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Abstract

Event detection is a fundamental task in infor-

mation extraction. Most previous approaches

typically view event detection as a trigger-

based classification problem, focusing on us-

ing syntactic dependency structure or exter-

nal knowledge to boost the classification per-

formance. To overcome the inherent issues

with existing trigger classification based mod-

els, we propose a novel approach to event de-

tection by formulating it as a graph parsing

problem, which can explicitly model the mul-

tiple event correlations and naturally utilize

the rich information conveyed by event type

and subtype. Furthermore, to cope with data

sparsity, we employ a pretrained sequence-to-

sequence (seq2seq) model to transduce an in-

put sentence into an accurate event graph with-

out the need for trigger words. Extensive

experimental results on the public ACE2005

dataset show that, our approach outperforms

all previous state-of-the-art models for event

detection by a large margin, obtaining an im-

provement of 4.2% F1 score. The result is very

encouraging since we achieve this with a con-

ceptually simple seq2seq model; moreover, by

extending the graph structure, this proposed ar-

chitecture can be flexibly applied to more in-

formation extraction problems for sentences.

1 Introduction

Event Detection (ED) is an important task in

Information Extraction (IE) that seeks to identify

instances of specified types of events in text (Ji

and Grishman, 2008; Li et al., 2013). For example,

for the input sentence shown in Figure 1, the ED

model aims to predict three event types expressed

by this sentence, each of which consists of an

event type label and its subtype label, according to

the ACE2005 Guidelines.

* Corresponding author.

Figure 1: An example of event detection

ED is an actively studied task in IE where deep

learning models have been the dominant approach

to deliver the state-of-the-art performance (Chen

et al., 2015; Nguyen et al., 2016; Sha et al., 2018;

Chen et al., 2018). The last few years witness the

success of graph convolutional neural networks for

ED (Nguyen and Grishman, 2018; Liu et al., 2018;

Yan et al., 2019; Lai et al., 2020) where the depen-

dency trees are employed to boost the performance.

Also, another line of research focused on exploiting

external knowledge to improve classification (Lu

et al., 2019; Liu et al., 2019a; Tong et al., 2020).

Nevertheless, most previous work typically

treats ED as the identification and classification

of trigger words, focusing on using various syn-

tactic dependency structure or external knowledge

to boost classification performance. Methodologi-

cally speaking, this type of trigger-based ED mod-

els suffer from the following inherent drawbacks.

Firstly, most previous approaches depend heav-
ily on the trigger word. On the one hand, trig-

gers are nonessential to event detection (Liu et al.,

2019b); On the other hand, the identification and

classification of trigger words may, to some extent,

hinder the accurate recognition of the events, due

to the fact that some events may be expressed by

multiple discontinuous words or phrases in one

sentence (See more illustrations in Section 5.4).

Particularly, the trigger-based ED models are prone

to suffer from the long tail issue (Tong et al., 2020).

Literatures available show that, (Liu et al., 2019b)
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is the only work for ED without using trigger words.

However, in the absence of trigger, (Liu et al.,

2019b) simply cast ED as a multi-label classifi-

cation problem for input sentences, which cannot

address the inherent issues with the trigger-based

approaches, as illustrated below.

Secondly, current ED models cannot explicitly
model the correlations between multiple events
in one sentence. In fact, the multiple event phe-

nomenon has been investigated by some existing

works (Chen et al., 2018; Liu et al., 2018), which

explore to aggregate more contextual information

from surrounding words to generate a powerful

representing vector for each candidate trigger by

employing a self-attention mechanism or a hierar-

chical tagging scheme, then respectively predict

the trigger label. However, note that modeling the

associations between triggers is not equivalent to

modeling the correlations between events. That is

to say, the current models cannot explicitly model

the correlations between multiple events.

Lastly, the existing approaches cannot leverage
the hierarchical structure information of event type
and subtype. The two kinds of event type labels

contain the information with different granularity.

Intuitively, the event type-level information can be

used to guide the subtype-level classification. Fur-

thermore, the event type or subtype label itself also

conveys explicit semantic information that may be

conducive to event prediction. However, the rich in-

formation is neglected by the existing approaches.

To address the three problems stated above si-

multaneously, we take a fresh look at this problem

and formulate ED, for the first time, as a graph

parsing problem. By regarding the multiple events

expressed by one sentence as a whole, we argue

that the goal of ED task is to output an event graph,

as shown in Figure 2. On the one hand, the event

graph is constructed to model the potential inter-

actions between the multiple events; on the other

hand, this graph structure can flexibly integrate

more event type information. Furthermore, un-

der the graph parsing formulation, we employ a

seq2seq model for event graph parsing, without the

need for the identification of the trigger words. In

particular, to cope with the data sparsity problem

with the ED task, we adopt a pretrained seq2seq

model, BART (Lewis et al., 2020), to accurately

generate the event graph. Experimental results

demonstrate that our method substantially outper-

forms all previous state-of-the-art models on the

public dataset ACE2005.

To sum up, this paper makes the following con-

tributions:

1. To the best of our knowledge, it is the first

time to formulate the event detection task as

graph parsing, which delivers some typical

benefits compared to the existing ED mod-

els. First, this graph parsing formulation can

explicitly model the correlations between mul-

tiple events in one sentence; second, the event

graph can be flexibly constructed to reflect the

hierarchical structure of event type and utilize

the semantic representations of the event type

labels.

2. We further propose a novel generation-based

approach to predict the event graph via a

seq2seq model. The proposed transducer can

directly derive the events from the global con-

textual information in the input sentences,

without being limited to the representations

of trigger words. Particularly, we employ a

pretrained model, BART (Lewis et al., 2020),

to generate a linearized event graph, thereby

addressing the data sparsity.

3. The extensive experiments over the public

dataset ACE2005 demonstrate that our ap-

proach outperforms the previous state-of-the-

art models for ED by a large margin, without

using the syntactic dependency information

and any external trigger knowledge.

Encouragingly, the proposed graph parsing

paradigm is not limited to the ED task. By mod-

ifying the graph structure according to the target

task, this graph parsing formulation can be flexibly

applied to more information extraction problems,

such as event extraction, relation extraction and so

on.

2 A Novel View of Event Detection

2.1 Task Description

Event detection task requires that certain specified

types of events, which are mentioned in the anno-

tated data, to be detected. The most common used

benchmark dataset in previous work is ACE 2005

corpus. The task defines 8 event types such as Life,

Business and so on, and 33 subtypes such as At-

tack, End-Position, etc. By the ACE annotation

guideline, every event mention is annotated with a
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Figure 2: Three different event graphs constructed us-

ing the three different strategies, for the instance in Fig-

ure 1.

trigger that is a key word or phrase that most clearly

expresses the event occurrence.

2.2 Formulating ED as Graph Parsing

Traditionally, the goal of ED consists of identifying

trigger words (trigger identification) and classify-

ing them for the event types of interest (event clas-

sification) (Nguyen and Grishman, 2018; Liu et al.,

2018; Lai et al., 2020; Tong et al., 2020). However,

as pointed out by (Liu et al., 2019b), triggers are

nonessential to event detection. More importantly,

some events may be triggered by multiple discon-

tinuous words or phrases in one sentence, not by a

single word or single phrase.

Take a concrete example in ACE 2005 dataset

to illustrate: She lost her seat in the 1997 election.
In this sentence, an event type (Personnel:Elect)
is mentioned, and its gold trigger was labelled as

the word lost. In effect, to correctly recognize the

event type (Personnel:Elect) from this sentence, we

should comprehensively consider both the phrase

lost her seat and the word election in the sentence

(See more cases in Section 5.4). Therefore, it does

not seem plausible that the problem of predicting

an event from a whole sentence is reduced to the

representation learning of the single trigger word

for trigger classification or sequence labelling.

In this paper, we look at the ED task from a new

perspective. Given an input sentence, ED aims to

recognize and predict the mentioned event types.

Intuitively, the multiple events derived from the

same sentence should have a certain degree of cor-

relations between them. Therefore, to model the

correlations, we can view the multiple events corre-

sponding to a sentence as a whole, by linking them

together as a single graph, as shown in Figure 2(a).

To be specific, we first introduce a special node as

the root, and then attach each event type node as

a child of the root. It is worth to note that the root
of this event graph is not a virtual node. The root

can take two possible values: EVTS and NA. While

the input sentence does not contain any event, the

root is assigned the value NA; otherwise it is as-

signed the value EVTS. Therefore, the prediction

of root value is to judge whether the input sentence

expresses some events or not.

In addition to facilitating modeling multiple

event correlations, our graph parsing formulation

for ED also allows for the straightforward inclusion

of other types of graph-structured features. Partic-

ularly, the other typical benefits of graph parsing

formulation are as following:

• Flexibly leveraging the hierarchical structure
of event type and subtype. Previous approaches

to ED treat the event subtypes simply as 33 sepa-

rate event types and ignore the hierarchical struc-

ture between the event type and subtype. Obvi-

ously, the two kinds of type labels contain the

information with different granularity, both of

which are indicative for event detection. Fortu-

nately, our graph parsing framework allows for

reflecting the hierarchical structure information

by simply extending the event graph. A natural

node-splitting strategy can be adopted by decom-

posing one event node into two nodes: one event

type node and one subtype node, and linking

the subtype node as a child of the type node, as

shown in Figure 2(b). Compared to the single-
node strategy for event representing, as shown in

Figure 2(a), the node-splitting strategy indeed in-

troduces an effective coarse-to-fine way for event

type prediction, and therefore it is theoretically

superior to the single-node strategy.

• Naturally utilizing the semantic representa-
tion of event type label. Most previous
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classification-based approaches to ED generally

view each event type as a specific class, omitting

the semantic information conveyed by the event

type label. In fact, the event type label itself,

such as Divorce, Injure, etc, is informative to

the learning of ED models. In our graph parsing

formulation, it is straightforward to incorporate

the semantic representation of type label into the

model. Specifically, during decoding, we can

encode every previously generated node with the

corresponding type label embedding to assist the

prediction of later nodes. For example, in Fig-

ure 2(b), once the event type node Conflict is

generated, we can leverage the semantic repre-

sentation of the type Conflict to help to predict

the subtype node Attack and next type node Life.

• Reversely generating the event triggers. If the

event triggers are needed in some cases, it is

very flexible and convenient for our graph pars-

ing framework to generate the trigger words by

simply extending the event graph to yield the

triggers for every predicted events. Specifically,

we can append the trigger nodes as the children

of event type nodes in the event graph as shown

in Figure 2(c), and thus generate the trigger in

a reverse direction. That is to say, unlike the

traditional fashions in the existing trigger classi-

fication based models, we first predict the event

types from the input text, and then output the

corresponding triggers for previously predicted

event types.

3 Event Graph Parsing via a Pretrained
Seq2seq Model

Under our graph parsing formulation, the ED task

is to transduce an input sentence into an event

graph, as illustrated in Section 2. To achieve this,

we choose to predict nodes sequentially rather than

simultaneously, because (1) we believe the previ-

ous node generation is informative to the current

node prediction; (2) variants of efficient seq2seq

models (Bahdanau et al., 2014; See et al., 2017)

can be employed to model this process.

Theoretically, the advantages of applying a

seq2seq model to event graph parsing are two-fold.

First, there is no need to use trigger words for event

detection. Second, when predicting an event type

node during decoding, the global contextual in-

formation in the input sentence can be taken into

consideration by the cross-attention mechanism be-

tween the decoder and the encoder.

However, in the preliminary research experi-

ments, the generic seq2seq event detection ap-

proaches did not obtain satisfactory performance.

The main reason may be that the seq2seq-based

approaches are generally data-hungry. Especially,

for the ED task based on the benchmark dataset

ACE 2005, data sparsity may be the significant

challenge.

To deal with sparsity, we explore to employ

transfer learning by exploiting BART (Lewis et al.,

2020) to generate a linearized event graph incre-

mentally. BART is a Transformer-based encoder-

decoder model which is pretrained through a de-

noising self-supervised task, and has shown sig-

nificant improvements in conditioned generation

tasks, especially gaining state-of-the-art results

on summarization. For given input sentence, our

event graph generation is, to some extent, similar

to the abstractive summarization task. We there-

fore hypothesize that BART’s denoising pretraining

should be suitable for this task.

While applying BART to event graph parsing,

we first need to create the reference node list by a

depth-first traversal over the gold event graph for

training. In the preliminary experiments, we found

that the labels of edges (e.g. EVT-1, SUB, etc.) are

not informative to event detection; we therefore

omit these labels while linearizing the event graph.

For example, in Figure 2(b), the linearization or-

der contains EVTS, Business, End-Org, Conflict,
Attack, Life, Die.

Furthermore, we augment the vocabulary of

BART with some special symbols in order to make

it suitable for event detection. For example, we first

expand the vocabulary by adding the root value

(EVTS or NA) in the graph; then for some special

event subtype, such as Start-Org and End-Position,

we need to append these subtype labels to the vo-

cabulary. Additionally, we need to expand the em-

bedding matrices of encoder and decoder to include

the average of the subword constituents of each spe-

cial label.

For decoding in testing phase, we design a con-

strained beam search algorithm to generate the

node sequence incrementally, as illustrated in Al-

gorithm 1. Note that each particular event subtype

is subject to the event type constraints. Apparently,

this constrained decoding algorithm performs the

prediction of event type nodes in a coarse-to-fine

fashion, and can ensure to generate a valid event

graph.
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Algorithm 1: Constrained beam search

score = 0, Y = {BOS};
beam = {Y, score};
for i = 1 to maxlen do

new beam = {};
{Y, score} = beam.pop();
if i==1 then

if P (EV TS)<P (NA) then
break;

else if i==2 then
for vi in type set do

Y = Y ∪ vi, score+ = P (vi);
new beam.push({Y, score});

else
last token = Y[i-1];
if last token==EOS then

new beam.push({Y, score});
continue;

else if last token in type set then
for vi in constrained subtype set do

Y = Y ∪ vi, score+ = P (vi);
new beam.push({Y, score});

else
set = type set+ {EOS};
for vi in set do

Y = Y ∪ vi, score+ = P (vi);
new beam.push({Y, score});

beam = new beam.topK();

{Y, score} ← beam.topK(k = 1);

4 Experiments

4.1 Dataset and Evaluation Metrics

We utilized the ACE 2005 corpus as our dataset.

For comparison, as the same as previous work (Ji

and Grishman, 2008; Liao and Grishman, 2010;

Hong et al., 2011; Li et al., 2013), we used the

same test set with 40 newswire articles and the

same development set with 30 other documents

randomly selected from different genres and the

rest 529 documents are used for training.

Also, following previous work (Liao and Grish-

man, 2010; Li et al., 2013; Chen et al., 2015; Liu

et al., 2019a; Tong et al., 2020), we use the follow-

ing criteria to evaluate the results:

Precision: the proportion of correctly predicted

events in total predicted events.

Recall: the proportion of correctly predicted events

in total gold events of the dataset.

F1-measure:2∗P∗R
P+R

4.2 Hyperparameters

The hyperparameters are tuned on the validation set.

For all the experiments, we use the same model hy-

perparameters as BART-Large, as defined in Hug-

gingface’s transformers library. The models are

trained using cross-entropy with RAdam as opti-

mizer and a learning rate of 5 ∗ 10−5. Gradient is

accumulated for 10 batches. Dropout is set to 0.25.

Our models are trained for 80 epochs, the batch

size in our training experiments is set to 300. For

decoding, we set beam size to 5 and the constant

maxlen to 20.

4.3 Overall Performance

In this section, we comprehensively compare our

performance with the following state-of-the-art

methods:

JRNN proposes a joint event extraction model

based on recurrent neural network to improve

ED (Nguyen et al., 2016).

DLRNN exploits document information via recur-

rent neural networks (Duan et al., 2017).

TBNNAM is the first work on detecting events

without triggers (Liu et al., 2019b).

GCN-ED uses an argument pooling mechanism

for event detection based on GCN (Nguyen and

Grishman, 2018).

JMEE uses GCN with highway network and self-

attention (Liu et al., 2018).

MOGANED is an advanced graph neural network

(GNN) model. It proposes a multi-order graph

attention network to effectively model the multi-

order syntactic relations in dependency trees and

improve ED (Yan et al., 2019).

EE-GCN simultaneously exploits syntactic struc-

ture and typed dependency label information to

perform ED (Cui et al., 2020).

GatedGCN proposes a novel gating mechanism to

filter noisy information in the hidden vectors of the

GCN models for ED (Lai et al., 2020).

Lu’s DISTILL proposes a -learning approach to

distill generalization knowledge to handle overfit-

ting (Lu et al., 2019).

TS-DISTILL exploits the entity ground-truth and

uses an adversarial imitation based knowledge dis-

tillation approach for ED (Liu et al., 2019a).

EKD leverages the wealth of the open-domain trig-

ger knowledge to improve ED (Tong et al., 2020).

Table 1 shows the overall performance compari-

son between our best system and the above state-

of-the-art models. In Table 1, we roughly divide

the state-of-the-art methods into three groups: data-

driven methods, syntactic dependency enhanced
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Method Precision Recall F1

JRNN 66.0 73.0 69.3

DLRNN 77.2 64.9 70.5

TBNNAM* 76.2 64.5 69.9

GCN-ED† 77.9 68.8 73.1

JMEE† 76.3 71.3 73.7

MOGANED† 79.5 72.3 75.7

EE-GCN† 76.7 78.6 77.6

GatedGCN† 78.8 76.3 77.6

Lu’s DISTILL∧ 76.3 71.9 74.0

TS-DISTILL∧ 76.8 72.9 74.8

EKD†∧ 79.1 78.0 78.6

Ours 83.2 82.4 82.8

Table 1: Overall Performance on ACE2005 dataset

(%). The results of baselines are adapted from their

original papers. † indicates that the method uses de-

pendency structures, ∧ indicates that the method uses

external knowledge and resources, * indicates that the

method does not need triggers.

methods and knowledge enhanced methods. Addi-

tionally, TBNNAM is the only work that does not

use trigger for ED, similarly to our work.

From Table 1, we can see that our approach that

adopts the node-splitting strategy to construct the

event graph achieves the best Precision, Recall and

F1 score among all the compared methods. It is

worth noting that our model simultaneously signif-
icantly improves both Precision and Recall with-
out using any additional information including the
POS tags, the syntactic dependency and external
knowledge, which shows the superiority of the pro-

posed graph parsing formulation for ED.

5 Analysis

5.1 Effect of Exploiting the Event Type
Information

Unlike previous models, our graph parsing formu-

lation can flexibly incorporate the rich information

conveyed by the event types into the event graph,

including the hierarchical structure of event type

and the semantic representation of the type label.

In this section, we prove the effect of exploiting the

event type information by the ablation test.

First, we compare the two different strategies for

constructing the event graph, i.e. the single-node
strategy and node-splitting strategy (as illustrated

in Section 2). As expected, the node-splitting strat-

egy that uses the hierarchical structure information

significantly outperform its counterpart, as shown

in Table 2.

Next, we verify the effect of the semantic repre-

sentation of the type label by treating every label of

event type or subtype as a special symbol, not us-

ing their word embedding learned in the pretrained

language model. From the results in Table 2 we

can observe that, ignoring the semantic representa-

tion of type label leads to a significant performance

drop, especially for the node-splitting strategy.

Method P R F1

Single-node strategy(-) 80.0 76.0 78.0

Single-node strategy 76.8 81.0 78.8

Node-splitting strategy(-) 79.0 78.8 78.9

Node-splitting strategy 83.2 82.4 82.8

Table 2: Performance comparison of differently struc-

tured event graphs with or without label embeddings.

The symbol - indicates that the method does not use

type label embeddings.

5.2 Effect of Multiple Event Recognition
Compared to the existing work, our ED approach

provides a more natural formulation to model the

multiple event correlations. To evaluate the ef-

fect of our approach to the multiple event recogni-

tion, we divide the test data into two parts (1/1 and

1/N) following previous work (Chen et al., 2015;

Nguyen et al., 2016), and perform evaluations sep-

arately. 1/1 means that one sentence only has one

event; otherwise, 1/N is used. Table 3 illustrates the

performance (F1 scores) of DMCNN (Chen et al.,

2015), JRNN (Nguyen et al., 2016), JMEE (Liu

et al., 2018) and HBTNGMA (Chen et al., 2018),

the four baseline models and our model for ED

task. As shown in Table 3, our model significantly

outperforms all the other methods. In the 1/N data

split, our method is 9.8% better than the best base-

line, JMEE. The experimental results demonstrate

that our method works well on the task of multiple

event recognition.

5.3 Effect of Pretrained Seq2seq Model
In this section, we inspect the effect caused by

the pretrained seq2seq model, BART. For this end,

we implemented a traditional seq2seq event graph

parsing system as baseline, by adopting the pointer-

generator network (See et al., 2017), and using

BERT embeddings (Devlin et al., 2019) to encode
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Method 1/1 1/N all

DMCNN 74.3 50.9 69.1

JRNN 75.6 64.8 69.3

HBTNGMA 78.4 59.5 73.3

JMEE 75.2 72.7 73.7

Ours 83.1 82.5 82.8

Table 3: Performance comparison on single event sen-

tences (1/1) and multiple event sentences (1/N).

the words. And the experimental results are illus-

trated in Table 6. We can see that, compared to

most state-of-the-art models as shown in Table 1,

this baseline obtains a competitive result. How-

ever, BART-based model can further substantially

improve F1 score by 6.6%, which indicates the im-

portance of the pretrained seq2seq for tackling data

sparsity.

Method P R F1

Pointer-generator-based 81.2 71.8 76.2

BART-based 83.2 82.4 82.8

Table 4: Performance of test set with or without pre-

trained seq2seq model.

5.4 Analysis of Cross-Attention Mechanism

In the absence of trigger words, can our

Transformer-based seq2seq event detection frame-

work capture the key clues in the source sentence

that express the target event type? In this section,

we answer this question by the case study.

Figure 3 presents several examples of the atten-

tion distributions learned by our model. In the

first case, the target event type is Life:Die and the

gold trigger is the word killed. We can see that

when predicting this event type, our attention not

only successfully attend the trigger word killed, but

also attend another strongly indicative phrase two
people with higher score. In the second case, the

target event type is Conflict:Attack, and the gold

trigger is the word strike. It can be observed that,

the three words: destroyed, houses and killed are

assigned with higher attention scores than the trig-

ger strike, which seems plausible for this target

type prediction. In the third case, the target event

type is Personnel:Elect, and the gold trigger is the

word lost. For this target type, there are relatively

strong connections with the phrase lost her seat
and another indicative word election.

These cases demonstrate that, though the triggers

are not used in our model, the cross-attention mech-

anism between the decoder and encoder can learn

to automatically and accurately capture the corre-

lation between the target event type and multiple

indicative words or phrases in the source sentence.

5.5 Can Our Approach Alleviate the Long
Tail Issue?

The trigger-based event detection models generally

suffer from the long tail issue (Lu et al., 2019; Tong

et al., 2020). Taking the benchmark ACE2005 as

an example, trigger words with frequency less than

5 account for 78.2% of the total. The long tail issue

makes the trigger-based models perform poorly

on unseen/sparsely labeled trigger words. In this

section, we evaluate whether our approach could

cope with the long tail issue.

Following previous work (Tong et al., 2020), we

divide the event instances in the test set into three

categories: Unseen, Sparsely-Labeled and Densely-
Labeled, according to their trigger frequency in the

training set. Specifically, the frequency of Sparsely-

Labeled is less than 5 and the frequency of Densely-

Labeled is more than 30. Also, following the

work (Tong et al., 2020), we choose the following

Figure 3: Visualization of cross-attention scores of sample instances learned by our model.
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baselines for comparison: (1) DMBERT (Chen

et al., 2015), (2) DGBERT (Chen et al., 2017), (3)

BOOTSTRAP (He and Sun, 2017), and (4) the

method EKD (Tong et al., 2020).

As shown in Table 5, our approach substantially

outperforms all baselines in all three settings, espe-

cially on unseen (+12.9%) and sparsely-labeled set-

tings (+4.8%). Why can our approach effectively

mitigate the long tail issue? Besides the better gen-

eralization endowed by our seq2seq event graph

parsing formulation, an important possible reason

is that since our approach adopts a trigger-free way

to detect the events, the event types corresponding

to the unseen or sparsely-labeled triggers can also

be expressed with other different triggers and thus

appear many times in the training set, thereby al-

leviating the long tail problem. The experimental

results clearly indicate that, the trigger-free ED ap-
proach may be a better alternative to the traditional
trigger-based models.

5.6 Effect of the Generation of Event
Triggers

In this section, we investigate the performance of

the trigger generation. As mentioned in Section 2.2,

our graph parsing framework can also conveniently

generate the event triggers by simply appending the

trigger nodes as the children of event type nodes in

the event graph, as shown is Figure 2(c). The exper-

imental results of trigger generation are illustrated

in Table 6.

P R F1

event type evaluation 80.6 84.5 82.5

event trigger evaluation 78.1 81.8 80.0

Table 6: Performance of event trigger generation.

We can observe that the F1-score of event type

evaluation achieves 82.5%, remaining almost un-

changed as the result of 82.8% shown in Table

1, and that the F1-score of trigger recognition

achieves 80.0%, significantly outperforming the

existing trigger classification based models.

6 Related Work

6.1 Event Detection
In earlier ED studies, the traditional feature-based

methods focused on exploiting the lexical and

global features to detect events (Ji and Grishman,

2008; Li et al., 2013). Most recent works have

focused on using neural networks in this task and

have achieved significant progress. We roughly di-

vide the recent approaches into three categories as

following:

Sequence-based models: This line of research op-

erates on the word sequences using the deep neu-

ral networks. (Chen et al., 2015) devises a dy-

namic multi-pooling convolutional neural network

to capture more information. (Nguyen et al., 2016)

presents a joint model based on bidirectional RNN

for event extraction. (Sha et al., 2018) adds depen-

dency arcs with weight to BiLSTM to make use

of tree structure and sequence structure simultane-

ously. (Chen et al., 2018) exploits a hierarchical

and bias tagging networks to detect multiple events

collectively.

GCN-based models: This line of research adopts

the Graph Convolutional Network (GCN) over the

dependency tree of a sentence to boost the per-

formance. (Nguyen and Grishman, 2018) is the

first attempt to use GCN in ED. (Liu et al., 2018)

employs a syntactic GCN and a self-attention mech-

anism to model multiple events extraction. (Yan

et al., 2019) improves GCN by combining multi-

order word representation from different GCN lay-

ers.

Knowledge Distillation-based models: More re-

cently, some approaches focus on leveraging vari-

ous external knowledge to improve classification.

Method
Unseen Sparsely Labeled Densely Labeled

P R F1 P R F1 P R F1

DMBERT 66.7 45.9 54.4 74.4 70.7 72.5 84.8 83.5 84.1

DGBERT 76.5 42.6 54.7 75.7 70.1 72.8 85.9 83.8 84.3

BOOTSTRAP 73.7 45.9 56.6 76.0 71.3 73.6 90.6 83.5 86.9

EKD 79.0 52.0 62.7 80.8 72.4 76.4 92.5 82.2 87.1

Ours 92.2 64.1 75.6 87.9 75.5 81.2 85.7 90.6 88.1

Table 5: Performance comparison on the unseen, sparsely-labeled and densely-labeled settings.
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(Lu et al., 2019) proposes a new representation

learning framework to distill both discrimination

and generalization knowledge for ED. (Liu et al.,

2019a) uses an adversarial imitation based knowl-

edge distillation approach for ED. (Tong et al.,

2020) proposes an enrichment knowledge distilla-

tion model to leverage external open-domain trig-

ger knowledge to address the long-tail issue.

Unlike the existing ED models based on trigger

classification, we formulate ED as a novel graph

parsing problem, therefore it can explicitly model

the multiple event correlations and incorporate the

rich information regarding the event types.

6.2 Prertained Seq2seq Models

Pre-training a universal model and then fine-tuning

the model on a downstream task have recently be-

come a popular strategy in the field of natural lan-

guage processing (Devlin et al., 2019). Recent

studies also propose approaches to pre-training

seq2seq models, such as MASS (Song et al., 2019),

PoDA (Wang et al., 2019), PEGASUS (Zhang

et al., 2019), BART (Lewis et al., 2020), and

T5 (Raffel et al., 2019)

In this paper, our experiments only examine

BART. We leave explorations of these models for

future work.

7 Conclusion

This paper presents the first work to formulate ED

as a graph parsing task, and to introduce a novel

generation-based method to predict event graph by

using a pretrained seq2seq model. Our approach

is conceptually simple and does not use syntac-

tic dependency information and any other extra

knowledge; however, it significantly outperforms

the traditional trigger classification-based encoder-

only approaches, advancing the state of the art in

event detection.

In future work, we will integrate the syntactic

dependency structure and external knowledge into

our model to further improve the ED performance;

in particular, we will explore to extend our graph

parsing architecture to more IE problems, such as

event extraction, relation extraction and so on. For

example, by adding the event argument nodes to

the event graph and linking them as the children

of event type nodes, the event extraction problem

should be solved in a similar way.
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