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Abstract

While synthetic bilingual corpora have demon-
strated their effectiveness in low-resource neu-
ral machine translation (NMT), adding more
synthetic data often deteriorates translation
performance. In this work, we propose al-
ternated training with synthetic and authen-
tic data for NMT. The basic idea is to al-
ternate synthetic and authentic corpora itera-
tively during training. Compared with previ-
ous work, we introduce authentic data as guid-
ance to prevent the training of NMT models
from being disturbed by noisy synthetic data.
Experiments on Chinese-English and German-
English translation tasks show that our ap-
proach improves the performance over several
strong baselines. We visualize the BLEU land-
scape to further investigate the role of authen-
tic and synthetic data during alternated train-
ing. From the visualization, we find that au-
thentic data helps to direct the NMT model
parameters towards points with higher BLEU
scores and leads to consistent translation per-
formance improvement.

1 Introduction

While recent years have witnessed the rapid de-
velopment of Neural Machine Translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017), it heav-
ily relies on large-scale, high-quality bilingual cor-
pora. Due to the expense and scarcity of authentic
corpora, synthetic data has played a significant role
in boosting translation quality (He et al., 2016; Sen-
nrich et al., 2016a; Zhang and Zong, 2016; Cheng
et al., 2016; Fadaee et al., 2017).

Existing approaches to synthesizing data in
NMT focus on leveraging monolingual data in the
training process. Among them, back-translation
(BT) (Sennrich et al., 2016a) has been widely used
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to generate synthetic bilingual corpora by using a
trained target-to-source NMT model to translate
large-scale target-side monolingual corpora. Such
synthetic data can be used to improve source-to-
target NMT models. Despite the effectiveness of
back-translation, the synthetic data inevitably con-
tains noise and erroneous translations. As a mat-
ter of fact, it has been widely observed that while
BT is capable of benefiting NMT models by us-
ing relatively small-scale synthetic data, further
increasing the quantity often deteriorates transla-
tion performance (Edunov et al., 2018; Wu et al.,
2019; Caswell et al., 2019).

This problem has attracted increasing attention
in the NMT community (Edunov et al., 2018; Wang
et al., 2019). One direction to alleviate the prob-
lem is to add noise or a special tag on the source
side of synthetic data, which enables NMT mod-
els to distinguish between authentic and synthetic
data (Edunov et al., 2018; Caswell et al., 2019).
Another direction is to filter or evaluate the syn-
thetic data by calculating confidence over corpora,
making NMT models better exploit synthetic data
(Imamura et al., 2018; Wang et al., 2019). While
these methods have outperformed the conventional
BT approach, NMT models still suffer from a per-
formance degradation as the size of synthetic data
keeps increasing. Hence, how to better take advan-
tage of limited authentic data and abundant syn-
thetic data still remains a grand challenge.

In this work, we propose alternated training with
synthetic and authentic data for neural machine
translation. The basic idea is to alternate synthetic
and authentic corpora iteratively during training.
Compared with previous work, we introduce au-
thentic data as guidance to prevent the training of
NMT models from being disturbed by noisy syn-
thetic data. Our approach is inspired by the char-
acterization of synthetic and authentic corpora as
two types of different approximations for the dis-
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tribution of infinite authentic data. We visualize
the BLEU landscape to further investigate the role
of authentic and synthetic data during alternated
training. We find that the authentic data helps to
direct NMT model parameters towards the points
with higher BLEU scores. Experiments on Chinese-
English translation tasks show that our approach
improves the performance over strong baselines.

2 Alternated Training

Let x be a source sentence and y be a target sen-
tence. We use P(y|x; 0) to denote an NMT model
parameterized by 6. Let D, = {(x,,,yn)}Y_; be
an authentic parallel corpus containing /N sentence
pairs. Traditional NMT aims to obtain 6, that max-
imizes the log-likelihood on Dy:

N
A 1
0, = arggnax {N Z log P(yn|Xn; 9)} €))

Back-translation generates additional synthetic
parallel data from the monolingual corpus. Let

D,, = {ym} _, be a monolingual corpus con-
taining M target-side sentences. Back-translation
first trains a target-to-source model Opr on Dy:

N
A 1
Onr = —E log P ;0
BT argznax{an og P(xn|yn; )},

(2)
which is then used to translate each sentence in the
target-side monolingual corpus D,,

Xy, = argmax {P(X|ym; éBT)}7 3)

where m = 1,..., M. The synthetic corpus D
is generated by pairing the translations {%,, }}_,
with Dy, i.e. Dy = {(Xm,ym)} ;. The re-
quired source-to-target model is finally trained on

the combination of authentic and synthetic data:

és—arggnaX{N+M ( Z log P(yn|xn; 0) +

5" log Pyl 0))}

m=1
4)
Suppose that there exists infinite authentic paral-
lel data, which can be characterized as distribution
p(x,y). Synthesizing the large-scale corpus D,
is to better approach the authentic parallel data
distribution. Furthermore, the finite corpora D,

Algorithm 1 Alternated Training for NMT

Input: Synthetic data Ds = {(Xpn,ym) 1,
Authentic data D, = {(xn, yn) }_;
Output: éalter
1: Set é((lo) as random initialization;
2: ¢+ 0;
3: while Not Converged do
4 Obtain égtH) on Ds;UD, with éc(f) as the

starting point using Eq. (4); > S-Step
5: Obtain GA((IHI) on D, with égtH) as the
starting point using Eq. (1); > A-Step
t<+—t+1;
7: end while

8: return éalter = éc(f).

and D; U D, can be viewed as different empirical
approximations of p(x,y):

Pa(X,y) Zé (e yn)eDa (X, Y)5 5)
n 1
1 N
pS(X)Y) = N‘I‘M < nz::l(S<Xn7Yn>€Da(X y) +
M
Z 5 (R, ¥m) ED5 X Y)>
m=1
(6)

where o represents the Dirac distribution. On
the one hand, D, is considered to be of higher
quality as limy_o pa(x,y) = p(x,y) exactly
recovers the authentic data distribution. On the
other hand, although Dy contains certain noise (as
limps 00 Ps(X,y) # p(X,¥)), it provides more di-
versified data samples that enable the NMT model
to reconstruct the global distribution. As the two
corpora are complementary to each other, we intro-
duce authentic data periodically during the training
process with synthetic data. Intuitively, alternated
training using authentic corpora helps to rectify the
deviation of training direction affected by the noisy
synthetic data and enhances model performance.
Our proposed alternated training approach is
shown in Algorithm 1. Starting with random ini-
tialization, each alternation cycle during training
consists of two steps. For the t-th cycle, the first
step is to finetune the model éét) with Eq. (4) on
D,UD, until convergence' to obtain 6" which
"We also attempted to train S/A-steps for certain itera-

tions. Empirically, the proposed convergence-based method
performed better.
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is referred as S-Step (line 4). The second step is
to alter the training data back to D, and finetune
égtﬂ) with Eq. (1) until convergence to obtain
é(gtﬂ), which is referred as A-Step (line 5). We al-
ternate the training process until convergence. It is
noted that back-translation is equivalent to a single
S-Step performed in our approach.

3 Experiments

3.1 Setup

We evaluated our training strategy on Chinese-
English and German-English translation tasks. We
reported the tokenized BLEU score as calculated
by multi-bleu.perl.

For the Chinese-English task, we extracted
1.25M parallel sentence pairs from LDC as our
authentic bilingual corpus and 10M English-side
sentences from WMT17 Chinese-English training
set as our monolingual corpus for back-translation.
NISTO6 was used as the validation set. We use
NISTO02, 03, 04, 05 and 08 datasets as test sets. For
the German-English task, we selected the dataset
of IWSLT14 German-English task, which contains
16k parallel sentence pairs for training. We fur-
ther extracted 4.5M English-side sentences from
WMT14 German-English training set as monolin-
gual dataset. We segmented Chinese sentences by
THULAC (Sun et al., 2016) and tokenized English
and German sentences by Moses (Koehn et al.,
2007). The vocabulary was built by Byte Pair En-
coding (BPE) (Sennrich et al., 2016b) with 32k
merge operations. We used Transformer (Vaswani
et al., 2017) implemented in THUMT (Tan et al.,
2020) with standard hyperparameters as a base
model. We used Adam optimizer (Kingma and
Ba, 2015) with 51 = 0.9, B2 = 0.98 and e = 10
with the maximum learning rate = 7 x 1074

We applied early-stopping to verify convergence
of each single S/A-step. If the validation BLEU
failed ti exceed the highest score during the certain
S/A-step after 10K training iterations, we consider
the model converged and alternated the training
set. For the whole training process, we set the
maximum training iterations as 250k for Chinese-
English task and 150k for German-English task.

3.2 Results

Figure 1 shows the comparison among several ap-
proaches in different scales of training sets on the
Chinese-English task. The leftmost point is trained
on the authentic data, and other points are trained
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Figure 1: Comparison with several baselines in differ-
ent data scale. Our alternated approach outperforms the
conventional back-translation method and improves the
performance of Tagged BT. Moreover, with the enlarge-
ment of the synthetic data scale, the BLEU score rises
steadily by alternated training.

on the combination of authentic and synthetic cor-
pora. The X-axis shows the synthetic data scale
ranging from 1.25M (the size of authentic data) to
10M (the full size of the monolingual corpus). The
Y-axis shows the BLEU scores of the combined test
set. We find that the performance of BT rises firstly
but then decreases as more synthetic data is added,
which confirms the findings of Wu et al. (2019).
In contrast, our approach achieves consistent im-
provement with the enlargement of the synthetic
data scale.

Table 1 shows the detailed translation perfor-
mance on the Chinese-English task when the syn-
thetic data scale is set to 10M. It can be seen that
our alternated training strategy outperforms conven-
tional back-translation and tagged back-translation
on all test sets. We find that during training, the
S-Steps account for about 73% of the total train-
ing time, and the A-Steps account for 27%. This
finding suggests that our training procedure com-
poses mainly of S-Steps, and moderate A-Steps are
efficient to guide the NMT model towards better
points, which lead to the improvement of BLEU
performance.

Table 2 shows the results of the German-English
task. Similar to the Chinese-English task, we vary
the synthetic data scale from 1M to 4.5M for exper-
iments. We find that the performance degradation
also occurs while utilizing large-scale synthetic
data, and alternated training approach alleviate the
problem and perform better than corresponding
baselines.
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Data NISTO06 | NIST02 NISTO3 NISTO4 NISTOS NISTOS | All
Base 4594 [ 4582 4535  46.88 4543 3698 | 44.40
BT 4389 | 4479 4440 4624 4545 3645 | 43.57
BT-tagged 4679 | 47.11 4649 4773 47.17 3841 | 4547
AlterBT 49.077T [ 487777 483677 49.517T 49.941T 40.95%T | 47.687T
AlterBT-tagged | 49.4011 | 49.04%T 48371 49.107T 49.6471 40.56T1 | 47.49+1

Table 1: BLEU scores on the NIST Chinese-English task with 10M additional synthetic corpus. “Base” means
only authentic data is used. “BT” corresponds to the back-translation method (Sennrich et al., 2016a). “BT-tagged”
corresponds to the tagged BT technique proposed by Caswell et al. (2019). “AlterBT” means alternated training
on authentic data and synthetic data using “BT” in each alternation. “AlterBT-tagged” means alternated training
on authentic data and synthetic data using “BT-tagged” in each alternation. “+” means significantly better than BT
(p < 0.01).“t” means significantly better than BT-tagged (p < 0.01).

Scale 1M 4.5M

Base 34.16 34.16

BT 37.36 36.30

BT-tagged 37.65 37.42

AlterBT 382077 38.53FT

AlterBT-tagged | 37.98%1 39.19+f
Table 2: BLEU scores on the IWSLT14 German-

English task with 1M and 4.5M additional synthetic
corpus. “+4” means significantly better than BT (p <
0.01).“” means significantly better than BT-tagged (p
< 0.01).

3.3 BLEU Landscape Visualization

To validate the assumption that the authentic data
helps to rectify the deviation in synthetic data and
redirect the NMT model parameters to a better op-
timization path, we further investigate the BLEU
landscape to compare our method with the BT ap-
proach during the same training steps.

The visualization of the BLEU landscape is
shown in Figure 2. Checkpoints during alternated
training are projected onto the 2D plane defined by
égt), éc(f) and égtﬂ) 2 QOur projection method con-
siders both the model parameters and their transla-
tion performance (See Appendix A for details). For
the conventional BT approach, the model param-
eters are stuck in an inefficient optimization path
(highlighted in blue dashed lines). In our approach,
we find that authentic data effectively guides the
model towards a better direction for A-Step (high-
lighted in red solid lines). For S-Step (highlighted
in red dashed lines), although training with syn-
thetic data deteriorates the BLEU performance, it
pushes the model away from the original route, and

2We select t = 2 for this visualization, and similar perfor-
mance can be observed for other ¢’s.

49

égu 1) 44

Figure 2: Visualization of BLEU landscape on NIST06
dataset defined by é@, éff) and égtﬂ). The projected
checkpoints are represented as stars. Starting from égt) ,
the red dashed and solid segments represent S-Step and
A-Step in our method, respectively. The blue dashed

segments illustrate the conventional BT method, which
shares the same starting point 6%" with ours. ég%’ 2
denotes the BT model trained the same steps as éff“).
It is shown that alternated training guides the model
from égt) to ééf), égtH) and éffrl) successively, which
finally leads to a better point with a higher BLEU score.

enables authentic data to further redirect the model
into a better point with a higher BLEU score.

4 Related Work

Our work is based on back-translation (BT), an
approach to leverage monolingual data by an addi-
tional target-to-source system. BT was proved to
be effective in neural machine translation (NMT)
systems (Sennrich et al., 2016a). Despite its effec-
tiveness, BT is limited by the accuracy of synthetic
data. Noise and translation errors hinder the boost-
ing of model performance (Hoang et al., 2018). The
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negative results become more evident when more
synthetic data is mixed into training data (Caswell
etal., 2019; Wu et al., 2019).

Considerable studies have focused on the accu-
racy problem in synthetic data and further extended
back-translation. Imamura et al. (2018) demon-
strate that generating source sentences via sampling
increases the diversity of synthetic data and benefits
the BT system. Edunov et al. (2018) further pro-
pose a noisy beam search method to generate more
diversified source-side data. Caswell et al. (2019)
add a reserved token to synthetic source-side sen-
tences in order to help NMT model distinguish
between authentic and synthetic data. Another per-
spective aims at measuring the translation quality
of synthetic data. Imamura et al. (2018) filter sen-
tence pairs with low likelihood or low confidence.
Wang et al. (2019) use uncertainty-based confi-
dence to measure words and sentences in synthetic
data. Different from the aforementioned works,
our approach introduces neither data modification
(e.g. noising or tagging) nor additional models for
evaluation. We alternate training set on the original
authentic and synthetic data.

The work relatively close to ours is Iterative
Back-Translation (Hoang et al., 2018), which
refines forward and backward model via back-
translation data, and regenerates more accurate
synthetic data from monolingual data. Our work
differs from Iterative BT in that we do not require
source-side monolingual corpora or repeatedly fine-
tune the backward model.

5 Conclusion

In this work, we propose alternated training
with synthetic and authentic data for neural ma-
chine translation. Experiments have shown the
supremacy of our approach. Visualization of the
BLEU landscape indicates that alternated training
guides the NMT model towards better points.
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A Method for Visualization

We first define the projection plane S by parameters
égt), égt) and égtH). Selecting 0* = éﬁ” as the ba-
sic point and § = é((lt) — égt), n= égtﬂ) - éé” as
two basis vectors, we plot the function f(z,y) =
BLEU(Dpgyv; 0 + z6 + yn) in the 2D surface.
We calculate the BLEU scores for all NMT models
defined by grid points on the projection plane, and
construct the BLEU contours via linear interpola-
tion in MATPLOTLIB (Hunter, 2007).

We project the model checkpoints onto the 2D
plane S to represent the parameter geometry and
their translation performance. As the 2D contour
plane consists of several regions corresponded with
different BLEU ranges, we formulate the visualiza-
tion task into the following problem:

2
(w4,1;) = argmin ‘
($7y)65i

0; — (é* + 26 + yn) HF,

(7
where S; denotes the BLEU region that the perfor-
mance of 0; lies in. It is noted that according to the
Pythagorean theorem, for V (z,q) € S;,

6, — (é* L E6 4 gn) H;

— |6, - (é* +:f:2-6+@7m)H1+
2

(é* N z?m) - (é* s gn) HF :
3)

where

0; — (é* +xd + yn) Hi

9)

As (x;,y;) € S;, we can substitute (Z, ) in Eq.

(8) with (z;,y;). Notice that the first term on the

right-hand side of Eq. (8) is independent of (z;, y;),

the minimizer (z;, y;) thus satisfies the following
conditions:

(%4, 7;) = argmin ’
(z,y)es

(z,y;) = argmin

g (éﬁ+@5+@m)

— (é*+5c5+gn) 2

Y

F
(10)

with (&;, g;) satisfying Eq. (9).

According to Eq. (8), our projection method
can be divided into two steps. The first step is to
calculate (Z;, ;) in Eq. (9), which minimizes the

first term of Eq. (8). By the least square method, we
obtain the analytic solution to (&;, g;) as follows:

. _vB=-UC
{sz = BZ_AC (11)
. __ UB-VA
Yi = Bz—AC>
where
A=(8,6),
B =(d,n),
C={(nmn), (12)
U=(0;— 6",

The second step is to solve (z;,y;) in Eq. (10),
which minimizes the second term of Eq. (8). Spe-
cially, we have (z;,y;) = (Z4,9;) if (Z4,7:) € S;.
Otherwise, as the BLEU region 5; is enclosed by
polygon boundaries with limited edges, we simply
calculate the distance between (Z;, §;) and each
edge and select the minimum one. The boundary
point minimizing the distance is then determined as
(x4,y:). We cast the projection point from (Z;, ;)
to (z;, y;) in order to restore the origin BLEU per-
formance of éi.
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