev.
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Table A.1: The results of all feature sets after performing Welch’s t-test in three different scenarios: (A) human-
distrusted deceptive and truthful statements, (B) human-trusted deceptive and truthful statements, and (C) success-
ful/unsuccessful deceptive and truthful statements (“*” indicates the significance threshold, p-value, is smaller than
0.01; “**” is smaller than 0.001).

Modality Feature Who’s
Feature

(A)
(%) Indicators (B)

(%) Indicators (C)
(%) Indicators (B)

⋂
(C)

(%) Indicators

Audio
Emobase

Int. 4.37
Table A.2

1.02
Table A.2

1.83
Table A.2

0.10
∆MFCC4th−
skewness

Dec. 1.93 4.37 4.68 0.10
∆MFCC7th−
linregc2

XLSR
Int. 3.07 - 3.75 - 2.79 - 0.44 -
Dec. 2.21 - 3.54 - 2.92 - 0.52 -

Text

NER
Int. 29.41

EVENT**,
PRODUCT**,
WORK OF ART**,
PERCENT,
QUANTITY

11.76
MONEY*,
PRODUCT*

35.29

PRODUCT**,
EVENT*,
MONEY*,
PERCENT,
QUANTITY,
WORK OF ART

11.76 MONEY*,
PRODUCT*

Dec. 5.88 PERCENT 23.53

PERCENT**,
DATE*,
CARDINAL,
PRODUCT

11.76
PERCENT**,
WORK OF ART**

5.88 PERCENT

POS
Int. 14.00

Neqb*, D, DM,
Dfb, Nc, VCL, VA

10.00
DM**, VG**,
Da*, Nb, A

6.00
DM**, Dfb**,
VI**

2.00 DM

Dec. 0.00 - 10.00
DM**, A, FW,
Nd, V 2

8.00 A, Cbb, Dk, V 2 4.00 A, V 2

LIWC
Int. 10.98

death**, adverb*
leisure, cogproc,
focusfuture*, filler,
auxverb, discrep,
othergram

2.44 you, cogproc 7.32
death**, negate,
filler, ipron,
I, Sixltr

0.00 -

Dec. 1.22 female 3.66
bio**, sexual,
power

3.66
you, informal,
social

0.00 -

BERT
Int. 6.51 - 4.43 - 8.46 - 0.26 -
Dec. 10.55 - 18.36 - 3.52 - 0.78 -

RoBERTa
Int. 8.59 - 5.99 - 9.51 - 0.65 -
Dec. 10.03 - 17.45 - 6.77 - 1.30 -

TTD CTD Both 0.00 - 30.00
Intsd∗, Intud∗,
Intsu∗, Intus,
Intd/Decd, Intst

15.00
Decud, Decsd,
Decus

0.00 -
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Table A.2: The Welch’s t-test results on Emobase in three different scenarios (“*” indicates the significance thresh-
old, p-value, is smaller than 0.01; “**” is smaller than 0.001).

Scenario Interrogator Deceiver

(C)

MFCC3th: (6*), MFCC8th: (12, 18),
MFCC9th: (8, 9, 12, 19),
MFCC10th: (1, 10, 14, 16),
∆MFCC4th: (18*), ∆MFCC5th: (1),
∆MFCC11th: (14), LSPFREQ1th: (1, 12),
∆LSPFREQ1th: (15*, 18), LOUDNESS: (1, 12)

MFCC1th: (4*, 15), MFCC3th: (3, 4, 8, 9, 19),
MFCC5th: (14), MFCC8th: (1, 16),
MFCC9th: (1, 15, 16), MFCC11th: (6, 7),
∆MFCC1th: (7), ∆MFCC7th: (7),
∆MFCC11th: (1. 14), LSPFREQ0th: (2, 3*, 4, 16),
LSPFREQ1th: (1, 7, 15), LSPFREQ2th: (1, 14, 15, 16),
LSPFREQ6th: (7), LSPFREQ7th: (2*, 3, 8, 9*, 19*),
∆LSPFREQ7th: (18)VOICEPROB: (16), ZCR: (2*, 15),
F0: (12*), ∆F0: (3, 4, 8*, 9, 14, 19)

(B)

MFCC4th: (10), MFCC6th: (18),
MFCC7th: (9), ∆MFCC4th: (18),
∆MFCC8th: (6, 7*), ∆VOICEPROB (4),
∆LSPFREQ4th: (18), ∆LSPFREQ7th: (6, 7)

MFCC2th: (18), MFCC6th: (8, 9, 12, 17, 18, 19*),
MFCC8th: (2*, 3, 8*, 9*, 12*, 17, 19*),
MFCC9th: (2*, 3, 8, 9, 18, 19*), MFCC10th: (5, 18),
∆MFCC6th: (9, 12, 19), ∆MFCC7th: (6*, 7*),
∆MFCC8th: (1, 6, 7, 8*, 9*, 10*, 12, 16, 17*, 19*),
∆MFCC12th: (10), LSPFREQ3th: (5, 18),
∆LSPFREQ7th: (7, 15), ∆INTENSITY: (18)

(A)

MFCC1th: (12*, 17*),
MFCC2th: (1*, 7, 12*, 14*, 15*, 16, 17),
MFCC3th: (1, 6), MFCC8th: (12),
MFCC9th: (10, 18), MFCC10th: (1, 2, 3, 14),
MFCC11th: (12), MFCC12th: (6),
∆MFCC1th: (12, 18), ∆MFCC3th: (15),
∆MFCC4th: (9), ∆MFCC6th: (7),
∆MFCC9th: (13, 14), ∆MFCC10th: (14),
LSPFREQ0th: (1), LSPFREQ1th: (10),
LSPFREQ3th: (10), LSPFREQ4th: (12, 17*),
LSPFREQ5th: (12, 17), LSPFREQ7th: (5, 18),
∆LSPFREQ1th: (18*), ∆LSPFREQ5th: (12),
VOICEPROB: (12, 19), ∆VOICEPROB: (10, 17)

MFCC2th: (14), MFCC3th: (2), MFCC4th: (1, 14),
MFCC5th: (7), MFCC6th: (9, 10, 17, 19*),
MFCC8th: (14), MFCC9th: (18), MFCC11th: (6),
∆MFCC6th: (1, 2, 9), LSPFREQ0th: (3),
∆LSPFREQ7th: (2, 14), ∆F0: (18)
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Table A.3: A Real Example in the DDDM database.

(Questioning Turn) (Duration) Interrogator’s Questing Turns (Answering Turn) (Duration) Deceiver’s Answering Turns

(Q1)(09.6s)那因為你寫高中後有參加過吉他的公開比賽
或演奏那請問是怎樣類型的公開

(A1)(10.368s)其實就是呃一般類就是社團的那個發表會
這樣主要是我那個大學的時候

(According to your answer sheet, you have participated
in public guitar competitions or performances after high
school. What kind of public is that?)

(In fact, er, it’s a general club’s presentation,
mainly when I was in university.)

(Q2)(01.92s)嗯大概是大幾的時候 (A2)(00.768s)大一的時候
(Um, what was your grade at tha time?) (Freshman.)

(Q3)(04.864s)那那時候你是吉他那那你是吉他社嗎

(A3)(14.336s)大一的時候算吧因為就是大一的時候
就是比較比較時間比較多所以去了蠻多社團所以
也有去吉他社就是呃自己重頭開始練然後有參加過
一個學期的就是成發這樣

(At that time, were you a member of a guitar club?)

(When I was a freshman, I have more time
in the freshman year, so I went to a lot of clubs,
so I also went to the guitar club, um, I started practicing
on my own and then participated in presentation for a semester.)

(Q4)(08.704s)那那表演的時候是你個人獨秀
還是大家一起彈的還是樂團

(A4)(12.928)主要是我跟另外一個就是社團的朋友就
我們兩個呃我就是他彈我彈欸我彈主旋律他彈就是節奏
這樣然後vocal的話就是一起

(So when you perform, is it your solo show
, or is it the orchestra that everyone plays together?)

(Another friend and I from the club. Uh, he plays, I play,
I play the main melody, he plays the rhythm,
and the vocal is together.)

(Q5)(06.272s)那那目前你還有在繼續練吉他嗎
(A5)(08.064)後來就沒有了後來就是就比較喜歡去熱舞社
這樣所以吉他社就沒有再去了

(Are you still practicing guitar?)
(Later, no. Later, I prefer to go to the hot dance club,
so the guitar club I did not go.)

(Q6)(13.184s)嗯那能簡單講一下吉他的基本入門五大
和弦嗎就是最常出現的那幾個

(A6)(08.704)有點忘了我知道有C然後C1G吧
我只記得這幾個對

(Um, can you briefly talk about the basic
and common guitar five major chords that appear most often?)

(I forgot. I know that there are C and then C1G.
I only remember these pairs. Yes.)


