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Abstract

This paper presents a comparison of unsuper-
vised methods of hypernymy prediction (i.e.,
to predict which word in a pair of words such
as fish–cod is the hypernym and which the hy-
ponym). Most importantly, we demonstrate
across datasets for English and for German
that the predictions of three methods (Weeds-
Prec, invCL, SLQS Row) strongly overlap and
are highly correlated with frequency-based
predictions. In contrast, the second-order
method SLQS shows an overall lower accu-
racy but makes correct predictions where the
others go wrong. Our study once more con-
firms the general need to check the frequency
bias of a computational method in order to
identify frequency-(un)related effects.

1 Introduction

Hypernymy represents a major paradigmatic se-
mantic relation between two concepts, a hypernym
(superordinate) and a hyponym (subordinate), as in
tree–oak and fish–cod, where the hyponym implies
the hypernym, but not vice versa. From a cognitive
perspective hypernymy is central to the organisa-
tion of the mental lexicon (Deese, 1965; Miller and
Fellbaum, 1991; Murphy, 2003), next to further
semantic relations such as synonymy, antonymy,
etc. From a computational perspective hypernymy
is central to solving a number of Natural Language
Processing (NLP) tasks such as taxonomy creation
(Hearst, 1998; Cimiano et al., 2004; Snow et al.,
2006; Navigli and Ponzetto, 2012), textual entail-
ment (Dagan et al., 2006; Clark et al., 2007) and
text generation (Biran and McKeown, 2013).

Accordingly, the field has witnessed active re-
search on two subtasks involved in computational
models of hypernymy (see Shwartz et al. (2017) for
an extensive overview): hypernymy detection (i.e.,
distinguishing hypernymy from other semantic rela-
tions) and hypernymy prediction (i.e., determining

which word in a pair of words is the hypernym
and which is the hyponym). The target subtask
of the current study is hypernymy prediction: we
perform a comparative analysis of a class of ap-
proaches commonly refered to as unsupervised hy-
pernymy methods (Weeds et al., 2004; Kotlerman
et al., 2010; Clarke, 2012; Lenci and Benotto, 2012;
Santus et al., 2014). These methods all rely on the
distributional hypothesis (Harris, 1954; Firth, 1957)
that words which are similar in meaning also occur
in similar linguistic distributions. In this vein, they
exploit asymmetries in distributional vector space
representations, in order to contrast hypernym and
hyponym vectors.

While these unsupervised hypernymy prediction
methods have been explored and compared exten-
sively on a number of benchmark datasets (Shwartz
et al., 2017), this study takes a novel perspective
and performs a detailed analysis of whether and
where the methods make similar or different deci-
sions. Our prediction experiments on simplex and
complex nouns in English and German WordNets
and evaluation benchmarks show that most of the
methods we investigate overlap in their specific pre-
dictions to a surprisingly high degree, and that the
predictions strongly correlate with those based on
raw frequencies. Our study therefore emphasises
the general need to check the frequency bias of a
computational method and to distinguish between
frequency-related and frequency-unrelated effects.

2 Data and Methods

In the following we describe our gold standard
datasets (Section 2.1), our corpora and vector
spaces (Section 2.2) and our hypernymy predic-
tion methods (Section 2.3). The code and links
to the gold standards are available from https:

//github.com/Thommy96/hyp-freq-comp.

https://github.com/Thommy96/hyp-freq-comp
https://github.com/Thommy96/hyp-freq-comp
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2.1 Gold Standard Datasets

Our study focuses on hypernymy between nouns
and uses two types of gold standard resources for
hypernymy relations. On the one hand, we rely
on WordNets as classical large-scale taxonomies
where hypernymy represents one of the core seman-
tic relations for organisation: the English WordNet1

(Miller et al., 1990; Fellbaum, 1998), version 3,
and the German GermaNet2 (Hamp and Feldweg,
1997; Kunze and Wagner, 1999; Lemnitzer and
Kunze, 2007), version 11. From both WordNets,
we extracted all noun–noun pairs with a hypernymy
relation and removed duplicates, autohyponyms
and space-separated multiword expressions. We
also distinguish between compounds (which fre-
quently represent hyponyms of their constituent
heads, as in dog–lapdog) and non-compounds by
applying a simple heuristic, i.e., categorising all
hypernym–hyponym pairs as compounds if one is
a substring of the other. We expected this subset to
exhibit idiosynchratic behaviour in our prediction
experiments.

On the other hand, we rely on a number of bench-
mark datasets for hypernymy evaluation: BLESS
(Baroni and Lenci, 2011) provides related concepts
for 200 English concrete nouns connected through
a semantic relation (hypernymy, co-hyponymy,
meronymy, attribute, event) or a null-relation. The
dataset by Lenci and Benotto (2012) contains a sub-
set of BLESS relation pairs, as created for previ-
ous comparisons of hypernymy detection methods.
A dataset similar to BLESS, EVALution, was in-
duced from ConceptNet and WordNet (Santus et al.,
2015). Its semantic relations include hypernymy,
synonymy, antonymy and meronymy. For quality
reasons, the pairs were filtered by automatic meth-
ods and crowd-sourcing to improve consistency
and to determine prototypical pairs. Finally, we use
the Weeds dataset (Weeds et al., 2004; Weeds and
Weir, 2005) which contains word pairs related by
hypernymy and co-hyponymy across word classes.
From all four benchmark datasets we extracted all
noun–noun pairs related by hypernymy.

The first row in Table 1 shows the numbers of
hypernymy pairs in the WordNets and in the bench-
mark datasets.

1https://wordnet.princeton.edu
2https://uni-tuebingen.de/en/142806

2.2 Corpora and Vector Spaces

We created our distributional vector spaces based
on the WaCky3 corpora (Baroni et al., 2009) for En-
glish and for German. The English PukWaC corpus
is the syntax-annotated version of ukWaC (Ferraresi
et al., 2008) and contains ≈1.9 billion words; the
German SdeWaC corpus (Faaß and Eckart, 2013)
is a cleaned version of the WaCky corpus deWaC
and contains ≈880 million words; both corpora are
pos-tagged with the TreeTagger (Schmid, 1994).

For each corpus we created a traditional count
vector space4 based on a co-occurrence window of
± 10 words within sentences (because sentences in
the SdeWaC are shuffled, so going beyond sentence
border is meaningless). We used a bag-of-words ap-
proach only taking into account lemmatised nouns,
verbs and adjectives.

2.3 Hypernymy Methods and Baselines

We selected four unsupervised hypernymy methods
and defined two baselines. The methods were cho-
sen from different families with regard to how they
exploit the distributional hypothesis for hypernymy
detection: WeedsPrec and InvCL rely on the Distri-
butional Inclusion Hypothesis, according to which
a significant number of distributional features of a
word x is included in the distributional features of
a word y, if x is semantically more specific than y.
SLQS Row and SLQS Sec5 rely on the Distribu-
tional Informativeness Hypothesis using first- and
second-order variants of word entropy, respectively.
The methods are defined as follows regarding the
distributional features f in the two word vectors ~x
and ~y for a word pair 〈x, y〉.

WeedsPrec: An asymmetric precision method sug-
gested by Weeds et al. (2004) that quantifies the
weighted inclusion of the features of word x in
the features of word y. If WeedsPrec(x, y) >
WeedsPrec(y, x), then x is predicted as the hy-
ponym and y as the hypernym, and vice versa.

WeedsPrec(x, y) =

∑
f∈(−→x ∩−→y ) xf∑

f∈−→x xf

3http://wacky.sslmit.unibo.it/
4Note that not all of the selected methods are applicable to

embeddings, and it also not our goal to identify the optimal
vector spaces, rather than analysing their predictions; this is
why our analyses rely on standard count dimensions.

5Originally, this method is called SLQS, but to distinguish
it from SLQS Row we refer to it as SLQS Sec.

https://wordnet.princeton.edu
https://uni-tuebingen.de/en/142806
http://wacky.sslmit.unibo.it/
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WordNet GermaNet BLESS EVALution LB Weeds¬comp comp ¬comp comp
sizes: 106,397 3,366 102,714 35,963 1,337 606 1,747 1,117

Word Length 47.26 94.65 56.14 99.41 23.19 34.86 52.42 44.76
Word Frequency 73.19 92.81 73.66 98.78 62.30 68.96 76.48 76.63
WeedsPrec 72.22 92.93 74.01 98.87 57.52 64.22 77.02 74.22
InvCL 72.97 92.84 73.92 98.78 63.05 68.86 76.48 76.45
SLQS Row 71.82 93.02 74.40 98.79 58.56 55.91 71.27 72.43
SLQS Sec 65.05 74.66 70.38 90.15 71.80 59.63 62.66 65.71

Table 1: Sizes of datasets and overall prediction results across datasets.

InvCL: An asymmetric precision method suggested
by Lenci and Benotto (2012) that takes both feature
inclusion as well as feature non-inclusion (origi-
nally suggested as ClarkDE (cde) by Clarke (2012))
into account. If invCL(x, y) > invCL(y, x),
then x is predicted as the hyponym and y as the
hypernym, and vice versa.

cde(x, y) =

∑
f∈(−→x ∩−→y )min(xf , yf )∑

f∈−→x xf

invCL(x, y) =
√
cde(x, y) · (1− cde(y, x))

SLQS Row: An asymmetric method suggested
by Shwartz et al. (2016) which relies on the
word entropy H(w) for a word w, taking all
context words as features into account: wf . If
SLQSRow(x, y) > 0, then x is predicted as the
hyponym and y as the hypernym, and vice versa.

SLQSRow(x, y) = 1− H(x)

H(y)

H(w) = −
∑
wf

p(wf |w) · log2(p(wf |w))

SLQS Sec: An asymmetric method suggested by
Santus et al. (2014) which relies on second-order
word entropy E(w) and is calculated as the median
entropy Med of a word’s most strongly associated
context words wf . We use the 50 strongest contexts
in our vector spaces, as determined by weighted
co-occurrence scores using positive local mutual
information (Evert, 2005). If SLQSSec(x, y) > 0,
then x is predicted as the hyponym and y as the
hypernym, and vice versa.

SLQSSec(x, y) = 1− E(x)

E(y)

E(w) = Medwf
H(wf )

Baselines: In comparison to the hypernymy meth-
ods we applied two baselines, cf. Zipf’s principles
of least effort (Zipf, 1949):

• Word Length: Given that hyponyms refer to
more specific concepts than their hypernyms,
and assuming that more specific concepts tend
to have a longer word length, this baseline
predicts the longer word in a word pair (as
measured by the number of characters) as the
hyponym.

• Word Frequency: Given that hyponyms refer
to more specific concepts than their hyper-
nyms and assuming that more specific con-
cepts appear less often in a corpus, this base-
line predicts the less frequent word in a word
pair (as measured by corpus frequency) as the
hyponym.

3 Prediction Results and Comparisons

3.1 Overall results
Table 1 shows the overall accuracy results of the
predictions across methods and datasets (best re-
sults in bold fonts). Accuracy is defined by the pro-
portion of correct predictions given that we know
which word in a word pair is the hypernym and
which is the hyponym.

For each WordNet we list two results, one for
the non-compound pairs (in blue, as the benchmark
results) and one for the compound pairs (in grey).
For compound pairs word length is an almost per-
fect predictor,6 as expected, and all unsupervised
methods are also above 90%, with SLQS Sec as
an exception. In all other columns we can see that
word length is generally a poor baseline. Word
frequency, however, is a very powerful baseline;
across datasets it keeps up or even outperforms
the respective best methods, which are SLQS Sec

6The prediction does not reach 100% because our heuristic
included non-compound pairs, such as selection–election.
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Figure 1: SMC correlations between methods for WordNet (above) and GermaNet (below) non-compound pairs.

on BLESS; InvCL on EVALution and Weeds; and
WeedsPrec on LB. Across datasets, the best re-
sults vary between 68.96% and 77.02% for non-
compounds; compounds obviously represent “easy”
cases of hypernymy.

3.2 Correlations between predictions

To explore similarities in predictions across meth-
ods, we applied the Simple Matching Coefficient
(SMC) (Sokal, 1958) to determine for each two
methods to which degree their decisions overlap,
by comparing the number of matching decisions
(i.e., where both methods predicted the same noun
in a noun pair as the hypernym) against the number
of decisions (i.e., the total number of noun pairs).
The heatmaps in Figure 1 show the results for the
non-compounds in the English WordNet (left) and
in GermaNet (right). They clearly demonstrate that
word length makes very different decisions to word
frequency and the unsupervised methods, and that
word frequency and all unsupervised methods but
SLQS Sec highly correlate in their predictions.

3.3 Role of frequency

We go one step further to explore the role of fre-
quency. Figure 2 presents the prediction results
on 10 equally-sized subsets of the non-compound
pairs in the WordNets after the target pairs were
sorted by decreasing difference in hypernym cor-
pus frequency minus hyponym corpus frequency.
I.e., in the left-most subset on the x-axis we see
the results on the subset with largest differences in
hypernym–hyponym frequencies.

We can clearly see that up to subset 7 (up to
which the hyponym frequencies are all below the

hypernym frequencies), decisions based on word
frequency, WeedsPrec, invCL and SLQS Row pre-
dict the hypernym almost perfectly; for subset 8
(where the hyponym frequencies start to become
larger than the hypernym frequencies) their predic-
tions are becoming worse; and for subsets 9–10 the
predictions are mostly wrong. Results by relying
on word length and SLQS Sec are clearly worse
for the first seven subsets but also better for the
last two subsets, thus confirming that they make
different predictions.

3.4 Correctness of predictions

While SMC in Section 3.2 informed us about over-
lap in decisions, it did not tell us whether one of the
methods is qualitatively superior, so we analysed
whether some methods are simply worse than oth-
ers, according to their lower accuracy in prediction,
or whether the methods all have their own strengths.
We calculated for each pair of methods which pro-
portion of wrongly predicted pairs of one method
was predicted correctly by the other method. Fig-
ure 3 illustrates for the English WordNet how many
pairs wrongly predicted by word frequency are pre-
dicted correctly by another method (see x-axis).

As we can see, while word length and SLQS Sec
are often worse in performance than frequency, they
still manage to make correct predictions when fre-
quency fails, which is much less the case for the
frequency-alike methods WeedsPrec, invCL and
SLQS Row. In particular, invCL seems to make al-
most identical predictions as frequency, which was
already indicated by their almost perfectly overlap-
ping lines in Figure 2.
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Figure 2: Prediction results for WordNet (above) and GermaNet (below) non-compound pairs across equally-sized
subsets of target pairs sorted by difference in hypernym frequency and hyponym frequency.

Figure 3: Proportions of pairs predicted wrongly by
word frequency but correctly by the given method.

4 Conclusion

This study performed a series of hypernymy predic-
tions by unsupervised methods. We demonstrated
that across datasets for English and for German
the predictions of three methods (WeedsPrec, inv-
CL and SLQS Row) are highly correlated and also
mostly identical with frequency-based predictions.
In contrast, word length and SLQS Sec show an
overall lower accuracy but at the same time make
correct predictions where the others go wrong. Our
study once more confirms the general need to check
the frequency bias of a computational method in
order to identify frequency-(un)related effects.
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