KACC: A Multi-task Benchmark for Knowledge Abstraction,
Concretization and Completion

Jie Zhou'**, Shengding Hu'?*, Xin Lv!2, Cheng Yang®,

Zhiyuan Liu'237, Wei Xu®, Jie Jiang®, Juanzi Li'?, Maosong Sun'?
'Department of Computer Science and Technology

3

*Institute for Artificial Intelligence

3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China
*School of Computer Science, Beijing University of Posts and Telecommunications, China
>Tencent Marketing Solution, Tencent, Shenzhen, China
{zhoujiel8, hsd20, lv—xl8}@mails.tsinghua.edu.cn

Abstract

A comprehensive knowledge graph (KG) con-
tains an instance-level entity graph and an
ontology-level concept graph. The two-view
KG provides a testbed for models to “simu-
late” human’s abilities on knowledge abstrac-
tion, concretization, and completion (KACC),
which are crucial for human to recognize the
world and manage learned knowledge. Ex-
isting studies mainly focus on partial aspects
of KACC. In order to promote thorough anal-
yses for KACC abilities of models, we pro-
pose a unified KG benchmark by improving
existing benchmarks in terms of dataset scale,
task coverage, and difficulty. Specifically,
we collect new datasets that contain larger
concept graphs, abundant cross-view links as
well as dense entity graphs. Based on the
datasets, we propose novel tasks such as multi-
hop knowledge abstraction (MKA), multi-hop
knowledge concretization (MKC) and then de-
sign a comprehensive benchmark. For MKA
and MKC tasks, we further annotate multi-hop
hierarchical triples as harder samples. The ex-
perimental results of existing methods demon-
strate the challenges of our benchmark. The re-
source is available at https://github.com/
thunlp/KACC.

1 Introduction

Large-scale knowledge graphs (KGs) like Wiki-
data (VrandeCi¢ and Kroétzsch, 2014), DBpe-
dia (Lehmann et al., 2015), and YAGO (Mahdis-
oltani et al., 2013) usually contain two subgraphs:
an instance-level entity graph and an ontology-
level concept graph. The entity graph (a.k.a. the
entity view) is composed of entities and relations.
It describes factual knowledge such as (Da Vinci,
paint, Mona Lisa). The concept graph (a.k.a.

* indicates equal contribution
T Corresponding author: Z.Liu(liuzy @tsinghua.edu.cn)

— Relation (logical)

Concept
Graph

— -+ Conceptual relation (logical)

Entity
Graph

Figure 1: An example of the entity-concept KG.

the concept view) contains concepts and concep-
tual relations. It provides abstract and common-
sense knowledge like (painter, create, paint-
ing). In this paper, we name this kind of two-view
KG as the entity-concept KG (EC-KG). In a EC-
KG, the relations can be grouped into three cate-
gories. The “subclassO£f” relation forms hierar-
chical concept structures via triples like (painter,
subclassOf, artist). The “instanceOf” re-
lation groups entities into concepts, such as (Da
Vinci, instanceOf, painter). These two rela-
tions are important for testing models’ abilities on
knowledge abstraction and concretization. Other
relations are logical relations for testing models’
abilities on knowledge completion. An example
of the EC-KG is shown in Figure 1.

During the last decade, there are massive works
focusing on learning representations for KGs such
as TransE (Bordes et al., 2013), DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016), and
TuckER (Balazevi¢ et al., 2019). Though they have
achieved promising results on knowledge graph
completion, most of them focus on a single graph,
especially the entity graph.

Beyond modeling a single graph of KGs, recent
studies demonstrate that jointly modeling the two
graphs in the EC-KG can improve the understand-
ing of each one (Xie et al., 2016; Moon et al., 2017
Lvetal., 2018; Hao et al., 2019). They also propose

1751

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1751-1763
August 1-6, 2021. ©2021 Association for Computational Linguistics

https://github.com/thunlp/KACC
https://github.com/thunlp/KACC

several tasks on the EC-KG, such as link predic-
tion and entity typing. These tasks focus on partial
aspects of knowledge abstraction, concretization,
and completion, which are essential abilities for
humans to recognize the world and acquire knowl-
edge. For example, in entity typing, a model may
link the entity “Da Vinci” to the concept “painter”
which reflects the model’s abstraction ability. How-
ever, little work has been devoted to unified bench-
marking and studies on KACC.

In this paper, we present a comprehensive bench-
mark for KACC by improving existing benchmarks
in dataset scale, task coverage, and difficulty.

Dataset scale. We have examined the EC-
KGs proposed by previous works such as Hao
et al. (2019). Due to the data distribution, the
concept graphs are small compared to the entity
graphs. Furthermore, the cross-links between the
two graphs are also sparse (refer to Section 4.3).
These may limit the knowledge transfer between
the two graphs. To tackle these problems, we
construct several different-scale datasets based on
Wikidata (Vrande¢i¢ and Krotzsch, 2014) with
careful filtering, annotation and refinement. As
Wikidata contains more fine-grained concepts, our
datasets have large concept graphs, abundant cross-
view links, as well as dense entity graphs.

Task coverage. Most previous works focus on
partial tasks of KACC. In our benchmark, we de-
fine the tasks more comprehensively and categorize
these tasks into three classes: knowledge abstrac-
tion, concretization, and completion.

Difficulty. We propose two new tasks, includ-
ing multi-hop knowledge abstraction and multi-
hop knowledge concretization, which require mod-
els to predict multi-hop “instanceOf” and
“subclassOf” triples that do not exist in KGs
but can be inferred via relation transitivity. These
tasks are meaningful and important since correctly
modeling these triples is necessary for models to
truly understand the concept hierarchy. To ensure
the quality of these tasks, we annotate correspond-
ing multi-hop datasets. Our experiments show that
these tasks are still challenging for existing models.

Based on our benchmark, we conduct extensive
experiments for existing baselines and provide thor-
ough analyses. The experiments show that while
the methods specifically designed for modeling hi-
erarchies perform better than general KGE models
on abstraction and concretization tasks, they are not
competitive to some general KGE models on logi-

cal relations. Moreover, all methods have drastic
performance degradation on multi-hop tasks, and
the knowledge transfer between the entity graph
and the concept graph is still obscure. Finally, we
present useful insights for future model design.

2 Related Work
2.1 Knowledge Graph Datasets

Existing datasets for knowledge graph completion
are usually subgraphs of large-scale KGs, such
as FB15K, FB15K-237, WN18, WNI18RR and
CoDEx (Bordes et al., 2013; Toutanova et al., 2015;
Dettmers et al., 2018; Safavi and Koutra, 2020).
These datasets are all single-view KGs, in which
FB15K, FB15K-237, and CoDEx focus on the en-
tity view while WN18 and WN18RR can be re-
garded as concept view KGs. Several datasets try
to link the two views in different ways. Firstly,
some datasets provide additional type information
to the entity graph, such as FB15K+, FB15K-ET
and YAGO43K-ET (Xie et al., 2016; Moon et al.,
2017). Secondly, some datasets provide concept hi-
erarchies for the entity graph, such as Probase (Wu
et al., 2012) and YAGO39K (Lv et al., 2018). How-
ever, they do not provide the full concept graphs
with logical relations. Thirdly, some datasets pro-
vide the full concept graphs (Hao et al., 2019), but
both the scale and the depth of the concept hierar-
chy are limited. For example, the entity numbers
of DB111K-174 (Hao et al., 2019) and our dataset
KACC-M are similar, but KACC-M has 38 times
more concepts than DB111K-174 (see Table 1).

2.2 Knowledge Embedding Methods

Existing knowledge embedding (KE) methods can
be categorized as translation models (Bordes et al.,
2013; Wang et al., 2014; Lin et al., 2015; Ji et al.,
2015; Sun et al., 2019), tensor factorization based
models (Yang et al., 2015; Nickel et al., 2016;
Trouillon et al., 2016; BalazZevi¢ et al., 2019), and
neural models (Socher et al., 2013; Dettmers et al.,
2018; Nguyen et al., 2018). These methods are
typically designed for single-view KGs. Although
they can be directly applied to EC-KGs by ignoring
different characteristics between entity graphs and
concept graphs, they cannot take full advantage of
the information in EC-KGs.

Several works (Krompa8 et al., 2015; Xie et al.,
2016; Ma et al., 2017; Moon et al., 2017) incor-
porate the type information into KE methods to
help the completion of entity graphs. ETE (Moon

1752

et al., 2017) further conducts entity typing, which
can be seen as a simplified version of our knowl-
edge abstraction task. Though types of entities can
be seen as concepts, they omit the concept hierar-
chy and interactions (conceptual relations) between
concepts.

To jointly model the whole EC-KG, TransC (Lv
et al., 2018) adopts TransE as the entity graph
model and models concepts as spheres that enclos-
ing points of entities. However, it is not flexible
enough to model logical relations between con-
cepts. AttH (Chami et al., 2020) further combines
hyperbolic embedding methods with KGE methods
to simultaneously embed hierarchical and logical
relations. JOIE (Hao et al., 2019) uses different
training paradigms for training the entity graph, the
concept graph, and the cross-view links. It also
defines several meaningful tasks on the EC-KG.
In this paper, we extend these tasks with several
newly proposed tasks, then we categorize and for-
malize these tasks into a unified benchmark. We
also test several KE methods as mentioned above
using our benchmarks and analyze their advantages
and deficiencies in terms of handling these tasks.

3 Benchmark

In this section, we propose the KACC benchmark
with three tasks: knowledge abstraction, knowl-
edge concretization, and knowledge completion.

3.1 Formalizations

We first give formalizations of the EC-KG, then we
introduce multi-hop triples used in later tasks.

Formalizations of EC-KG. A EC-KG is a com-
prehensive KG, which contains two subgraphs and
the cross-view links. The entity graph Gp =
{€E,RE,Tr} is composed of the entity set g,
relation set R, and corresponding triple set
Te = {(WE,rE) | hE P € Ep,rF € RE},
where h,r,t represent head, relation, and tail of
a triple, respectively. The concept graph Go =
{€c,Rc, T} contains the concept set £, con-
ceptual relation set R¢, and triple set 7¢. In
our settings, &g and & are disjoint sets, while
R and R¢ may contain some relations in com-
mon (see Section 4.3). The cross-view links
Ts = {(h%,rins,t%)} connects the two sub-
graphs, where hs e EE,tS € &c, and ri,s 1S
the “instanceOf” relation. Therefore, the EC-
KG is G = {€gc,REec, Tec}, where Egc =
Er U &c, Rec = Rrg U Re U {rins}, and
Tec =TeUToUTg.

There are two special relations “instanceOf”
and “subclassOf” that are crucial for knowl-
edge abstraction and concretization. We use “ins”
and “sub” to denote them in the rest of our pa-
per, respectively. The corresponding triples are
Tins = Tg and Toyp C Te. Other relations are
logical relations. Their corresponding triples in
concept graphs are T (10gic) = 7o'\ Tsup and logi-
cal triples in the entity graphs are T (1qic) = TE-

Multi-hop Triples. Hierarchical relations like
“ins” and “sub” should preserve the multi-hop
transitivity, which can be explained by two rules:

(e,ins,c1)A(e1, sub, c2) A .. A

E M
(
(

cN—1,sub,cn) = (e, ins,cn),

(co, sub, c1)A(c1, sub, c2) A ...A

¢N—1,Sub,cn) = (co, sub, cn),

@

in which {¢;|¢ > 1} are defined as the high-level
concept for e and c¢y. These two rules indicate
that an entity/concept always belongs to its high-
level concepts. With these rules, we can collect
multi-hop hierarchical triples like (e, ins, cy) and
(co, sub, cy) from the train data and use them
as harder samples for knowledge abstraction and
concretization testing. Corresponding datasets of
multi-hop hierarchical triples are denoted as Ty-1ns
and Ty-sup.

3.2 Knowledge Abstraction

This task contains tail prediction tasks for one-hop
and multi-hop “ins” and “sub” triples. We use
KA (knowledge abstraction) and MKA (multi-hop
knowledge abstraction) to denote the tasks.

KA-Ins / KA-Sub: KA-Ins and KA-Sub are
tail prediction tasks for “ins” triples and “sub”
triples respectively. These are all triples in the
original datasets and these tasks reflect the direct
knowledge abstraction ability of models.

MKA-Ins / MKA-Sub: MKA-Ins and MKA-
Sub are tail prediction tasks for multi-hop hierarchi-
cal triples Ty-1ns and Ty-sup. These tasks reflect
models’ abilities on high-level concept abstraction,
which aim to predict upper concepts multiple hops
away in the concept hierarchy.

3.3 Knowledge Concretization

Similar to KA and MKA tasks, this task contains
KC (knowledge concretization) and MKC (multi-
hop knowledge concretization) tasks.

KC-Ins / KC-Sub: KC-Ins and KC-Sub are
head prediction tasks for “ins” and “sub” triples,

1753

which aim to predict entities for concepts or low-
level concepts for high-level ones.

MKC-Ins / MKC-Sub: These tasks are head
prediction tasks for multi-hop hierarchical triples.
These tasks aim to predict entities for concepts or
predict finer concepts for coarser concepts that are
multi-hops away.

3.4 Knowledge Completion

The knowledge completion task contains the sub-
tasks of entity graph completion (EGC) and con-
cept graph completion (CGC) under two settings.
In the “Single” setting, models can only use each
single graph to do knowledge graph completion
while both the two graphs and the cross-view links
are provided in the “Joint” setting.

CGC-Single / EGC-Single: These subtasks are
conducted on each single graph Go and Gg. The
test phase is conducted on logical triples of each
graph T and T (164ic)- The results can be com-
pared with results from CGC/EGC-Joint to test the
effectiveness of jointly modeling the two graphs.

CGC-Joint: This subtask requires the model to
do link prediction with the full information of the
EC-KG G. The model needs to abstract conceptual
knowledge from the entity graph to do link pre-
diction for logical concept graph triples 7¢(16g:c)-
The results of this subtask can also be used to verify
models’ abilities on knowledge abstraction.

EGC-Joint: Models are required to use the guid-
ance from the concept graph to do link prediction
for entity graph triples 7. For example, a per-
son in the entity graph is more likely to lead some
organizations if he is a politician.

4 Dataset Construction

In this section, we first provide the details of our
data collection process and annotation process.
Then we give a detailed analysis of the statistical
characteristics of the datasets.

4.1 Dataset Collection

The dataset construction process has four steps:
Step 1: Entity Filtering. We select entities in
FB15K-237 (Toutanova et al., 2015) as our seed
entities. We first find out corresponding seed enti-
ties in the Wikidata dump via the “FreebaseID”
property of each item. Note some entities in Free-
base may be labeled as concepts in Wikidata, so we
filter out these concepts in our seed entity set. Then
we extract one-hop neighbors of the seed entities in

——> subclassOf

YAGO26K-906:

7
[writer H person H organism)—»[system]—»

KACC:

— human
[scientist H researcher Huccupulion]—» activity

Figure 2: Violation of concept transitivity in two datasets.

the entity graph to form the entity pool, which con-
tains more than 10 million entities. With the entity
pool, we can sample an arbitrary size of one-hop
neighbors to form the entity graph of our dataset.
Our sampling strategy is to select entities with high-
est degrees and the final entity set consists of all
seed entities and the sampled one-hop neighbors.
To meet the requirements for different scales, we
propose three sizes of datasets: (1) KACC-S, the
dataset only contains the seed entities; (2) KACC-
M, the expected total entity number is set to 100K
(3) KACC-L, the entity number is set to 1M.

Step 2: Concept Finding. Next, we extract con-
cepts based on selected entities. We use a breadth-
first search algorithm to find the concepts. The
algorithm starts from entities and search for con-
cepts via “ins” triples and “sub” triples. Since
the concept hierarchy follows the structure of a di-
rected acyclic graph, our algorithm ends when all
potential concepts are found.

Step 3: Triple Extracting and Filtering. This
step firstly extracts cross-view links and all triples
in the entity/concept graph. Then we filter all
triples by relation statistics and annotation. Re-
lations (1) with less than 10 triples, (2) whose head
or tail entity set’s size is smaller than 10, and (3)
which are annotated meaningless are dropped. Sim-
ilar to Toutanova et al. (2015), we further remove
reverse relations to prevent valid/test leakage.

Step 4: Concept Filtering. To get more precise
concept graphs, we ask human annotators to find
out meaningless concepts and we further remove
these concepts. These “meaningless” concepts in-
clude concepts with no labels or descriptions, con-
cepts used for the self-construction of Wikidata
(e.g. “Wikimedia list article”), etc. Details of the
annotation step can be found in Appendix A.1.

4.2 Multi-hop Triple Annotation

To support MKA/MKC tasks, we extract multi-hop
“ins” and “sub” triples from corresponding train
sets according to rule (1) and rule (2). Ideally,
hierarchical triples should preserve the multi-hop
transitivity. However, when we dive into real-world

1754

Entity Graph Concept Graph .
Dataset # Entities # Relations # Triples # Concepts # Conceptual Rels # Triples # Cross-links
YAGO26K-906 26,078 34 390,738 906 30 8,962 9,962
DB111K-174 111,762 305 863,643 174 20 763 99,748
KACC-S 11,896 82 90,722 2,561 18 6,137 16,061
KACC-M 99,615 209 662,650 6,685 30 15616 123,342
KACC-L 999,148 377 1,741,272 15,160 44 34930 1,097,970
Table 1: Statistics of different datasets.
datasets like YAGO26K-906 and ours, we find that Dataset #D;;ﬂlecsate #Self-loops lél;iizecttsed
the multi-hop transitivity does not always hold true. g P
. N T YAGO26K-906 188 44 132 (17.77%)
As illustrated in Figure 2, the transitivity is violated DB111K-174 97 13 4 (3.48%)
when the transition link goes deep. (scientist, sub, KACC-S 150 0 26 (1.02%) — 0
occupation) is meaningful while (scientist, sub, KACC-M 130 0 33(0.50%) — 0
KACC-L 170 0 33(0.22%) — 0

human activity) is not. To make our multi-hop
triples meaningful, we further ask human annota-
tors to check the validity of these triples. Details
are in Appendix A.2.

4.3 Dataset Analysis

In this subsection, we compare our datasets with
existing datasets YAGO26K-906 and DB111K-
174 (Hao et al., 2019) in terms of scale, domain
coverage, and hierarchical relations. The statistics
of these datasets are shown in Table 1.

Scale. From Table 1, we can see that concept
graphs in our three datasets have more balanced
sizes compared to entity graphs. From the compar-
ison between DB111K-174 and KACC, we can see
that entity graphs of these two datasets have similar
sizes, but KACC has more concepts, conceptual
relations, and triples in the concept graph.

Our datasets also have rich cross-view links. In
Table 1, the average numbers of cross-links for each
entity are less than 1.0 in YAGO26K-906 (0.38)
and DB111K-174 (0.89), which means lots of enti-
ties in these datasets are not connected to concepts.
In KACC, the ratios are all above 1.09, indicating
that one entity may belong to multiple concepts.

human
film

scholarly article
commune of France
badminton event
town in China
railway station
village

township of the PR
gle

television serics episode

civil parish {8

subdistrict of China

municipality of Germany 18
album @

Cq

0t 10
Concept Count

scholarly article
human

Wikimedia category

taxon

Wikimedia disambiguation page
Wikimedia template

Qstar

village-level division in China
galaxy

human settlement

mountain

infrared source

painting - €

river 1@

street

®

10 10
Concept Count

Figure 3: Top 15 most frequent bottom concepts of
KACC-L (left) and the original Wikidata dump (right).

Domain Coverage. In Figure 3, we plot 15 most

Table 2: Quality check of existing datasets.“—” indi-
cates the filtering process.

frequent bottom concepts, i.e., the concepts that di-
rectly connect to entities, in KACC-L and Wikidata
dump to illustrate the domains of our datasets. Plots
for KACC-S and KACC-M are in Appendix A.4.
We find our datasets mainly focus on people, loca-
tions, sports, and films, similar to domains of our
seed entities extracted from FB15K-237. The com-
parisons between our datasets and Wikidata dump
show that Wikidata dump contains more domains
such as scholarly articles, galaxies, and entities re-
lated to Wikimedia. Our datasets only focus on
partial domains of Wikidata dump, which ensures
entities in our datasets are densely connected.
Hierarchical Relations. We present the charac-
teristics of hierarchical relations in our datasets.
We first examine the data quality of sub triples
in each dataset. We first detect duplicate edges and
self-loops. As the global structure of sub relations
is assumed to be a directed acyclic graph, we use
the topological sort algorithm to find loops. We
report numbers of concepts that are not detected
by the algorithm in each dataset (these concepts
are in loops or dangled in loops). The statistics
are in Table 2. We can see that our datasets are of
high quality with fewer duplicate edges, no self-
loops, and less proportion of concepts in loops.
Finally, we remove duplicate edges and wrong-
labeled triples in loops after a manual check.
Then we examine the depths of the concepts
in each dataset. We start from bottom concepts
and traverse all concepts via topological sort. We
plot numbers of concepts with different depths in
Figure 4. From the figure, we can see that our
datasets have deeper hierarchical structures than
others, which are more informative and useful for

1755

Number of Concepts
>

>

—— KACCS
KACC-M
—— KACC-L
—— YAGO26K-906
—— DBINIK-174

0 5

15

20

Depths under SubclassOf

Figure 4: Numbers of concepts with different depths.

30

Task Train Valid Test
KA-Ins/KC-Ins ~ 7hgin 7l T
KA-Sub/KC-Sub ~ 7f@in 7 valid TRest
MKA-Ins /MKC-Ins ~ 7Jmin valid Tt o
MKA-Sub/MKC-Sub 7jin yaid - et
EGC-Joint Tagn Ty T
CGC-Joint TETE"‘“ Wdloqic) Tg(e;toqic)
EGC-Single 7—,3:rain 7—"}/a]id 7—;‘est
cocsinge I Tt T

Table 3: Settings of datasets for different tasks.

models to learn more fine-grained representations.

B

Finally, we show the characteristic of the “ins’
relation in our datasets. Unlike existing datasets
where “ins” only connects entities and concepts,
concepts in Wikidata also have “ins” connec-
tions, which are denoted by 7¢(ins). We find
these triples are also meaningful as they reflect
different level semantics. For example in a triple
(planet, ins, astronomical object type), “planet”
is a concept while it can also be regarded as an
instance when mentioned in a higher level. The
finding is also compatible with human cognition.
So we remain these triples in our datasets, and
we test them together with other “ins” triples.
Therefore, we modify the corresponding defini-
tions in Section 3.1 into Tins = Ts U T (ins) and
7’C(logic) = 7’C'\(7‘sub U %(ins))'

Other Characteristics. Our datasets also have
some new properties. In existing datasets, rela-
tions in the entity graph and conceptual relations
in the concept graph are disjoint. However, in our
datasets, some relations appear in both the entity
graph and the concept graph. For example, the
“partOf” relation appears in (Chile, partOf,
South America) in the entity graph and (hospital,
partOf, health system) in the concept graph. Our
experiments treat them as different relations while
models can also treat these relations as the same,
which depends on the hypotheses of the designers.

5 Experimental Settings

5.1 Dataset Partition

Considering the tradeoff between scale and train-
ing efficiency, we use the medium-sized dataset
KACC-M to conduct the experiments. To gener-
ate each task’s train/valid/test data, we firstly split
each triple set 7g, 7 and T¢ by the proportion
8:1:1. To make it easy for model training and hyper-
parameter selection, we provide a unified train set
TETg‘i“ for all tasks defined on the EC-KG, that is
Tpkain — g Train 7 Train | 7 drain For the valid and
test sets, different tasks have their own valid/test
sets for model selection and performance reports.

Train sets are different for EGC-Single and CGC-
Single. As they focus on a single graph, we use
7JETrai“ / Tgmi“ as train sets respectively. The set-
tings of datasets for different tasks are in Table 3.
The statistics are in the Appendix A.3.

5.2 Baselines

To test how existing methods behave in our bench-
mark, we choose several representative models for
single-view KG embedding, as well as JOIE (Hao
et al., 2019) and AttH (Chami et al., 2020), which
are specially designed for modeling the EC-KG.

Single-view KE Methods. We use TransE (Bor-
des et al, 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), and
TuckER (BalaZevi¢ et al., 2019) as our baselines.
These baselines treat the EC-KG as a large single-
view KG by regarding concepts as entities, concep-
tual relations and hierarchical relations as ordinary
relations defined on a single-view KG.

JOIE. JOIE (Hao et al., 2019) uses traditional
KE methods like TransE and DistMult as the
backend model to learn logical relations in en-
tity/concept graphs. It further defines specific
transformations and loss functions for hierarchi-
cal triples. These mechanisms could improve the
performance of corresponding backend models.

AttH. AttH (Chami et al., 2020) utilizes the hy-
perbolic geometry to embed tree-like structures,
which is suitable for modeling the concept hierar-
chy. It also proposes methods to embed logical
relations in the hyperbolic space.

5.3 Evaluation Metrics

We test the tasks in the form of link prediction. We
use two evaluation metrics in these tasks:

Mean Reciprocal Rank (MRR). The metric
computes the mean reciprocal rank of the correct

1756

Method KA-Ins MKA-Ins KA-Sub MKA-Sub
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 | MRR Hits@l Hits@10 MRR Hits@1 Hits@10
TransE | 0.658 0.560 0.832 0.112 0.047 0.242 | 0.093 0.000 0288 0.098 0.035 0.225
DistMult | 0.712 0.636 0.847 0.131 0.086 0222 | 0.135 0.062 0277 0.122 0.040 0.284
ComplEx | 0.737 0.663 0.863 0.121 0.078 0214 | 0226 0.151 0373 0.135 0.066 0.275
TuckER | 0.759 0.681 0.885 0.115 0.077 0.179 | 0.191 0.107 0369 0.147 0.068 0313
JOIE | 0706 0.611 0.873 0.195 0.115 0370 | 0.099 0.004 0289 0.113 0.010 0.351
AttH | 0.778 0.693 0918 0218 0.116 0.436 | 0203 0.089 0458 0.188 0.081 0.420
Table 4: Results on knowledge abstraction. Best scores are in bold.
Method KC-Ins MKC-Ins KC-Sub MKC-Sub
MRR Hits@l Hits@10 MRR Hits@1 Hits@10 | MRR Hits@l Hits@10 MRR Hits@1 Hits@10
TransE | 0.123 0.083 0208 0.060 0.033 0.110 | 0.049 0.000 0.145 0.039 0.000 0.113
DistMult | 0.175 0.114 0282 0.107 0.068 0.183 | 0.061 0.021 0.136 0.041 0.004 0.128
ComplEx | 0.208 0.142 0.321 0.098 0.070 0.153 | 0.103 0.061 0.179 0.044 0.012 0.107
TuckER | 0.169 0.110 0280 0.074 0.047 0.120 | 0.087 0.040 0.160 0.051 0.021 0.106
JOIE | 0241 0.200 0320 0.141 0.093 0240 | 0.048 0.010 0.120 0.032 0.001 0.092
AtH | 0.172 0.120 0279 0.112 0.061 0213 | 0.081 0.021 0204 0.051 0.009 0.135

Table 5: Results on knowledge concretization. Best scores are in bold.

instances. If the ranks of correct instances are k;,
then the metric computes the average of k%

Hits@N. This metric computes the proportion
of the ranks that are no larger than N.

A good model could achieve higher scores on
these metrics. We use the “Filtered” setting for all
the evaluations, which filters out other true answers
from the prediction results to get the final rank for
each test case.

5.4 Hyperparameter Settings

According to Ruffinelli et al. (2020), performances
of KGE methods are sensitive to hyperparameters.
Following them, we run 30 quasi-random trails for
all models from predefined hyperparameter spaces.
We list the hyperparameter spaces we use in Ap-
pendix A.S. We run all trails for 100 epochs.

For all single-view KE methods, we use the
implementations from LibKGE (Broscheit et al.,
2020), which utilizes the Ax framework to perform
quasi-random hyperparameter search.

For AttH, we use the implementation from the
authors'. For JOIE, we use the implementation
from the authors’>. We use TransE as the back-
end and adopt the suggested hyperparameter space
from the paper.

6 Experimental Results

In this section, we provide the experimental results
and further propose several future directions.
6.1 Knowledge Abstraction

The results of knowledge abstraction are shown in
Table 4. From the results, we can see that AttH has

Uhttps://github.com/HazyResearch/KGEmb
>https://github.com/JunhengH/joie-kdd19

a large margin beyond other methods on KA-Ins
and also performs well on KA-Sub, which demon-
strates the effectiveness of hyperbolic embeddings.
JOIE outperforms its backend model TransE.

Comparing results between KA-Ins and MKA-
Ins, all the models have performance degradation
larger than 0.51 on MRR. We conclude that the
composition rule in Equation (1) is hard to learn
naturally. Among all the models, AttH performs
the best on both tasks and has the least degradation
from KA to MKA, showing that hyperbolic space
has advantages over Euclidean space in knowledge
abstraction. However, the degradation is still dras-
tic, showing the difficulty of the MKA task.

Comparing results between KA-Sub and MKA-
Sub, most methods also have performance degrada-
tion while TransE-based models (TransE and JOIE)
have better performances on MKA-Sub, which is
interesting for further investigation. AttH performs
best on MKA-Sub, which further confirms the ad-
vantage of hyperbolic methods.

6.2 Knowledge Concretization

The results of knowledge concretization are in
Table 5. ComplEx and JOIE performs well on
KC-Ins and KC-Sub tasks. Similar to tasks in
knowledge abstraction, MKC-Ins and MKC-Sub
are also harder for existing models. The results
of knowledge concretization tasks are lower than
corresponding knowledge abstraction tasks, which
shows that knowledge concretization is much
harder than knowledge abstraction.

6.3 Knowledge Completion

The results of knowledge completion are shown in
Table 6. From the table, TuckER performs well

1757

EGC CGC

Method MRR Hits@1 Hits@10 MRR Hits@1 Hits@10
Joint Single Joint Single Joint Single | Joint Single Joint Single Joint Single
TransE | 0.305 0299 0.182 0.175 0.510 0.504 | 0242 0.261 0.003 0.095 0.659 0.603
DistMult | 0.444 0.440 0.379 0376 0.566 0.560 | 0.495 0.481 0419 0436 0.631 0.568
ComplEx | 0458 0.453 0.397 0393 0.572 0.567 | 0.537 0.501 0472 0.458 0.684 0.581
TuckER | 0481 0.473 0415 0408 0.604 0.595 | 0.536 0.525 0468 0473 0.668 0.615

JOIE 0.171 - 0.094 - 0.308 - 0.218 - 0.018 - 0.622 -
AttH 0348 0.352 0235 0.241 0551 0.545 | 0.268 0.244 0.100 0.154 0.631 0418

Table 6: Results on knowledge completion. Best scores among different models in the same task are in bold. Best
scores for a model between Joint and Single settings are underlined.

Method KACC KA KCon KCom
TransE 0374 0396 0.143 0.585
DistMult 0.396 0.407 0.181 0.599
ComplEx 0414 0429 0.184 0.628
TuckER 0410 0423 0.165 0.636
JOIE 0.353 0444 0.177 0.439
AttH 0452 0.558 0.208 0.591

Table 7: The overall scores. Best scores are in bold
and second high scores are underlined.

on entity-level logical relations while ComplEXx is
good at dealing with concept-level logical relations.
JOIE does not perform well on logical relations.
From the comparisons between “Joint” and “Sin-
gle” settings, we find that results on EGC-Joint are
usually higher than results on EGC-Single, which
shows that incorporating the concept graph and
cross-view links helps the understanding of the en-
tity graph. However, the pattern is not obvious on
CGC-Joint and CGC-Single, which may due to that
entity triples are far more than concept triples, so
models tend to focus more on entity triples.

6.4 Overall Results

Finally, we compute an overall KACC score for
each method to show their overall performances.
Similar to GLUE (Wang et al., 2019a), we average
Hits@10 scores of each method on all tasks (except
CGC-Single and EGC-Single) to get final scores.
We also compute the average scores for knowl-
edge abstraction (KA), knowledge concretization
(KCon), and knowledge completion (KCom). In
Table 7 we can see that AttH has the best over-
all score and achieves the highest scores on two
tasks. ComplEx also performs well. It is a bal-
anced model since it gets the second place on all
tasks. TuckER performs best on knowledge com-
pletion. In the future, we plan to test more methods
and investigate their abilities.

6.5 Analyses and Future Directions

From the results above, we analyze several prob-
lems that existing models cannot handle well and
propose several promising future directions.

Multi-hop triple modeling. The prediction
scores of multi-hop triples are lower than those
of one-hop triples, showing the challenge of multi-
hop triple modeling. Besides, how to balance the
model to learn from logical and hierarchical rela-
tions is also an exciting direction.

Conceptual knowledge completion. Not all
models successfully extract conceptual knowledge
effectively as their scores of CGC-Joint are lower
than those of CGC-Single. The main reason is that
KE methods tend to focus more on entity triples
due to the losses. They lack the ability to abstract
factual knowledge to enrich conceptual knowledge.

Knowledge concretization. The results of con-
cretization tasks are much lower than those of ab-
straction tasks. It demonstrates that existing models
can find proper concepts for entities but cannot find
correct entities for concepts. Some solutions may
be using contrastive learning to “push” negative
entities away from the concepts.

Besides the analyses, there are also several
promising future directions of our benchmark.

Contextualized knowledge embedding.
Recently, contextualized knowledge embed-
dings (Wang et al., 2019b) are proposed to capture
different semantics of entities and relations in
different contexts. These methods only conduct
on the entity graph, while incorporating concepts
provides more contextual information for entities.
For example, an entity of a painter is more likely
to paint than a politician. It is a promising
direction to model concepts and entities jointly by
contextualized embeddings.

Joint modeling EC-KG with text. The EC-KG
is a symbolic form of knowledge, and it is interest-
ing to combine it with text. Future directions may
include incorporating more commonsense knowl-
edge into the concept graph from language or using
the EC-KG to help understand the natural language
from the concept level.

1758

7 Conclusion

In this paper, we focus on the problems of knowl-
edge abstraction, concretization, and completion.
We propose a benchmark to test the abilities of
models on KACC. To conduct the evaluation, we
construct large-scale datasets with desired proper-
ties, and experiments show that tasks in KACC are
challenging. For future work, we plan to test more
models and design advanced models to address
tasks in KACC.

8 Acknowledgements

This work is funded by the Natural Science Foun-
dation of China (NSFC) and the German Research
Foundation (DFG) in Project Crossmodal Learning,
NSFC 62061136001 / DFG TRR-169. This work
is also supported by Tencent Marketing Solution
Rhino-Bird Focused Research Program.

Ethical Considerations

Here we list ethical considerations of our paper:

Intellectual property. All of our datasets are
collected from Wikidata and Wikidata offers the
data for free with no requirement to attribute under
Creative Commons CCO License.

Privacy. Our datasets are collected from an on-
line resource automatically and the collection pro-
cess does not involve with participants’ privacy
rights.

Compensation. For the two annotation pro-
cesses, the salary for annotating each sample is
computed according to the average annotation time
and local wage standard. And we ensure that all
annotators are well paid.

Potiential problems. Though we have manually
checked the quality of our datasets and removed
meaningless and wrong data, there still may exist
false triples. These may lead to wrong predictions
in knowledge abstraction, concretization and com-
pletion tasks. However, noises are common in hu-
man contributed resources such as existing datasets
and ours, so the potiental risks are low.

References

Ivana Balazevi¢, Carl Allen, and Timothy M
Hospedales. 2019. Tucker: Tensor factorization for
knowledge graph completion. In Proceedings of
EMNLP.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.

2013. Translating embeddings for modeling multi-
relational data. In Proceedings of NIPS.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek,
Patrick Betz, and Rainer Gemulla. 2020. LibKGE
- A knowledge graph embedding library for repro-
ducible research. In Proceedings of EMNLP: System
Demonstrations.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. In Proceedings of ACL.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
AAAL

Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun,
and Wei Wang. 2019. Universal representationlearn-
ing of knowledge bases by jointly embedding in-
stances and ontological concepts. In Proceedings of
KDD.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In Proceedings of ACL.

Denis Krompal}, Stephan Baier, and Volker Tresp.
2015. Type-constrained representation learning in
knowledge graphs. In Proceedings of ISWC.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Soren Auer, et al. 2015. Dbpedia—a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic Web.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of AAAL

Xin Lv, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2018.
Differentiating concepts and instances for knowl-
edge graph embedding. In Proceedings of EMNLP.

Shiheng Ma, Jianhui Ding, Weijia Jia, Kun Wang, and
Minyi Guo. 2017. Transt: Type-based multiple em-
bedding representations for knowledge graph com-
pletion. In Proceedings of ECML-PKDD.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M
Suchanek. 2013. Yago3: A knowledge base from
multilingual wikipedias. In Proceedings of CIDR.

Changsung Moon, Paul Jones, and Nagiza F Samatova.
2017. Learning entity type embeddings for knowl-
edge graph completion. In Proceedings of CIKM.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Phung. 2018. A novel embed-
ding model for knowledge base completion based
on convolutional neural network. In Proceedings of
NAACL.

1759

https://www.wikidata.org/wiki/Wikidata:Text_of_the_Creative_Commons_Public_Domain_Dedication

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of AAAI.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You CAN teach an old dog new
tricks! on training knowledge graph embeddings. In
Proceedings of ICLR.

Tara Safavi and Danai Koutra. 2020. CoDEx: A Com-
prehensive Knowledge Graph Completion Bench-
mark. In Proceedings of EMNLP.

Richard Socher, Danqgi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural tensor
networks for knowledge base completion. In Pro-
ceedings of NIPS.

Zhiqging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In Proceed-
ings of ICLR.

Kristina Toutanova, Danqgi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of EMNLP.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of ICLR.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of ICLR.

Quan Wang, Pingping Huang, Haifeng Wang, Song-
tai Dai, Wenbin Jiang, Jing Liu, Yajuan Lyu, Yong
Zhu, and Hua Wu. 2019b. Coke: Contextual-
ized knowledge graph embedding. arXiv preprint
arXiv:1911.02168.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of AAAI

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q
Zhu. 2012. Probase: A probabilistic taxonomy for
text understanding. In Proceedings of SIGMOD.

Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016.
Representation learning of knowledge graphs with
hierarchical types. In Proceedings of IJCAL.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In Proceedings of ICLR.

1760

A Appendices

A.1 Annotations for Meaningless Concepts

In this section, we first present our annotation
guidelines for annotators, and then we provide the
annotation results.

Task Guidelines. This task aims to find out
meaningless “concepts”. For a given instance, you
need to check whether it is a “concept”. Here are
some definitions in this task:

* Concept. A word for a group or a class of
things, such as “artist”, “writer”, etc. Humans
obtain concepts by abstracting commonalities

from things.

* Entity. A specific person or thing, such as
“Barack Obama”, “Mona Lisa”, etc.

We provide you the Wikidata ID, name, and de-
scription of an instance. For more details, you
can go to the web “https://www.wikidata.org/
wiki/Oxxxx” by replacing “Qxxxx” with the spe-
cific Wikidata ID. An example is shown in the
following:

ID Name Description

Q68 computer general-purpose device for
performing arithmetic or

logical operations

If an instance is a concept, you should give the
correct label. You should give the wrong label in
these circumstances:

1. The instance is more like an entity than a con-
cept, such as “Voice over Internet Protocol” (a
network protocol).

2. The description and name of the instance are
“None”.

3. The instance is used for the website’s construc-
tion and is meaningless, such as “Wikimedia
list article” and “Wikimedia disambiguation

page”.
4. Other cases that are difficult to judge.

Annotation results. We ask human annotators
to annotate all concepts in KACC-L. The result of
an instance is obtained if two annotators reach the
agreement. If not, a third annotator is asked to label
the instance. As a result, 482 concepts are removed
among 15,642 concepts.

A.2 Annotations for Multi-hop Hierarchical
Triples

In this task, we extract multi-hop “instanceOf”
and “subclassOf” transitivity links from differ-
ent train sets and ask annotators to label the position
where the hierarchical transitivity holds.

Task Guidelines. This task aims to annotate the
transitivity link of concepts. For an example we
provided, you need to determine whether semantic
drift exists in this link and label the final position
that the transitivity holds. Here is some preliminary
knowledge:

* Concept. A word for a group or a class of
things, such as “artist”, “writer”, etc. Humans
obtain concepts by abstracting commonalities
from things.

Entity. A specific person or thing, such as
“Barack Obama”, “Mona Lisa”, etc.

Transitivity of concepts. An exam-
ple of a transitivity link of concepts is
“scientist — researcher — occupation —
human activity”. The transitivity link starts
from an entity or a concept and follows by
concepts. The transitivity of concepts assumes
that the semantic of the later concept could
contain the former concept. For example, the
semantic of “occupation” contains “scientist”,
while “occupation” is also a more general
meaning concept.

* Semantic drift. Because of the annotation
process of the original data source (Wikidata),
we can assume almost all one-hop links are
correct, such as “scientist — researcher” in
our example. But semantic drift occurs as
the transitivity link goes deep. For exam-
ple, “scientist” can be subclass of “occupation”
while it cannot belong to “human activity”.
However, the one-hop link “occupation —
human activity” still holds true.

We provide you the transitivity links of concepts
with length 4. These links start from an entity or a
concept and is followed by concepts. We provide
you the Wikidata ID and the name of the entities
and concepts. For more details, you can go to the
web “nttps://www.wikidata.org/wiki/Qxxxx’
by replacing “Qxxxx” with the specific Wikidata
ID. Some examples of this task are shown in Ta-
ble 8:

1761

https://www.wikidata.org/wiki/Qxxxx
https://www.wikidata.org/wiki/Qxxxx
https://www.wikidata.org/wiki/Qxxxx

Links

(1) Q4442912 capital of Russia — Q5119 capital — Q515 city — Q702492 urban area
(2) Q3108101 tropical garden — Q1107656 garden — Q386724 work — Q15401930 product

Table 8: Annotation examples for concept transitivity.

You need to label the last position that the con-
cept transitivity holds true starting from the first
entity/concept. For example (1) in Table 8, “cap-
ital of Russia” can be regarded as a sub-concept
of “urban area”, so the position is 4. In example
(2), “tropical garden” belongs to “garden’” while it
does not belong to “work”™, so the position can be
labeled as 2.

We can assume that most one-hop links are cor-
rect, and you have no need to check the authenticity
of them. For example in “Dewey County — county
of Oklahoma”, you do not need to check whether
Dewey is a county of Oklahoma. However, in some
specific circumstances, the one-hop link may be
wrong, then you can label the case as 1, which
means that only the first entitiy/concept is true.

If you cannot find out meaningful names for
entities or concepts, or you meet other cases that
are difficult to judge, you can label them as 0.

Annotation Results. We extract 1200, 3000
and 6000 multi-hop “instanceOf” and
“subclassOf” triples for KACC-S, KACC-M
and KACC-L. These numbers are similar to num-
bers of “subclassOf” triples in corresponding
valid and test sets. We ask two annotators to
annotate them, and a third annotator will be added
if the two annotators do not reach an agreement.
Note that our task requires to label the position,
thus there are cases where all these three annotators
give different labels. In these cases, we just omit
these examples. If a case is labeled as 4, then
we can construct both 2-hop and 3-hop triples
from the link. If the case is labeled as 3, we can
only obtain the 2-hop triple. The statistics of our
datasets are in Table 9.

A.3 Statistics of Dataset Split
The statistics of the datasets after partition are
shown in Table 10.

A.4 Additional Domain Plot for KACC

We plot the domains of our KACC-S and KACC-M
in Figure 5. Domains of KACC-S and KACC-M
are similar while KACC-M has more fine-grained

concepts, such as “town in China” and “commune
of France”.

10° 10

Concept Count Concept Count

Figure 5: Top 15 most frequent bottom concepts of
KACC-S (left) and KACC-M (right).

A.5 Hyperparameter Settings

In this section, we present our hyperparameter se-
lection methods in detail. We run 30 quasi-random
hyperparameter search trails on predefined hyperpa-
rameter spaces for different baselines (see Table 11
to Table 13). Because we use different implementa-
tions, thus hyperparameter spaces are different for
different methods.

We run each trail for 100 epochs and save the
checkpoint every 20 epochs (150 saved checkpoints
for one model in total). Since our benchmark con-
tains multiple tasks, for each task, we use the cor-
responding valid set to choose the best checkpoint
based on the MRR metric, and then we test the se-
lected checkpoint on the test set and compute final
metrics.

A.6 Runtime Environment

All experiments are conducted on a server with the
following environment.

* Operating System: Ubuntu 18.04.3 LTS

e CPU: Intel(R) Xeon(R) Gold 5218 CPU @
2.30GHz

¢ GPU: GeForce RTX 2080 Ti

1762

Dataset instanceOf subclassOf
Extracted Links # 2-hop Links # 3-hop Links # Extracted Links # 2-hop Links # 3-hop Links
KACC-S 1,200 1,159 1,137 1,200 1,170 1,148
KACC-M 3,000 2,888 2,854 3,000 2,946 2,904
KACC-L 6,000 5,723 5,671 6,000 5,887 5,806
Table 9: Statistics of annotated multi-hop triples.
Data Source # Train # Valid # Test
Tec 644,332 - -
TE 533,209 - -
Ts 98,553 - -
Tc 12,570 - - Hyperparameter Search Range
TE 533,209 64,965 64,476 Training
Scheme Negative Sampling
Tc - 1495 1549 No. negative samples {1, 10, 20, 50}
Teub - 931 965 Batch size {128, 256, 512}
TC(logic) - 366 369 Loss type {F2, N3}
TC(ins) - 198 215 Optimizer {Adam, Adagrad}
Tine _ 12,679 12,523 . t,eggr'ling rate {0.001, 0.005, 0.01, 0.05, 0.1}
) mbedding
Ts 12,481 12,308 Dimension {100, 200, 300}
Tc(ins) - 198 215
Tsu - 931 965 .
stb Table 12: Hyperparameter space of quasi-random
To(1ogic)) 366 369 search for AttH.
E*Ins - 2,871 2,871
Tu-sub - 2,925 2,925
Table 10: Statistics of data split for KACC-M.
Hyperparameter Search Range
Training
Scheme (Complex, Distmult, TuckER) 1vsAll
Scheme (TransE) Negative Sampling
No. subject samples (TransE) [1, 1000], log scale
No. object samples (TransE) [1, 1000], log scale Hyperparameter Search Range
Batch size {128, 256, 512} Training
Loss type {CE} Backend {TransE}
Optimizer {Adam, Adagrad} Transition method {CG, CT} '
Learning rate [0.001, 0.1], log scale Scheme Negative Sampling
Learning rate scheduler’s patience [0, 10] Batch size {128,256, 512}
- ai, az {1.0,2.5}
Embedding my, ma {0.5, 1.0}
Dimension {100, 200, 300} —
Initialization OptlleeT
Std. deviation (Normal) [1074,1.0], log scale Learr'ung rate {0.0005, 0.001, 0.01}
Interval (Uniform) [-1.0, 1.0] Embedding

Regularization

{None, L3, Lo, Ly } Entity dimension

Concept dimension

{50, 100, 200, 300}
{50, 100, 200, 300}

Entity emb.weight
Relation emb.weight

[10720,1071], log scale
[10729,1071], log scale

Frequency weighting {True, False} . .

Dropout Table 13: Hyperparameter space of quasi-random
Entity emb.dropout [0,0.5] search for JOIE.
Relation emb.dropout [0,0.5]

Table 11: Hyperparameter space of quasi-random
search for TransE, DistMult, ComplEx, TuckER.

1763

