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Abstract

The major paradigm of applying a pre-trained
language model to downstream tasks is to fine-
tune it on labeled task data, which often suf-
fers instability and low performance when the
labeled examples are scarce. One way to alle-
viate this problem is to apply post-training on
unlabeled task data before fine-tuning, adapt-
ing the pre-trained model to target domains by
contrastive learning that considers either token-
level or sequence-level similarity. Inspired by
the success of sequence masking, we argue that
both token-level and sequence-level similari-
ties can be captured with a pair of masked se-
quences. Therefore, we propose complemen-
tary random masking (CRM) to generate a
pair of masked sequences from an input se-
quence for sequence-level contrastive learning
and then develop contrastive masked language
modeling (CMLM) for post-training to inte-
grate both token-level and sequence-level con-
trastive learnings. Empirical results show that
CMLM surpasses several recent post-training
methods in few-shot settings without the need
for data augmentation.

1 Introduction

The past few years have seen the rapid proliferation
of large-scale pre-trained language models such as
GPT (Radford et al., 2018), BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019b). These
models are generally characterized by pre-training
on huge general-domain corpora and then fine-
tuning on task-specific labeled examples when ap-
plied to a downstream task. Despite tremendous
knowledge obtained from general-domain corpora
through pre-training, sufficient labeled examples
from the task domain are still needed. However,
collecting them is often infeasible in many scenes,
where it tends to be unstable and low-performing
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Figure 1: Demonstration of token-level similarity and
sequence-level similarity, where the token “affecting” is
close to the token “[MASK]” due to the latter’s context.
The two sequences with different maskings are also
close due to their semantic affinity.

when directly fine-tuning these pre-trained models
(Zhang et al., 2021; Dodge et al., 2020).

Many efforts have been devoted to addressing
the above issue. Firstly, it can be relieved by im-
proving the fine-tuning process, such as introduc-
ing regularization (Jiang et al., 2020; Lee et al.,
2020), re-initializing top layers (Zhang et al., 2021),
and using debiased Adam optimizer (Mosbach
et al., 2021). Besides, according to empirical re-
sults (Zhang et al., 2021; Mosbach et al., 2021),
fine-tuning with a small learning rate and more fine-
tuning epochs can also improve the situation. Sec-
ondly, additional data can be explored, for which
two main genres of data might be helpful: labeled
examples from related tasks and unlabeled task
examples. The former has shown considerable suc-
cess on the GLUE tasks (Phang et al., 2018; Liu
et al., 2019a), whereas such labeled examples are
not always easy to collect. By contrast, the latter
is more feasible, especially in scenes where task
examples are easy to collect but expensive to label.

Contrastive learning (Hadsell et al., 2006) is a re-
cently re-emerged method for leveraging unlabeled
data to enhance representation learning. The key to
contrastive learning is to capture the similarity be-
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tween samples. As shown in Figure 1, there are two
sorts of similarities that can be captured for a natu-
ral language sequence: token-level similarity and
sequence-level similarity. Masked language model
(MLM) (Devlin et al., 2019), widely adopted in
pre-trained language models, can be considered as
token-level contrastive learning, as it maximizes
the similarity between the “[MASK]” token and the
original token before masking and minimizes the
similarity with other tokens. As for sequence-level
similarity, several works (Iter et al., 2020; Giorgi
et al., 2020; Wu et al., 2020) introduce sequence-
level contrastive learning into pre-training. While
all these works focus on the pre-training phase, the
focal point of this paper is to improve the perfor-
mance of pre-trained models in downstream tasks
through post-training especially for scenes where
limited labeled data is available.

Speaking of pre-trained language models, Xu
et al. (2019) and Gururangan et al. (2020) demon-
strate improvement in various downstream tasks
by training the models with MLM on task exam-
ples before fine-tuning, which, following Xu et al.
(2019), is termed post-training in this paper even
though Gururangan et al. (2020) term it adaptive
pre-training. Fang and Xie (2020) also post-train
their model on task examples by contrastive self-
supervised learning (Chen et al., 2020), which pulls
together two augmented sentences generated from
the same sentence by back-translation (Edunov
et al., 2018) while separating those otherwise. How-
ever, these works consider either token-level or
sequence-level contrastive learning, without inte-
grating them. Moreover, adopting back-translation
to generate augmented sentences demands consid-
erable computation and makes the effect of post-
training dependent on the translation systems.

To capture both sequence-level and token-level
similarities, we propose contrastive masked lan-
guage modeling (CMLM) to achieve more effective
knowledge transfer in post-training and to improve
the performance of pre-trained language models in
few-shot downstream tasks. For this purpose, we
propose complementary random masking (CRM)
to generate a pair of masked sequences from a
single sequence for both sequence-level and token-
level contrastive learnings. We conduct extensive
experiments to compare CMLM with several recent
post-training approaches, and the empirical results
show that CMLM achieves superior or competitive
performance in a wide range of downstream tasks.

Our contributions can be concluded as follows.
First, we propose a new random masking strategy,
CRM, to generate a pair of masked sequences fa-
vorable to sentence-level contrastive learning. Sec-
ond, we propose a novel objective, CMLM, for
post-training pre-trained language models, which
realizes both sequence-level and token-level con-
trastive learnings on a pair of masked sequences.
Third, we compare our approach with several post-
training methods and obtain superior or competi-
tive results in few-shot settings. Lastly, we compare
two contrastive learning implementations, SimCLR
(Chen et al., 2020) and SimSiam (Chen and He,
2020), in pre-trained language models. To our best
knowledge, our work is the first effort to implement
SimSiam in NLP and compare it with SImCLR.

2 Related Works
2.1 Pre-trained Language Model

Pre-trained language models such as GPT (Rad-
ford et al., 2018), BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019b) have become
a new paradigm of NLP research, and been suc-
cessfully applied in a wide range of tasks that used
to be thorny. These models are generally structured
with stacks of Transformer (Vaswani et al., 2017)
and pre-trained on large-scale unlabeled corpora.
Among them, GPT is pre-trained with a unidirec-
tional language modeling objective, and BERT is
with masked language modeling (MLM) and next
sentence prediction (NSP). In RoBERTa, Liu et al.
(2019b) turn the static MLM in BERT into a dy-
namic one and remove the NSP task, and pre-train
it more intensively with larger corpora.

Despite tremendous knowledge learned from un-
labeled corpora during pre-training, sufficient la-
beled task examples are still needed for fine-tuning,
which can be challenging for some scenes. Plus, un-
labeled task examples are not leveraged when stick-
ing to the pre-training and fine-tuning paradigm.

2.2 Contrastive Learning

To take advantage of unlabeled or labeled data more
effectively, contrastive learning (Hadsell et al.,
2006) is re-emerged recently in computer vision
(CV) and natural language processing (NLP). The
key to contrastive learning is to pull positive sam-
ples together while separating negative samples
apart. The construction of positive and negative
sample pairs varies from tasks to tasks. In CV,
Chen et al. (2020) take the augmented (e.g., by
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random crop, color distortion, and Gaussian blur)
images originated from the same image as posi-
tive pairs, and treat those otherwise as negative
pairs. Khosla et al. (2020) take the images with
the same label as positive pairs and take others as
negative. In NLP, MLM in BERT can be viewed
as contrastive learning on token level, which takes
“IMASK]” and its original token before masking
as a positive pair and the rest as negative. For se-
quence level, both Fang and Xie (2020) and Wu
et al. (2020) follow Chen et al. (2020) to construct
the sample pairs. Specifically, Fang and Xie (2020)
utilize back-translation for sequence augmentation
while Wu et al. (2020) use some easy deforma-
tion operations like deletion, reordering and syn-
onym substitution. Besides, Giorgi et al. (2020)
construct two spans as a positive pair if they over-
lap, subsume, or are adjacent. Gunel et al. (2021)
introduce supervised contrastive learning proposed
by Khosla et al. (2020) into NLP and treat the se-
quences with the same label as a positive pair. Li
et al. (2021) augment the cross-entropy loss with
a contrastive self-supervised learning term and a
mutual information maximization term to deal with
the cross-domain sentiment classification task.

2.3 Post-training

Post-training has been broadly applied in down-
stream tasks. For examples, Xu et al. (2019)
post-train BERT with MLM on task examples to
improve the sentiment analysis task. Gururangan
et al. (2020) further divide post-training into two
categories: domain-adaptive pre-training and task-
adaptive pre-training, and evaluate them by exten-
sive experiments. Phang et al. (2018) fine-tune their
model on a related task before fine-tuning on the
target task. Liu et al. (2019a) extend previous work
into a multi-task learning fashion. Fang and Xie
(2020) introduce contrastive self-supervised learn-
ing (CSSL) (Chen et al., 2020) to perform post-
training and name it CSSL Pre-training.

3 Approach
3.1 Dynamic Random Masking

Masked language modeling (MLM) is firstly ap-
plied in BERT (Devlin et al., 2019), where some
of the tokens in the input sequence are selected
and replaced by a special token “[MASK]”. BERT
uniformly selects 15% of the input tokens for re-
placement, and among the selected tokens, 80%
are replaced with “[MASK]”, 10% are left un-

changed, and 10% are replaced by a randomly se-
lected vocabulary token. In the original implemen-
tation of BERT, random masking and replacement
are performed once in the beginning, and the se-
quences are kept unchanged through pre-training.
Liu et al. (2019b) transform this static masking
strategy into dynamic random masking (DRM) by
generating a masking pattern every time a sequence
is fed. That is to say, given an input sequence
T = {t1,ta,...,tn}, the probability of each token
being selected is determined by p,,, which is fixed
to 15% in BERT and RoBERTa.

Ppra(tn) = pm, n € [1, N] (1)
3.2 Complementary Random Masking

It is straightforward to come up with an idea that
generates a pair of masked sequences from a single
sequence by random masking and applies MLM
on each masked sequence to capture token-level
similarity, and then perform sequence-level con-
trastive learning between the two sequences to cap-
ture sequence-level similarity. However, it faces a
dilemma when applying this idea: setting a small
Pm Would make the pair of masked sequences too
similar and make the contrastive learning loss drop
to 0 quickly, harming sequence-level contrastive
learning. On the other hand, setting a large p,,
would make each masked sequence collapsed, mak-
ing it hard for the model to recover the original to-
kens from “[MASK]” based on the context, which
in turn harms token-level contrastive learning.

To address this issue, we decouple the pair of
masked sequences, denoted by 7° and 7'!, and as-
sign them different masking probabilities p,,, and
pe. Specifically, we obtain 70 with a small mask-
ing probability p,,, and 7" with a larger probabil-
ity p.. Moreover, to avoid a single word being
masked by both sequences, which cripples their rel-
evance, we propose complementary random mask-
ing (CRM) to generate a pair of complementary
masked sequences which maintain a complemen-
tary relationship. Concretely, in CRM, we first gen-
erate 7° = {#9,¢9,...,#Q,} with DRM (Liu et al.,
2019b) from the original sequence 7', and generate
T with an extra constraint: the masking probabil-
ity Poras(tn) will be set to p,. if and only if tO has
not been selected in 7°. Otherwise, it will be set
to 0. The process of CRM is described in Figure 2.

pe, 12 was not selected in 79
Perm(tn) = { oo (2)

0, otherwise
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Figure 2: Demonstration of complementary random masking (CRM, in the blue box) and contrastive masked

language modeling (CMLM).

CRM is aimed to generate a complementary pair
of masked sequences: If p. = 1, all tokens that are
not selected in T will be selected in T''. Reducing
pe can soften this complementary relationship and
make the two sequences overlap increasingly.

3.3 Contrastive Masked Language Modeling

We propose contrastive masked language model-
ing, CMLM, based on CRM to realize domain
transfer by masked language modeling (MLM) and
sequence-level contrastive learning (CL) with pairs
of masked sequences. The framework of CMLM is
shown in Figure 2, which is described as follows.

Given a batch 7 = {11, T5, ..., T} of input se-
quences, we firstly apply dynamic random masking
(DRM) on each sequence T} to generate a masked
sequence 7}, and then apply CRM K times to gen-
erate Tbl, Tb2, ey TbK based on Tl? and Tj:

Ty = DRM(T}), b € [1, B] 3)

T} = CRM(Ty, Ty), k€ [ILK] (4

After obtaining K + 1 masked sequences from each
sequence 1} in 7, we then compute their represen-

tations H, f € RV*4 by using an encoder, where d
is the hidden size of the encoder:

H} = Encoder(T}), k € [0, K] (5)

Even though our approach is model-agnostic, in
this paper we focus on the Transformer-based pre-
trained language model RoOBERTa, which is an en-
hanced version of BERT. Therefore, we employ
RoBERTa to implement the Encoder(-) function.

To capture token-level similarity, We apply
MLM on H} as Devlin et al. (2019) and Liu et al.
(2019b), and compute the loss as follows:

B
1
Loty = EZMLM(H,?) (6)
b=1

To capture sequence-level similarity, we apply
contrastive learning on each H f and HY, and ob-
tain the loss term Lo, We compare two different
implementations of contrastive learning: SimCLR
(Chen et al., 2020) and SimSiam (Chen and He,
2020). For SimCLR, Ly, can be calculated as:

sim(Hf,H) /7

K B
1 e
ECL:_ E E log B B k 70 (7)
K- Bk:lb:l Zi:l eSIm(Hi JHY) /T

where 7 is a temperature parameter.

Following Gunel et al. (2021), we take the first
token representation h’g € Rlof H f to calculate
the similarity between HF and HJQ as follows.

k hY
sim(HF, HY) = i 2 ®)

75 Rl (1Rl
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SimSiam is similar to SimCLR except without
using negative pairs and has a negative loss value.
To be consistent with L£p;7,0 and Lo, we define
the loss function of SimSiam as follows:

B ZZ e~ D(z{f hO +D( zg h’C (9)

k=1b=1

ECL—

where z} and D(z, h) are defined as:
28 = Wa - gelu(Wy - h¥)
D(z,h) = sim(z, stopgrad(h)).

(10)
(1T)
Here, Wi, Wy € R are learnable parameters,
sim(-) is similar to Equation 8, and Stopgrad(-)

is a stop-gradient operation which is crucial for
SimSiam (Chen and He, 2020).

Finally, we combine L7 and Loy, for con-

trastive masking language modeling:
Lomiv = Lyim +a- Lo (12)

where « is a tunable hyper-parameter.

3.4 Relationship to Existing Approaches

Among existing approaches, the closest one to ours

is CSSL Pre-training (Fang and Xie, 2020). We

can implement CSSL Pre-training by slightly mod-

ifying Equation 3 and 12 to following ones:
TF = back(Ty), k € [0,1]

Lcsst = Lor

(13)
(14)

where back(T") means back-translation of 7. And
other equations stay the same. By comparing these
equations, we note that CMLM can be considered
as: (1) replacing back-translation with CRM, which
not only reduces the computational cost but also
prevents the model from depending on the trans-
lation systems; (2) adding L/ to implement
token-level contrastive learning, which is shown to
be crucial in Section 5.2; (3) easily extending one
pair of positive samples to K pairs, which can be
attributed to the nature of random masking.

As for the loss term, both Giorgi et al. (2020) and
Wu et al. (2020) use similar terms to ours for pre-
training: Liotq = Lviom + Lor, where Ly
captures token-level similarity and L¢y, captures
sequence-level similarity. The main difference be-
tween these methods and ours is that we use differ-
ently masked sequences from the same sequence
as a positive pair, while Giorgi et al. (2020) use
position-related segments (overlapping, adjacent or
subsumed) and Wu et al. (2020) use sequences by
different deformations as the positive pair.

4 Experiment

4.1 Tasks: GLUE

We evaluate our model on the GLUE benchmark
(Wang et al., 2018), which contains 9 natural lan-
guage understanding tasks that can be divided
into three categories: (1) single sentence tasks:
CoLA and SST-2; (2) similarity and paraphrase
tasks: MRPC, QQP, and STS-B; (3) inference tasks:
MNLI, QNLI, RTE, and WNLI. All of them are
classification tasks except STS-B, so we eliminate
it to focus on the classification tasks. WNLI has
a small development set (70 examples) and is also
ignored. MNLI contains two evaluation sets. One,
denoted as MNLLI, is from the same sources as the
training set, and the other, denoted as MNLI-MM,
is from different sources than the training set.

To simulate few-shot scenes of different degrees,
we randomly select 20, 100, and 1000 examples
respectively from these tasks as our training sets
following recent work (Gunel et al., 2021). For
each subset in each task, we sample 5 times with
replacement and obtain 15 training sets for each
task. As for the development set and test set, we
randomly select 500 examples from the original de-
velopment set as our development set and take the
remaining as our test set. Since QQP contains too
many examples (40k) in the original development
set, we randomly select 2000 from the remaining
examples after sampling our development set as
our test set. Note that all the 15 training sets in
each task share the same development and test sets.

4.2 Model: RoBERTa

As mentioned above, we take RoOBERTa to imple-
ment our encoder in Equation 5. The base version
of RoBERTa, Roberta-base, which contains 12
Transformer blocks with 12 self-attention heads,
is employed. All the blocks have the same hidden
size 768. The input sequence is either a segment or
two segments separated by a special token “[\s]”,
while “[s]” is always the first token. We take the
implementation and pre-trained weights from Hug-
gingface Transformers library (Wolf et al., 2020).

4.3 Training Details

For the fine-tuning of all approaches to be reported
below, unless otherwise specified, we use AdamW
(Loshchilov and Hutter, 2019) with a learning rate
of le-5 and epochs of 350, 100, 10 for subsets
sized 20, 100, 1000, respectively. This setting is
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CoLA SST-2 MNLI MNLI-MM QNLI RTE MRPC QQr
Metric mcc acc acc acc acc acc acc acc
data size = 20
FT 0.0751+£6.26  0.6604+6.38 0.3578+1.70 0.3652+1.96 0.6163+3.46 0.5281+4.07 0.6747+2.23 0.6777+3.67
SCL 0.1105+£8.30  0.6964+6.24 0.3684+2.85 0.3751+3.41 0.6191+3.55 0.5082+7.75 0.6631+1.15 0.6947+2.35
CSSL 0.0795+4.13  0.6609+5.98 0.3640+2.06 0.3686+2.69 0.6064+3.26 0.5264+7.10 0.6638+1.64 0.6514+2.99
TAPT 0.0860+£7.64 0.7326+4.99 0.3616+2.12 0.3689+2.40 0.6146+3.60 0.5437+5.06 0.6552+1.64 0.6584+3.33
CMLM (ours) 0.0902+8.65 0.7371+5.64 0.3633+2.15 0.3701+2.57 0.6231+3.60 0.5437+4.57 0.6586+1.41 0.6541+3.89
data size = 100
FT 0.2176£7.78 0.8405+2.71 0.4361+£2.50 0.4526+£2.94 0.6820+2.56 0.5879+4.82 0.7099+1.72 0.7511+1.72
SCL 0.2467+5.46  0.8455+1.38 0.4499+3.30 0.4627+3.84 0.6765+2.47 0.5835+6.41 0.7063+1.45 0.7461+1.63
CSSL 0.1719£7.90 0.8401+1.71 0.4185+£2.98 0.4298+3.55 0.6701+£1.89 0.5532+5.10 0.7038+1.58 0.7274+1.85
TAPT 0.2626+6.03  0.8496+2.52 0.4508+2.60 0.4682+2.80 0.6970+1.63 0.6095+6.60 0.6987+1.77 0.7429+2.13
CMLM (ours) 0.2663+6.97 0.8525+1.95 0.4530+2.75 0.4683+3.00 0.6980+1.67 0.6147+6.36 0.6933+1.90 0.7479+2.16
data size = 1000

FT 0.4216+3.13  0.8996+0.97 0.7048+1.19 0.7168+1.17 0.7681+1.07 0.7472+2.50 0.8223+1.22 0.7934+0.90
SCL 0.2758+£11.94 0.8991+£1.04 0.5020+3.81 0.5089+4.09 0.7449+1.22 0.7100+£5.44 0.7157+£6.83 0.7853+0.77
CSSL 0.4069+3.53 0.8993+1.38 0.6900+1.37 0.7048+1.39 0.7760+0.97 0.7082+5.30 0.8261+1.70 0.7881+1.00
TAPT 0.4362+3.46  0.9016+0.70 0.7074+£1.79 0.7203£1.68 0.7689+0.72 0.7524+4.06 0.8214+1.14 0.7890+0.82
CMLM (ours) 0.4374+2.06 0.9023+0.88 0.7110+2.00 0.7247+1.84 0.7719+0.91 0.7610+3.28 0.8223+0.82 0.7891+0.90

Table 1: Results on the GLUE benchmark with 20, 100 and 1000 training examples, respectively, and compared
with baseline (FT: (Liu et al., 2019b)) and several recent post-training or contrastive learning methods (SCL (Gunel
et al., 2021), CSSL (Fang and Xie, 2020), TAPT (Gururangan et al., 2020)). Unit of standard deviation is 1072,

based on previous empirical results (Zhang et al.,
2021; Mosbach et al., 2021), which show that fine-
tuning with a small learning rate and more epochs
stabilizes the performance of a model in few-shot
scenes. We set the batch size to 16 and dropout
rate to 0.1, and save model parameters every 100
update steps and pick the best based on validation.

For post-training of CMLM, we apply AdamW
with a learning rate of 1e-5 and epochs of 200, 50,
5 for subsets sized 20, 100, 1000, respectively. For
a fair comparison with other approaches, we set K
in Equation 3 to 1 and the batch size to 8, where the
maximum GPU memory usage is approximately
equal to that of fine-tuning. For the implementation
of L1, we choose SimSiam for it consumes less
computation. For p,,, in Equation 1, we follow (Liu
et al., 2019b) and set it to 0.15. We conduct a
grid-based search for hyper-parameters with o €
{0.01,0.1,0.3,0.5,0.7, 1} (Equation 12) and p, €
{0.1,0.3,0.5,0.7,0.9} (Equation 2), and find that
the combination of & = 0.5 and p. = 0.7 performs
the best on the development set.

For the baselines to be introduced below, we fol-
low the same fine-tuning and post-training settings
as our CMLM, with only several method-specific
hyper-parameters unchanged.

4.4 Baseline Approaches

As mentioned in Section 2.2 and 2.3, there have
been works trying to add extra loss terms in fine-
tuning or to insert a post-training phase in be-
tween pre-training and fine-tuning. To make a com-

prehensive comparison, we employ the follow-
ing approaches as our baselines: (1) fine-tuning
(FT) (Liu et al., 2019b), which directly fine-tunes
a model with cross-entropy loss; (2) fine-tuning
with SCL (SCL) (Gunel et al., 2021), which fine-
tunes a model with cross-entropy loss and super-
vised contrastive loss; (3) post-training with CSSL
(CSSL) (Fang and Xie, 2020), which post-trains
a model with contrastive self-supervised learning
loss; (4) post-training with MLM (TAPT) (Gururan-
gan et al., 2020), which post-trains a model with
MLM loss and is equal to CMLM when o = 0.
Comparing with recent works (Fang and Xie, 2020;
Gunel et al., 2021) that take only the conventional
either BERT or RoBERTa as their baseline, we
consider a few more baselines to obtain more con-
clusive results.

4.5 Evaluation Details

In few-shot scenes, the distribution of the training
set may deviate from the test set seriously. Gunel
et al. (2021) pick the top-3 results from all combi-
nations of training sets and model seeds for each
task. Differently, for each data size of 20, 100, and
1000 described in Section 4.1, we train our model
with random seeds {31, 42, 53} for the 5 training
subsets, and calculate the mean and standard devia-
tion of the 15 test results. We assume this is a better
way to evaluate the overall effect of our model.

4.6 Few-Shot Results

In Table 1, we report our few-shot results on the
GLUE tasks with 20, 100, and 1000 training exam-
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ples, respectively. Five observations can be made
from the table. First, CMLM obtains superior per-
formance on the datasets with 100 and 1000 ex-
amples, surpassing the baselines in 13 of 16 tasks.
Since we use the same hyper-parameters for these
approaches and report the average results over 3
random seeds and 5 randomly sampled training
sets, these results are convincing. Second, on the
dataset with 20 training examples, CMLM only sur-
passes the other approaches in 3 of 8 tasks. Train-
ing a model with only 20 examples is very unstable,
and the test results of the baseline approaches in-
deed show large deviations across different training
sets. Third, we find that post-training with only
Lyrrar Xuetal., 2019; Gururangan et al., 2020)
can achieve competitive results with the baselines,
showing the effectiveness of this widely-used ap-
proach. Fourth, SCL (Gunel et al., 2021) has ex-
tremely poor performance on CoLA, MNLI, and
MRPC when the data size is 1000, which is be-
yond our expectation. In the original paper, the
authors of SCL only report the top-3 results from
combinations of model seeds and train sets. So we
speculate this under-performance might come from
the instability of SCL in few-shot settings. Fifth,
CSSL (Fang and Xie, 2020) performs even worse
than FT when the data size is either 20 or 100 but
achieves competitive results when the data size is
1000. CSSL is designed for full-size GLUE tasks
and might not be suitable for the few-shot scenes.

4.7 Full-Size Results

To verify whether post-training with CMLM can
still achieve desirable results when sufficient la-
beled examples are available, we conduct exper-
iments on the RTE (2.5k), MRPC (3.7k), CoLA
(8.5k), SST-2 (67k), and QNLI (106k) tasks with
their full-size training sets. We set the learning rate
to 3e-5 for both post-training and fine-tuning and
set the epoch to 3. Other hyper-parameters remain
the same as in Section 4.3. Experiment results
are shown in Table 2, from which we can note that
CMLM maintains its superiority on RTE and CoLA
but fails on MRPC, SST-2, and QNLI. TAPT per-
forms better on tasks with more training examples,
which can be explained by the better generalizabil-
ity of token-level representation, though it demands
more training steps to learn well. Note that CMLM
is specifically proposed for few-shot settings, so
the experiments in the full-size setting are only to
evaluate it from different perspectives and make a
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Figure 3: Results of our model on development sets
with increasing numbers of unlabeled examples.

comprehensive comparison with baselines.

RTE MRPC CoLA SST-2 QNLI
metric acc acc mcc acc acc
data-size 2.5k 3.7k 8.5k 67k 106k
FT 0.7403 0.8623 0.5552 0.9319 0.9043
SCL 0.6753 0.7393 0.5329 0.9373 0.9002
CSSL 0.6623 0.8713 0.5217 0.9310 0.8904
TAPT 0.7403 0.8541 0.5519 0.9355 0.9063
CMLM (ours) 0.7446 0.8574 0.5714 0.9310 0.9039

Table 2: Results on the RTE, MRPC, CoLA, SST-2
and QNLI tasks with full-size training sets, and average
results over 3 random seeds are reported.

4.8 Additional Unlabeled Examples

We consider the scene where additional unlabeled
task examples are provided. We evaluate CMLM
on CoLLA, SST-2, QNLI, and MRPC with 100 la-
beled examples for fine-tuning and increase unla-
beled examples from 100 to 2500 for post-training.
We depict the results on the development sets in
Figure 3, from which two observations can be made.
First, the performance generally increases with the
number of unlabeled examples grows, showing the
helpfulness of unlabeled task examples, which is
also confirmed by Gururangan et al. (2020). Sec-
ond, there are certain fluctuations in the results. We
assume they come from the random nature of these
additional unlabeled examples, which are sampled
from a much larger training set and might severely
deviate from the original training set. Moreover, we
should acknowledge that adding more unlabeled ex-
amples in post-training gains limited improvement
compared with adding more labeled examples in
fine-tuning. Labeled examples are more treasurable
in classification learning.
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Figure 4: Results of our model on development sets
while the parameter K changes.

4.9 Hyper-parameter K

We evaluate whether increasing K (in Equation 7)
can lead to improvement of our model in the few-
shot setting. We evaluate CMLM on the CoL A,
SST-2, QNLI, and MRPC tasks with 100 training
examples by increasing K, and the results are de-
picted in Figure 4. Similar to increasing unlabeled
examples, the performance slightly improves on the
5 tasks but has some fluctuations, which is within
our expectation. Intuitively, exposing the model
to different forms of masked sequences can better
reflect the distribution of examples sampled from a
large training set, but cannot narrow the deviation
between these examples and the original train set.

5 Ablation Studies

5.1 SimCLR vs SimSiam

As described above, L¢ 1, can be implemented by
either Equation 7 or Equation 10, although we im-
plement the latter to conduct the above experiments
for its less computational cost. According to Chen
and He (2020), SimSiam performs better than Sim-
CLR on ImageNet (Deng et al., 2009). It is thus
interesting to verify whether the same holds in our
situation. We compare SimSiam (CMLM) and Sim-
CLR (w/ SimCLR) on SST-2, CoLA, QNLI and
RTE, and the results are reported in Table 3. From
the results, we cannot easily conclude which one
is better due to their comparable performances, yet
further investigation is beyond the scope of this
paper. However, we prefer SimSiam due to it con-
sumes less computation and is easier to implement.

SST-2 CoLA QNLI RTE

Metric acc mcc acc acc

data size = 100
CMLM 0.8525 0.2663 0.6980 0.6147
w/ SimCLR 0.8586 0.2511 0.6885 0.6355
w/o CL 0.8496 0.2626 0.6980 0.6095
w/o MLM 0.8280 0.2492 0.6873 0.5913
w/o CRM 0.8511 0.2621 0.6920 0.6242

data size = 1000
CMLM 0.9023 0.4374 0.7719 0.7610
w/ SimCLR 0.9041 0.4446 0.7696 0.7732
w/o CL 0.9016 0.4362 0.7689 0.7524
w/o MLM 0.8927 0.3983 0.7623 0.7039
w/o CRM 0.9013 0.4434 0.7698 0.7654

Table 3: Results of ablation study for CMLM. w/ Sim-
CLR means replacing SimSiam with SimCLR, w/o CL
and w/o MLM mean removing Lo, and Ly/p s terms
from Lo, respectively, and w/o CRM means re-
placing CRM with dynamic random masking (DRM).

5.2 Are MLM & CL Critical for CMLM?

One of the improvements of CMLM over previ-
ous works is combining L1 and Lo, to im-
plement both token-level and sequence-level con-
trastive learnings. Here, we verify how the bi-
granularity contrastive learnings contribute to the
performance differently. We remove L1 and
L alternatively from Lo and evaluate the
resulting model on SST-2, CoLLA, QNLI, and RTE
with 100 and 1000 training examples, respectively.
The results are reported in Table 3. As we can
see, the results suffer severe deterioration by up to
7.5% after removing Lr1,as, while removing Lo,
only leads to a drop by up to 1.4%. Although both
Ly and Leog, contribute to the improvement of
CMLM, MLM tends to play a more essential role.

5.3 Complementary Random Masking vs
Dynamic Random Masking

We propose a complementary random masking
(CRM) strategy to generate complementary masked
sequences T%, k € [1, K], based on T°, which is
generated by dynamic random masking (DRM).
Here, we verify whether this complementary na-
ture of 7% benefits contrastive learning. We re-
place CRM in Equation 3 by DRM, and conduct
experiments on SST-2, CoLA, QNLI and RTE with
100 and 1000 training examples, respectively. As
shown in Table 3, CRM still surpasses DRM on
all 8 tasks, with improvement by up to 1.6%. The
superiority of CRM mainly comes from fact that it
avoids tokens to be masked in both 7° and T*.
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6 Conclusion

In this paper, we proposed a novel post-training ob-
jective, CMLM, for pre-trained language models in
downstream few-shot scenes. CMLM attempts to
combine both token-level and sequence-level con-
trastive learnings for more efficient domain transfer
during post-training. For sentence-level contrastive
learning, we developed a random masking strat-
egy, CRM, to generate a pair of complementary
masked sequences for an input sequence. Empiri-
cal results show that post-training with our CMLM
outperforms other recent approaches on the GLUE
tasks with 100 and 1000 labeled training examples,
respectively. We also conducted extensive abla-
tion studies and showed that both token-level and
sequence-level contrastive learnings contribute to
the results of CMLM, and that CRM achieves favor-
able sequence-level contrastive learning over the
previous masking strategy. In future work, we will
further investigate how token-level and sequence-
level contrastive learnings affect domain transfer in
post-training and explore more effective methods
for sequence-level contrastive learning.
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