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Abstract

There is a recent interest in investigating few-
shot NER, where the low-resource target do-
main has different label sets compared with a
resource-rich source domain. Existing meth-
ods use a similarity-based metric. However,
they cannot make full use of knowledge trans-
fer in NER model parameters. To address the
issue, we propose a template-based method
for NER, treating NER as a language model
ranking problem in a sequence-to-sequence
framework, where original sentences and state-
ment templates filled by candidate named en-
tity span are regarded as the source sequence
and the target sequence, respectively. For in-
ference, the model is required to classify each
candidate span based on the corresponding
template scores. Our experiments demonstrate
that the proposed method achieves 92.55% F1
score on the CoNLLO3 (rich-resource task),
and significantly better than fine-tuning BERT
10.88%, 15.34%, and 11.73% F1 score on the
MIT Movie, the MIT Restaurant, and the ATIS
(low-resource task), respectively.

1 Introduction

Named entity recognition (NER) is a fundamental
task in natural language processing, which identi-
fies mention spans from text inputs according to
pre-defined entity categories (Tjong Kim Sang and
De Meulder, 2003), such as location, person, or-
ganization, etc. The current dominant methods
use a sequential neural network such as BiLSTM
(Hochreiter and Schmidhuber, 1997) and BERT
(Devlin et al., 2019) is used to represent the input
text, and softmax (Chiu and Nichols, 2016; Strubell
etal., 2017; Cui and Zhang, 2019) or CRF (Lample
et al., 2016; Ma and Hovy, 2016; Luo et al., 2020)
output layers to assign named entity tags (e.g. or-
ganization, person and location) or non-entity tags
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Figure 1: Example of NER on different domains.

on each input token. Such a system is illustrated in
Figure 2(a).

Neural NER models require large labeled train-
ing data, which can be available for certain domains
such as news, but scarce in most other domains.
Ideally, it would be desirable to transfer knowl-
edge from the resource-rich news domain so that
a model can be used in target domains based on
a few labeled instances. In practice, however, a
challenge is that entity categories can be different
across different domains. As shown in Figure 1,
the system is required to identify location and per-
son in the news domain, but character and title in
the movie domain. Both a softmax layer and CRF
layer require a consistent label set between training
and testing. As a result, given a new target domain,
the output layer needs adjustment and training must
be conducted again using both source and target
domain, which can be costly.

A recent line of work investigates the setting of
few-shot NER by using distance metrics (Wiseman
and Stratos, 2019; Yang and Katiyar, 2020; Ziyadi
et al., 2020). The main idea is to train a similarity
function based on instances in the source domain,
and then make use of the similarity function in the
target domain as a nearest neighbor criterion for
few-shot NER.

Compared with traditional methods, distance-
based methods largely reduce the domain adapta-
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tion cost, especially for scenarios where the num-
ber of target domains is large. Their performance
under standard in-domain settings, however, is rel-
atively weak. In addition, their domain adaptation
power is also limited in two aspects. First, labeled
instances in the target domain are used to find the
best hyper-parameter settings for heuristic nearest
neighbor search, but are not for updating the net-
work parameters of the NER model. While being
less costly, these methods cannot improve the neu-
ral representation for cross-domain instances. Sec-
ond, these methods rely on similar textual patterns
between the source domain and the target domain.
This strong assumption may hinder the model per-
formance when the target-domain writing style is
different from the source domain.

To address these issues, we investigate a
template-based method for exploiting the few-shot
learning potential of generative pre-trained lan-
guage models to sequence labeling. Specifically,
as shown in Figure 2, BART (Lewis et al., 2020) is
fine-tuned with pre-defined templates filled by cor-
responding labeled entities. For example, we can
define templates such as “(candidate_span) is
a (entity_type) entity”, where (entity_type)
can be “person” and “location”, etc. Given the
sentence “ACL will be held in Bangkok”, where
“Bangkok’ has a gold label “location”, we can train
BART using a filled template “Bangkok is a lo-
cation entity” as the decoder output for the input
sentence. In terms of non-entity spans, we use a
template “(candidate_span) is not a named en-
tity”, so that negative output sequences can also
be sampled. During inference, we enumerate all
possible text spans in the input sentence as named
entity candidates, classifying them into entities or
non-entities based on BART scores on templates.

The proposed method has three advantages.
First, due to the good generalization ability of pre-
trained models (Brown et al., 2020; Gao et al.,
2020), the network can effectively leverage la-
beled instances in the new domain for tine-tuning.
Second, compared with distance-based methods,
our method is more robust even if the target do-
main and source domain have a large gap in writ-
ing style. Third, compared with traditional meth-
ods (pre-trained model with a softmax/CRF), our
method can be applied to arbitrary new categories
of named entities without changing the output layer,
and therefore allows continual learning (Lin et al.,
2020).

We conduct experiments in both resource-rich
and few-shot settings. Results show that our
methods give competitive results with state-of-
the-art label-dependent approaches on the news
dataset CoNLLO3 (Tjong Kim Sang and De Meul-
der, 2003), and significantly outperforms Wise-
man and Stratos (2019), Ziyadi et al. (2020) and
Huang et al. (2020) when it comes to few-shot
settings. To the best of our knowledge, we are
the first to employ a generative pre-trained lan-
guage model to address a few-shot sequence la-
beling problem. We release our code at https:
//github.com/Nealcly/templateNER.

2 Related Work

Neural methods have given competitive perfor-
mance in NER. Some methods (Chiu and Nichols,
2016; Strubell et al., 2017) treat NER as a local
classification problem at each input token, while
other methods use CRF (Ma and Hovy, 2016) or
a sequence-to-sequence framework (Zhang et al.,
2018; Liu et al., 2019). Cui and Zhang (2019)
and Gui et al. (2020) use a label attention network
and Bayesian neural networks, respectively. Ya-
mada et al. (2020) use entity-aware pre-training
and obtain state-of-the-art results on NER. These
approaches are similar to ours in the sense that
parameters can be tuned in supervised learning,
but unlike our method, they are designed for pre-
scribed named entity types, which makes their do-
main adaptation costly with new few-shot entity
types.

Our work is motivated by distance-based few-
shot NER, which aims to minimize domain-
adaptation cost. Wiseman and Stratos (2019) copy
the token-level label from nearest neighbors by re-
trieving a list of labeled sentences. Yang and Kati-
yar (2020) improve Wiseman and Stratos (2019) by
using a Viterbi decoder to capture label dependen-
cies estimated from the source domain. Ziyadi et al.
(2020) follow a two-step approach (Lin et al., 2019;
Xu et al., 2017), which first detects spans bound-
ary and then recognizes entity types by comparing
the similarity with the labeled instance. While not
updating the network parameters for NER, these
methods rely on similar name entity patterns be-
tween the source domain and the target domain.
One exception is Huang et al. (2020), who investi-
gate noisy supervised pre-training and self-training
method by using external noisy web NER data.
Compared to their method, our method does not
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Figure 2: Overview of NER methods.

rely on self training on external data, yet yields
better results.

There is a line of work using templates to solve
natural language understanding tasks. The basic
idea is to leverage information from pre-trained
models, by defining specific sentence templates in
a language modeling task. Brown et al. (2020) first
use prompt for few-shot learning in text classifica-
tion tasks. Schick and Schiitze (2020) rephrase
inputs as cloze questions for text classification.
Schick et al. (2020) and Gao et al. (2020) extend
Schick and Schiitze (2020) by automatically gen-
erating label words and templates, respectively.
Petroni et al. (2019) extract relation between enti-
ties from BERT by constructing cloze-style tem-
plates. Sun et al. (2019) use templates to construct
auxiliary sentences, and transform aspect sentiment
task as a sentence-pair classification task. Our
work is in line with exploiting pre-trained language
model for templates-based NLP. While previous
work considers sentence-level task as masked lan-
guage modeling or uses language models to score a
whole sentence, our method uses a language model
to assign a score for each span given an input sen-
tence. To our knowledge, we are the first to apply
template-based method to sequence labeling.

3 Background

We give the formal definition of few shot named
entity recognition in Section 3.1 and traditional
sequence labeling methods in Section 3.2.

3.1 Few shot Named Entity Recognition

Suppose that we have a rich-resource NER
dataset H = {(X¥, L), ... (X LI}, where
XH = {28 ..z} is a sentence and L =
{1, ... 11} is its corresponding label sequence.
We use VH to denote the label set of the rich-
resource dataset (VlzH , liH e VH). In addi-
tion, we have a low-resource NER dataset, . =
{(XF, YE), ..., (XL, Y)}, and the number of its
labelled sequence pairs is quite limited compared
with the rich-resource NER dataset (i.e., J < I).
Regarding the low-resource domain, the target label
vocabulary VF (ViF,1F € V) might be different
from V¥ (Figure 1). Our goal is to train an accu-
rate and robust NER model with L. and H for the
low-resource domain.

3.2 Traditional Sequence Labeling Methods.

Traditional methods (Figure 2(a)) regard NER as
a sequence labeling problem, where each output
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label consists of a sequence segmentation compo-
nent B (beginning of an entity), I (internal word
in an entity), O (not an entity), and an entity type
tag such as “person” and “location”. For example,
the tag “B-person” indicates the first word in a per-
son type entity and the tag “I-location” indicates a
token of a location entity not at the beginning. For-
mally, given z1.,, the sequence labeling method
calculates

hi.,, = ENCODER(Z1:») W

p(le) = SOFTMAX(he W,z + byr) (c € [1, ..., 1))
where d}, is the hidden dimension of the encoder,
Wyr € RV and by € RIV"l are trainable
parameters, and ic is the label estimation for x.. We
use BERT (Devlin et al., 2019) and BART (Lewis
et al., 2020) as our ENCODRER to learn the sequence
representation.

A standard method for NER domain adaptation
is to train a model using source-domain data R first,
before further tuning the model using target domain
instances P, if available. However, since the label
sets can be different, and consequently the output
layer parameters (Wy,r € R x V7, byr € RV
and Wy,» € R#*V71 by € RVl can be dif-
ferent across domains. We train Wy,» and by,r
from scratch using P. However, this method does
not fully exploit label associations (e.g., the associ-
ation between “person” and “character’”), nor can
it be directly used for zero-shot cases, where no
labeled data in the target domain is available.

4 Template-Based Method

We consider NER as a language model ranking
problem under a seq2seq framework. The source
sequence of the model is an input text X =
{z1,...,x,} and the target sequence Tyk,xi;j =
{t1,...,tm} is a template filled by candidate text
span z;.; and the entity type y;. We first intro-
duce how to create templates in Section 4.1, and
then show the inference and training details in Sec-
tion 4.2 and Section 4.3, respectively.

4.1 Template Creation

We manually create the template, which has one
slot for candidate_span and another slot for the
entity_type label. We set a one to one mapping
function to transfer the label set L = {l1, ..., {1}
(e.g., 1p="LOC”) to a natural word set Y =
{y1,... ,y|L|} (e.g. yx="location”), and use words
to define templates T (e.g. (candidate_span)

is a location entity.). In addition, we create a
non-entity template T~ for none of the named
entity (e.g., (candidate_span) is not a named
entity.). This way, we can obtain a list of tem-
plates T = [T ,..., T;“‘L‘ , T~]. In Figure 2(c),
the template Ty, o, is “(zi;5) is a (yx)” and T
is “(x;;;) is not a named entity”, where z;.; is a
candidate text span.

4.2 Inference

We first enumerate all possible spans in the sen-
tence {x1,...,z,} and fill them in the prepared
templates. For efficiency, we restrict the number
of n-grams for a span from one to eight, so 8n
templates are created for each sentence. Then,
we use the fine-tuned pre-trained generative lan-
guage model to assign a score for each template

Tyk-»iti:j = {tb - 7tm}, formulated as
F(Typzis) = Zlng(tcﬁl:cﬂ, X) ?2)
c=1

We calculate a score f(T,, «:,,;) for each entity
type and f (T;i:j) for the none entity type by em-
ploying any pre-trained generative language model
to score templates. Then we assign x;.; the entity
type with the largest score to the text span. In this
paper, we take BART as the pre-trained generative
language models.

Our datasets do not contain nested entities. If
two spans have text overlap and are assigned dif-
ferent labels in the inference, we choose the span
with higher score as the final decision to avoid pos-
sible prediction contradictions. For instance, given
the sentence “ACL will be held in Bangkok”, the
n—gram “in Bangkok” and “Bangkok” can be la-
beled “ORG” and “LOC”, respectively, by using
local scoring function f(-). In this case, we com-
pare f (T(JJFRG,“in Bangkok”) and f (Tfoc,“Bangkok”)’
and choose the label which has a larger score to
make the global decision.

4.3 Training

Gold entities are used to create template during
training. Suppose that the entity type of x;.; is Y.
We fill the text span z;.; and the entity type yy, into
T to create a target sentence T}f, . . Similarly,
if the entity type of x;.; is a none entity text span,
the target sentence T;i:j is obtained by filling x;.;
into T™. We use all gold entities in the training set
to construct (X, T™) pairs, and additionally create
negative samples (X, T~ ) by randomly sampling
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Entity Template T None-Entity Template T~ Dev F1
(candidate_span) is a (entity_type) entity (candidate_span) is not a named entity 95.27

The entity type of (candidate_span) is (entity_type) | The entity type of (candidate_span) is none entity | 95.15
(candidate_span) belongs to (entity_type) category (candidate_span) belongs to none category 88.42
(candidate_span) should be tagged as (entity_type) (candidate_span) should tagged as none entity 76.80

Table 1: Resulting using different templates.

non-entity text spans. The number of negative pairs
is 1.5 times that of positive pairs.

Given a sequence pair (X, T'), we feed the input
X to the encoder of the BART, and then we obtain
hidden representations of the sentence

h“"® = ENCODER(Z1:n) 3)

At the c th step of the decoder, h®*“ and previous
output tokens t1.._1 are then as inputs, yielding a
representation using attention (Vaswani et al., 2017)

h*® = DECODER(h*"¢, t1.._1) “4)

The conditional probability of the word £, is
defined as:

p(teltr.c—1,X) = SOFTMAX (h%*“W,,,, + b)) (5)

where W;,,, € RVl and by,,, € RVl |V] rep-
resents the vocab size of pre-trained BART. The
cross-entropy between the decoder’s output and the
original template is used as the loss function.

L£==3 logp(teltre-1,X) (©6)
c=1

4.4 Transfer Learning

Given a new domain [P with few-shot instances, the
label set LY (Section 4.1) can be different from
what has been used for training the NER model.
We thus fill the templates with the new domain la-
bel set for both training and testing, with the rest of
the model and algorithms unchanged. In particular,
given a small amount of (XP , T7F), we create se-
quence pairs with the method described above for
the low-resource domain, and fine-tuning the NER
model trained on the rich-source domain. This pro-
cess has low cost, yet can effectively transfer label
knowledge. Because the output of our method is
a natural sentence instead of specific labels, both
resource-rich and low-resource label vocabulary
are subset of the pre-trained language model vocab-
ulary (VE, VP ; V). This allows our method to
make use of label correlations such as “person” and
“character”, and “location” and “city”, for enhanc-
ing the effect of transfer learning across domains.

5 Experiments

We compare template-based BART with several
baselines on both resource-rich settings and few-
shot settings. We use the CoNLL2003 (Tjong
Kim Sang and De Meulder, 2003) as the resource-
rich dataset. Following Ziyadi et al. (2020) and
Huang et al. (2020), we use MIT Movie Review
(Liu et al., 2013), MIT Restaurant Review (Liu
etal., 2013) and ATIS (Hakkani-Tur et al., 2016) as
the cross-domain few-shot dataset. Regarding the
cross-domain transfer, there are unseen entity types
in the three target few-shot datasets. Details of our
training details and dataset statistics are shown in
Appendix.

5.1 Template Influence

There can be different templates for ex-
pressing the same meaning. For instance
“(candidate_span) is a person” can also be
expressed by “(candidate_span) belongs
to the person category”. We investigate the
impact of manual templates using the CoNLLO03
development set. Table 1 shows the performance
impact of different choice of templates. For
instance, “(candidate_span) should be tagged
as (entity_type)” and “(candidate_span) is
a (entity_type) entity” give 76.80% and 95.27%
F1 score, respectively, indicating the template is
a key factor that influences the final performance.
Based on the development results, we use the top
performing template “(candidate_span) is a
(entity_type) entity" in our experiments.

5.2 CoNLLO03 Results

Standard NER setting. We first evaluate the
performance under the standard NER setting on
CoNLLO3. The results are shown in Table 2, where
state-of-the-art methods are also compared. In par-
ticular, the sequence labeling BERT gives a strong
baseline, F1 score at 91.73%. We can see that
even though the template-based BART is designed
for few-shot named entity recognition, it performs
competitively in resource-rich setting as well. For
instance, our method outperforms sequence label-
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ing BERT by 1.80% on recall, which shows that our
method is more effective in identifying the named
entity, but also selecting irrelevant span. Noted that
though both sequence labeling BART and template-
based BART make use of BART decoder repre-
sentations, their performances have a large gap,
where the latter outperforms the former by abso-
lutely 1.30% on F1 score, demonstrating the ef-
fectiveness of the template-based method. The
observation is consistent with that of Lewis et al.
(2020), which shows that BART is not the most
competitive for sequence classification. This may
result from the nature of its seq2seq-based denois-
ing autoencoder training, which is different from
masked language modeling for BERT.

To explore if templates are complementary for
each other, we train three models using the first
three templates reported in Table 1, and adopt an
entity-level voting method to ensemble these three
models. There is a 1.21% precision increase us-
ing ensemble, which shows that different templates
may capture different type of knowledge. Finally,
our method achieves a 92.55 % F1 score by lever-
aging three templates, which is highly competitive
with the best reported score. For computational ef-
ficiency, we use a single model for the subsequent
few-shot experiments.

In domain few-shot NER setting. We construct
a few-shot learning scenario on the CoNLLO3,
where the number of training instances for some
specific categories is quite limited by down-
sampling. In particular, we set “MISC” and “ORG”
as the resource-rich entities, and “LOC” and “PER”
as the low-resource entities. We down-sample
the CoNLLO3 training set, yielding 3,806 train-
ing instances, which includes 3,925 “ORG”, 1,423
“MISRC”, 50 “LOC” and 50 “PER”. Since the text
style is consistent in rich-resource and low-resource
entity categories, we call the scenario in domain
few-shot NER.

As shown in Table 3, sequence labeling BERT
and template-based BART show similar perfor-
mance in resource-rich entity types, while our
method significantly outperforms BERT by 11.26
and 12.98 F1 score in “LOC” and “MISC”, re-
spectively. It demonstrates that our method has a
stronger modeling capability for in-domain few-
shot NER, and indicates that the proposed method
can better transfer the knowledge between different
entity categories.

Traditional Models P R F
Yang et al. (2018) - - 90.77
Ma and Hovy (2016) - - 91.21
Gui et al. (2020) - - 92.02
Yamada et al. (2020)* - - 94.30
Sequence Labeling BERT 91.93 | 91.54 | 91.73
Sequence Labeling BART 89.60 | 91.63 | 90.60

Few-shot Friendly Models P R F
Wiseman and Stratos (2019) - - 89.94
Template BART 90.51 | 93.34 | 91.90
multi-template BART 91.72 | 93.40 | 92.55

Table 2: Model performance on the CoNLLO3 .The
original result of BERT (Devlin et al., 2019) was not
achieved with the current version of the library as dis-
cussed and reported by Stanislawek et al. (2019), Akbik
et al. (2019) and Gui et al. (2020). * indicates training
on external data.

Models | PER | ORG | LOC* | MISC* | Overall

BERT | 75.71 | 77.59 | 60.72 60.39 69.62

Ours 84.49 | 72.61 | 71.98 73.37 75.59
Table 3: In-domain Few-shot performance on the

CoNLLO3. * indicates it is a few-shot entity type.

5.3 Cross-domain Few-Shot NER Result

We evaluate the model performance when the target
entity types are different from the source-domain,
and only a small amount of labeled data is avail-
able for training. We simulate the cross-domain
low-resource data scenarios by random sampling
training instances from a large training set as the
training data in the target domain. We use different
numbers of instances for training, randomly sam-
pling a fixed number of instances per entity type
(10, 20, 50, 100, 200, 500 instances per entity type
for MIT Movie and MIT restaurant, and 10, 20, 50
instances per entity type for ATIS). If an entity has
a smaller number of instances than the fixed num-
ber to sample, we use all of them for training. The
results on few-shot experiments using MIT Movie,
MIT Restaurant and ATIS are shown in Table 4,
where the methods of Wiseman and Stratos (2019),
Ziyadi et al. (2020) and Huang et al. (2020) are
also compared.

We first consider a training-from-scratch setting,
where no source-domain data is used. Distance-
based methods cannot suit this setting. Com-
pared with the traditional sequence labeling BERT
method, our method can make better use of few-
shot data. In particular, with as few as 20 instances
per entity type, our method gives a F1 score of
57.1%, higher than BERT using 100 instances per
entity type on MIT Restaurant.

We further investigate how much knowledge can
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MIT Movie

Source Methods 10 20 50 100 | 200 | 500
None Sequence Labeling BERT 252 | 422 | 49.64 | 50.7 | 59.3 | 744
Template-based BART 373 | 485 | 522 | 563 | 62.0 | 74.9
Wiseman and Stratos (2019) 3.1 4.5 4.1 5.3 54 8.6
Ziyadi et al. (2020) 40.1 | 39.5 | 40.2 | 40.0 | 40.0 | 395
CoNLLO3 Huang et al. (2020)* 36.4 | 36.8 | 38.0 | 38.2 | 354 | 383
Sequence Labeling BERT 283 | 452 | 50.0 | 524 | 60.7 | 76.8
Sequence Labeling BART 13.6 | 304 | 47,8 | 49.1 | 558 | 66.9
Template-based BART 424 | 542 | 59.6 | 653 | 69.6 | 80.3
MIT Restaurant
None Sequence Labeling BERT 21.8 | 394 | 527 | 535 | 574 | 613
Template-based BART 46.0 | 57.1 | 58.7 | 60.1 | 62.8 | 65.0
Wiseman and Stratos (2019) 4.1 3.6 4.0 4.6 5.5 8.1
Ziyadi et al. (2020) 27.6 | 29.5 | 31.2 | 337 | 34.5 | 34.6
Huang et al. (2020) 46.1 | 482 | 49.6 | 50.0 | 50.1
CONLLO3 | g uence Labeling BERT | 27.2 | 409 | 563 | 574 | 58.6 | 75.3
Sequence Labeling BART 88 | 11.1 | 427 | 453 | 47.8 | 58.2
Template-based BART 53.1 | 603 | 64.1 | 673 | 722 | 75.7
ATIS

None Sequence Labeling BERT 44.1 | 76.7 | 90.7 - - -

Template-based BART 71.7 | 7194 | 92.6 - - -

Wiseman and Stratos (2019) 6.7 8.8 11.1 - - -

Ziyadi et al. (2020) 174 | 19.8 | 222 - - -

Huang et al. (2020) 712 | 74.8 | 76.0 - - -

CONLLO3 | g uence Labeling BERT | 53.9 | 785 | 922 | - ; -

Sequence Labeling BART 513 | 744 | 899 - - -

Template-based BART 773 | 88.9 | 935 - - -

Table 4: Cross-domain few-shot NER performance on different test sets. * indicates training on external data. 10

indicates 10 instances for each entity types.

be transferred from the news domain (CoNLLO03).
In this setting, we further train the model which is
trained on the news domain. It can be seen from
the Table 4 that on all the three datasets, the few-
short learning methods outperform sequence label-
ing BERT and BART methods when the number
of training instances is small. For example, when
there are only 10 training instances, the method
of Ziyadi et al. (2020) gives a F1 score of 40.1%
on MIT Movie, as compared to 28.3% by BERT,
despite that BERT requires re-training with a differ-
ent output layer on both CoONLLO03 and MIT Movie.
However, as the number of training instances in-
crease, the advantage of baseline few-shot methods
decreases. When the number of instances grows as
large as 500, BERT outperforms all existing meth-
ods. Our method is effective in both 10 instances
and 500 instances, outperforming both BERT and
baseline few-shot methods.

Compared with the distance-based method
(Wiseman and Stratos, 2019; Ziyadi et al., 2020;
Huang et al., 2020), our method shows more im-
provement when the number of target-domain la-
beled data increases, because the distance-based
method just optimizes its searching threshold rather
than updating its neural network parameters. We
can see that the performance of distance-based

methods remains the same as the labeled data in-
creasing. For example, the performance of Huang
et al. (2020) increases only 1.9% F1 score when the
number of instances per entity type increase from
10 to 500. Both BERT and our method perform bet-
ter than training from scratch. Our model average
increases 6.6, 6.9 and 5.4 F1 score on MIT restau-
rant, MIT movie and ATIS, respectively, which is
significantly higher than 3.1, 1.9 and 4.3 F1 score
in BERT. This shows that our model is more suc-
cessful in transferring knowledge learned from the
source domain. One possible explanation is that
our model makes more use of the correlations be-
tween different entity type labels in the vocabulary
as mentioned earlier, which BERT cannot achieve
due to treating the output as discrete class labels.

5.4 Discussion

Impact of entity frequencies in training data.
To explore the relation between recognition accu-
racy and the frequency of an entity type in training,
we split ATIS test set into three subset based on
the entity frequency in training. The most 33% fre-
quency entities are put into high frequency subset,
the last 33% frequency entities are put into low fre-
quency subset, and the remaining are put into mid
frequency subset. Figure 3 shows the F1 score of
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Figure 5: Visualization of the output embedding. “C”—
CoNLLO03, “A’-ATIS, “M”-MIT Movie, “R”-MIT
Restaurant.

BERT and our method against the number of train-
ing instance in the three subsets. As the number
of training instances increases, the performance of
all models increases. Our method outperforms se-
quence labeling BERT by a large margin, especially
on the mid frequency and low frequency subsets,
which demonstrates that our method is more robust
in few-shot settings.

Continual Learning NER In continual learning
setting (Lin et al., 2020), all the baselines that we
have in Table 4 face limitations. The sequence la-

beling BERT method needs re-training using all
training data each time a new entity type is en-
countered, which is highly expensive. The distance
based methods cannot make use of all available
data for improving representation learning. Fig-
ure 4 shows performance of our method on MIT
movie, MIT restaurant and CoNLLO03, when we
continue to train our CoNLLO03 model on both MIT
movie and MIT restaurant. The performance on the
CoNLLO3 only slightly decrease when we continue
training the model on the MIT Movie and MIT
Restaurant dataset, demonstrating the robustness
of our method in the continual learning setting.

Visualization. We explore why our model works
well in the low-resource domain by visualizing the
output layer. We train BERT and our method on
all four datasets, and use t-SNE (van der Maaten
and Hinton, 2008) to project the output layer into 2-
dimensions, where the output layer for sequence la-
beling BERT and template-based BART are Wy;r
in Eq 1 and Wy, in Eq 5, respectively. In Figure 5,
each dot represents a row in the output matrix (cor-
responding to a label embedding). We can see that
output layer embeddings of BERT are clustered
based on dataset while the vectors of template-
based BART are sparsely distributed in the space.
It indicates that our output matrix is more domain
independent, and our method enjoys better general-
ization ability across different domains.

Error Types We find that most mistakes are
caused by the domain distance between high-
resource data and low-source NER data. As shown
in Fig 5, Template-based methods rely on label
semantics. If the embedding of the word with a
few-shot labels is far from that with in-domain la-
bels, the model shows lower performance on that
label type. Taking 50 examples per entity type on
MIT movie as an example, “ACTOR” is similar to
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“PERSON” in CoNLLO03, and achieves 84.81 F1.
The embedding of “SONG” is far from the existing
labels in CoNLLO03, and only achieves 34.97 F1.
In contrast, sequence labeling BERT does not suf-
fer from this distance, because BERT cannot draw
label correlation between two domains, it achieves
53.98 and 40.13 on “ACTOR” and “SONG”, re-
spectively.

6 Conclusion

We investigated template-based few-shot NER us-
ing BART as the backbone model. In contrast to the
traditional sequence labeling methods, our method
is more powerful on few-shot NER, since it can be
fine-tuned for the target domain directly when new
entity categories exist. Experiment results show
that our model achieves competitive results on a
rich-resource NER benchmark, and outperforms
traditional sequence labeling methods and distance-
based methods significantly on the cross-domain
and few-shot NER benchmarks.
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