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Abstract

This paper studies how to automatically gen-
erate a natural language text that describes the
facts in knowledge graph (KG). Considering
the few-shot setting, we leverage the excel-
lent capacities of pretrained language models
(PLMs) in language understanding and gener-
ation. We make three major technical contri-
butions, namely representation alignment for
bridging the semantic gap between KG encod-
ings and PLMs, relation-biased KG lineariza-
tion for deriving better input representations,
and multi-task learning for learning the cor-
respondence between KG and text. Exten-
sive experiments on three benchmark datasets
have demonstrated the effectiveness of our
model on KG-to-text generation task. In par-
ticular, our model outperforms all compari-
son methods on both fully-supervised and few-
shot settings. Our code and datasets are avail-
able at https://github.com/RUCAIBox/

Few-Shot-KG2Text.

1 Introduction

Knowledge graphs (KGs), such as Wikidata and
DBpedia, are essential for many natural language
processing (NLP) applications (Ji et al., 2020). To
understand the structured information in KG, the
task of KG-to-text generation has been proposed to
automatically generate a descriptive text for a given
knowledge graph (Koncel-Kedziorski et al., 2019;
Ribeiro et al., 2020a). Figure 1 illustrates a KG
with the corresponding descriptive text, in which
the nodes (e.g., Stan Lee and Iron Man) represent
entities and the edges (e.g., creator and alias) de-
scribe the relations between connected entities.

In recent years, with the help of crowdsourcing
platforms and information extraction (IE) systems,
large-scale labelled pairs of KG and its descrip-
tive text have been created, such as WikiBio (Le-
bret et al., 2016) and WebNLG Challenge (Gardent
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Iron Man is a fictional superhero
who wears a suit of armor. He was
created by writer Stan Lee, and
designed by artists Jack Kirby   .
Iron Man's alter ego is Tony Stark.
He has found the superhero team the
Avengers alongside Thor. 

Entity mentionKG Descriptive Text

Figure 1: A knowledge graph (subgraph) with its de-
scriptive text. The underlined words represent the con-
text keywords about entities.

et al., 2017). Based on these datasets, data-driven
models have shown impressive capabilities to pro-
duce informative and fluent text for a given KG (Lo-
gan et al., 2019; Moryossef et al., 2019). However,
due to the great expense in annotation process, it
is not always feasible to generate large-scale la-
belled datasets for a variety of domains in practice.
Motivated by this, we propose to study the task of
few-shot KG-to-text generation that aims to pro-
duce satisfactory output text given only a handful
of (several hundred) labelled instances.

To fulfil this task, we need to fully understand
the complicated semantic relations between enti-
ties from various domains, which is challenging
with limited labelled data. Our solution is inspired
by the excellent few-shot capabilities of pretrained
language models (PLMs) on language understand-
ing and generation tasks (Brown et al., 2020; Chen
et al., 2020; Li et al., 2021a). Pretrained on the
large-scale corpora, PLMs encode vast amounts of
world knowledge into their parameters (Li et al.,
2021b), which is potentially beneficial to under-
stand and describe the KG facts in our task.

However, applying PLMs to few-shot KG-to-
text generation still faces two challenges. First,
PLMs are usually pretrained on natural language
text, while the KG inputs for our task are structured
graphs. This semantic gap makes it difficult to
effectively inject KG representations into PLMs
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especially with limited labelled instances. Second,
unlike many other text generation tasks, KG-to-text
generation requires faithful generation based on the
understanding of KG facts. It needs to learn an
accurate semantic correspondence between input
KG and output text, which will be more difficult in
few-shot settings.

To address the above issues, in this paper, we pro-
pose a few-shot KG-to-text generation model based
on PLMs. There are three major technical contri-
butions in our model. First, in order to bridge the
semantic gap, we enforce the representation align-
ment by learning the correspondence between KG
representations (encoded by graph neural networks)
and PLM-based entity representations. Second, to
feed KG into PLMs, we propose a relation-biased
breadth-first search (RBFS) strategy to linearize
KG into a well-planned entity sequence. Finally,
we jointly train the primary text generation task
and an auxiliary KG reconstruction task under the
framework of multi-task learning. This step further
enhances the semantic correspondence between in-
put KG and output text, based on which our model
can generate faithful text about KG.

To the best of our knowledge, we are the first
study to investigate PLMs for few-shot KG-to-text
generation. Extensive experiments on three bench-
mark datasets demonstrate the effectiveness of our
few-shot KG-to-text generation model.

2 Related Work

In this work, we mainly focus on generating text
from knowledge graphs using PLMs.

KG-to-Text Generation. Early works mainly cen-
tered around statistical methods, applying grammar
rules to generate text (Konstas and Lapata, 2013;
Flanigan et al., 2016). Recently, neural based ap-
proaches have been proposed to generate text from
linearized KG triples (Gardent et al., 2017), how-
ever, unable to model structural information about
KG. Many works explored how to encode the graph
structure using Graph Neural Networks (GNNs) or
Transformers explicitly. Koncel-Kedziorski et al.
(2019) leveraged a graph Transformer encoder to
compute node representations by attending over
local neighborhoods via self-attention. In contrast,
Ribeiro et al. (2020a) focused on combining global
and local message passing mechanisms based on
GNNs, capturing complementary graph contexts.
Guo et al. (2020) presented an unsupervised train-
ing method that can iteratively back translate be-

tween the text and graph data. Different from them,
we explore how to utilize large PLMs for few-shot
KG-to-text generation.

Pretrained Language Model. Recent years have
witnessed prominent achievement of PLMs in NLP
tasks (Devlin et al., 2019; Radford et al., 2019).
Pretrained on massive corpora, pretrained models
showcase unprecedented generalization ability to
solve related downstream tasks (Li et al., 2021b).
However, most of existing PLMs were conditioned
on text data (Radford et al., 2019; Lewis et al.,
2020), lacking consideration of structured data
input. Ribeiro et al. (2020b) proposed to utilize
PLMs for KG-to-text generation by randomly lin-
earizing graph into a sequence of triples. While,
these methods do not explicitly model the structural
relations of KG, which is critical for generating
faithful text. Our work aims to consider the KG
structure and bridge the semantic gap between KG
encodings and PLMs.

3 Problem Formulation

KG-to-text generation (Ribeiro et al., 2020a) aims
to automatically generate a natural language text
that describes the facts in KG.

Formally, the input KG consists of a set of triples,
denoted as G = {〈e, r, e′〉|e, e′ ∈ E , r ∈ R},
where E and R denote the entity set and relation
set, respectively. A triple 〈e, r, e′〉 denotes the fact
that relation r exists between head entity e and tail
entity e′. Note that the input KG is a small and com-
pact subgraph extracted from large-scale knowl-
edge graphs (e.g., DBpedia). Following Koncel-
Kedziorski et al. (2019), a text describing the input
KG is usually available in this task. Let V denote
the vocabulary. The target is to generate a natural
language text Y = 〈w1, ..., wj , ..., wT 〉(wj ∈ V)
that represents the correct and concise semantics of
entities and their relations in the given knowledge
graph. The text contains a set of entity mentions
M = {me|me = 〈e, se, oe〉, e ∈ E}, where e is
the target entity, se and oe are the start and end
indices of this mention in text Y , respectively. In
other words, 〈wse , ..., woe〉 specially corresponds
to entity e. For entities with multiple mentions in
text, we only keep the first mention of each entity
inM. By replacing each word of mentions with
the token “[MASK]”, we can obtain a masked text,
denoted as Y[mask], which is also taken as input for
representation alignment in Section 4.1.

In practice, it is difficult to collect massive pairs
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Figure 2: Overview of our proposed model. “RA” and
“BP” denote representation alignment and back propa-
gation, respectively. We organize the PLM into lower
layers and higher layers. The former provides PLM-
based entity representations for alignment with KG en-
codings, and the latter acts as a decoder for generating
text and reconstructing KG facts. After representation
alignment, KG embeddings can be directly fed into the
higher layers of PLMs for generating text.

of KG and its descriptive text for training. In this
paper, we study the task of few-shot KG-to-text
generation with a handful of training instances (e.g.,
200 instances) based on a given PLM (e.g., GPT-2).

4 Approach

For our task, two major challenges are how to
learn effective input representations and capture
the semantic correspondence between KG and text.
To address the two challenges, we propose three
major technical contributions, namely representa-
tion alignment between KG encodings and PLMs,
relation-biased BFS strategy for KG linearization,
and multi-task learning with KG reconstruction.
Figure 2 presents an illustrative overview of our
model. Next we will describe each part in detail.

4.1 Representation Alignment

Unlike previous works (Ribeiro et al., 2020b; Yang
et al., 2020) that directly transform KG into text se-
quence, we employ graph neural network (GNN) as
knowledge graph encoder to explicitly encode en-
tity relations in KG. Based on the input KG, GNN
would produce a set of entity embeddings, which

can be regarded as the input word embeddings of
PLM for generating text. However, the GNN-based
entity embeddings and the PLM-based word (en-
tity) embeddings come from two distinct semantic
spaces. To bridge such a semantic gap, we pro-
pose a representation alignment method to align
the GNN-based and PLM-based entity embeddings
in different semantic spaces.

KG Encoder. The GNN-based KG encoder aims
to generate entity embeddings for KG. Let ve ∈
RdE denote the entity embedding for a general en-
tity e in KG, where dE is the embedding size. In
our work, the entity embeddings are shared across
different KGs and initialized with pretrained KG
embeddings (Yang et al., 2015). We apply R-
GCN (Schlichtkrull et al., 2018) to generate entity
embeddings by leveraging multi-relational infor-
mation in KG. Then, the embedding of entity e at
the l + 1-th layer of R-GCN can be computed as:

v(l+1)
e = σ(

∑
r∈R

∑
e′∈N r

e

W (l)
r v

(l)
e′ +W

(l)
0 v(l)

e ), (1)

where W
(l)
0 and W

(l)
r are trainable matrices, and

N r
e = {e′|〈e, r, e′〉, 〈e′, r, e〉 ∈ G} denotes the set

of neighbors of entity e under relation r. Finally,
after stacking L times, the output entity embedding
v
(L)
e from the last R-GCN layer is used as the final

entity embedding ṽe.
Note that, we represent an entity as a set of nodes.

For instance, the entity Iron Man in Figure 1 will
be represented by two nodes: one for the token
Iron and the other for the token Man. This would
enhance the generalization ability of KG encoder
on unseen entities, since it learns entity embeddings
at the token level.

Text Encoder. To obtain the PLM-based entity
embeddings, we feed the masked text Y[mask] into
the text encoder, i.e., the lower layers of PLM. As
shown in Figure 1, compared with short entity men-
tions, the masked text contains rich context infor-
mation about entities. Therefore, similar to masked
language model (Devlin et al., 2019), the embed-
dings of masked text can be computed as:

〈v̂w1 , ..., v̂wT 〉 = Lower-Layers(Y[mask]), (2)

where the entity mention me corresponds to the
embedding sequence 〈v̂wse

, ..., v̂woe
〉 and the PLM-

based entity embedding v̂e can be computed by an
average pooling over this embedding sequence.
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To bridge the semantic gap, we model the repre-
sentation alignment by minimizing the Euclidean
distance in semantic space between the GNN-based
and PLM-based entity embeddings as:

LRA =
∑
e∈E
‖ṽe − v̂e‖2, (3)

where ṽe and v̂e are GNN-based and PLM-based
entity embeddings, respectively.

With representation alignment, the GNN-based
entity embeddings can be aligned with the PLM-
based entity embeddings in semantic space, which
enables us to effectively inject KG representations
into PLM for improving generation quality.

4.2 Knowledge Graph Linearization
To feed the KG into decoder (i.e., the higher lay-
ers of PLM), we need to linearize KG into an en-
tity sequence. Previous work (Yang et al., 2020;
Ribeiro et al., 2020b) usually relies on random or
pre-defined rules, which is not flexible to model
KG structures. Here, we propose to utilize breadth-
first search (BFS) strategy to traverse KG. BFS, a
graph traversal algorithm, starts at the root node
and explores all the nodes at the present layer be-
fore moving on to the nodes at the next depth layer1.
Here, we assume that nodes at the same layer po-
tentially express relevant semantics and should be
placed in close positions of the entity sequence.

Furthermore, we observe that some relations are
often lexicalized before others, e.g., the nationality
of a person often precedes the birthplace in descrip-
tive text. Considering such relation priority, in this
paper, we propose a relation-biased breadth first
search (RBFS) strategy to traverse and linearize
KG into entity sequence. Specifically, we first com-
pute RBFS weights αe′ for each entity e′ based on
their relations as:

αe′ = σ(ṽ>e W
(L)
r ṽe′), 〈e, r, e′〉 ∈ G, (4)

where W
(L)
r is a relation matrix from Eq. 1. Then,

for two sibling entities e′ and e′′ at the same layer,
we traverse e′ before e′′ if αe′ is greater than αe′′ ,
and vice versa. Finally, through RBFS, we can
obtain a linearized entity sequence taken as input
of the decoder for text generation.

4.3 KG-enhanced Multi-task Learning
After obtaining the linearized entity sequence, we
next take it as input and perform text generation.

1https://en.wikipedia.org/wiki/Breadth-first_search

Different from other text generation tasks, KG-to-
text generation aims to generate text reflecting the
concise facts in KG. Inspired by Liu et al. (2019),
we incorporate an auxiliary KG reconstruction task
to reconstruct the facts in KG for learning the se-
mantic correspondence between text and KG.

Text Generation. The text generation task is per-
formed upon the higher layers of PLM. The objec-
tive is to maximize the likelihood of the reference
text, which is equivalent to minimize the negative
log-likelihood as:

LLM = −
T∑

j=1

log pgen(wj |w1, ..., wj−1;G), (5)

where pgen is the generative probability from PLM.
Besides, in KG-to-text generation, some tokens in
descriptive text correspond to KG entities shown
in Figure 1. The ability to copy entities from KG
would enrich the generated text content, which can
be achieved by the pointer generator (See et al.,
2017). By feeding the hidden states of PLM and
the token embedding, the copy probability pjcopy of
the j-th token wj can be computed as:

pjcopy = σ(W1sj +W2vwj + bcopy), (6)

where W1, W2, and bcopy are trainable parameters,
vwj is the embedding of tokenwj , and sj is the j-th
hidden state from the top layer of PLM. Then, we
explicitly “teach” our model how to switch between
generation and copy via the copy loss as:

LPG =
∑
wj

pjcopy +
∑
wk

(1− pkcopy). (7)

Our intuition is aimed at minimizing the copy prob-
ability pjcopy of token wj (generated from vocabu-
lary) and maximizing the copy probability pkcopy of
token wk (copied from KG entities).

KG Reconstruction. Following Song et al. (2020),
we formalize the KG reconstruction task as pre-
dicting the relations between any two entities. In
detail, given a head entity e and a tail entity e′ in
generated text, we can obtain the hidden states of
their mentions from the top layer of decoder, i.e.,
〈sse , ..., soe〉 and 〈sse′ , ..., soe′ 〉. Then, the entity
hidden states he and te′ can be computed by an
average pooling over their mention hidden states.
The probability for a relation r is calculated as:

p(r|e, e′) = softmax(W3[he; te′ ;he � te′ ] + b2),
(8)
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where W3 and b2 are trainable parameters. The
loss for reconstructing KG is also defined as the
negative log-likelihood of all target triples in KG:

LGR = −
∑

〈e,r,e′〉∈G

log p(r|e, e′). (9)

By incorporating the KG reconstruction task, our
model is able to capture the semantic correspon-
dence between input KG and output text, which
further improves generating faithful text.

Finally, the total training loss consists of text gen-
eration loss LLM (Eq. 5), copy loss LPG (Eq. 7),
representation alignment loss LRA (Eq. 3) and KG
reconstruction loss LGR (Eq. 9) as:

Ltotal = LLM+λ1LPG+λ2LRA+λ3LGR, (10)

where λ1, λ2 and λ3 are combination coefficients.

4.4 Discussion and Learning
In this part, we present the model discussion and
the model optimization.

Few-shot Learning. In few-shot KG-to-text gen-
eration, the key lies in how to bridge the semantic
gap between KG and PLMs with limited dataset.
To achieve this goal, we first utilize representation
alignment in Section 4.1 to align the semantic space
between KG encodings and PLMs, and then intro-
duce a KG reconstruction task in Section 4.3 to
further learn the semantic correspondence between
input KG and output text. Besides, we observe that
KG entities are often multi-word expressions. To
deal with unseen entities in few-shot learning, we
employ the Byte Pair Encoding (BPE) (Sennrich
et al., 2016) and sub-word vocabulary (Radford
et al., 2019) to split entity words into smaller se-
mantic units. Our work is also empowered by the
excellent few-shot capacities of PLMs with vast
amounts of world knowledge learned from large-
scale corpora.

Optimization. For PLM, we employ BART-Large
model (Lewis et al., 2020). Specially, we adopt the
first 6 layers of BART encoder as the lower layers,
and the remaining 6 layers of BART encoder and
BART decoder as the higher layers. Note that, the
target text and text encoder will not be used at
test time. In particular, the target text is just used
at training time and encoded as PLM-based entity
embeddings for representation alignment, while the
alignment is not needed at test time. We optimize
all parameters according to the total loss in Eq. 10

Dataset #Train #Valid #Test #Relations

AGENDA 29,720 1,000 10,000 42
WebNLG 7,362 1,389 5,427 107
GenWiki 48,020 1,000 10,000 250

Table 1: Statistics of three datasets.

with the OpenAI AdamW optimizer (Loshchilov
and Hutter, 2019). The learning rate, batch size, R-
GCN layers and embedding size are set to 1e-5, 20,
2 and 1024, respectively. The weights λ1, λ2 and
λ3 in Eq. 10 are set to 0.7, 0.5 and 0.5, respectively,
according to performance on validation set. During
inference, we apply the beam search method with
a beam size of 8.

5 Experiments

In this section, we first set up the experiments, and
then report the results and analysis.

5.1 Experimental Setup

Datasets. To evaluate our model on few-shot
KG-to-text generation, we conduct experiments on
three benchmarks, including AGENDA (Koncel-
Kedziorski et al., 2019), WebNLG (Gardent et al.,
2017) and GenWiki Fine (Jin et al., 2020). We
adopt three large domains (i.e., Airport, Build-
ing and Food) for WebNLG and two large do-
mains (i.e., Sports and Games) for GenWiki. Ta-
ble 1 shows the statistics for each dataset. Each
instance of these datasets contains a knowledge
graph in the form of triples and a target text de-
scribing the graph. The three datasets have orig-
inally provided the alignment records from en-
tity mentions to KG entities. Take an example
from WebNLG dataset “AGENT-1 is located in
PATIENT-1”: the entity mention is tagged as
“AGENT-1” and the tag “AGENT-1” maps to the
entity “11th_Mississippi_Infantry_Monument” in
KG. If such alignments are not available, we can
utilize entity linking tools (e.g., NER packages) for
preprocessing.

Baselines. We make a comparison against five KG-
to-text generation models:

• GraphWriter (Koncel-Kedziorski et al., 2019)
introduces a graph transformer encoder and a se-
quence decoder for generating text based on KG.

• CGE-LW (Ribeiro et al., 2020a) proposes a
graph-to-text model by combining both global and
local node aggregation strategies.
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Datasets AGENDA WEBNLG GENWIKI FINE

#Metrics B-4 R-L CIDEr Chrf B-4 R-L CIDEr Chrf B-4 R-L CIDEr Chrf

GraphWriter 15.30 22.03 0.24 38.33 45.84 60.62 3.14 55.53 29.73 55.46 2.68 46.87
CGE-LW 18.01 25.62 0.33 46.69 48.60 62.52 3.85 58.66 30.67 56.37 3.20 47.79
CycleGT 20.16 25.77 0.69 48.26 50.20 68.30 3.81 68.91 38.57 59.37 3.50 62.46
BART-base 22.01 26.44 0.90 48.02 49.81 63.10 3.45 67.65 48.20 59.21 4.02 65.80
BART-large 23.65 28.76 1.15 50.44 52.49 65.61 3.50 72.00 50.70 61.90 4.51 68.15
T5-base 20.59 29.41 0.81 48.15 48.86 65.57 3.99 66.08 45.72 58.28 3.74 65.68
T5-large 22.15 30.68 0.87 48.88 58.78 68.22 4.10 74.40 47.11 60.64 3.74 68.47
Ours 25.15 35.12 3.23 55.89 61.88 75.74 6.03 79.10 48.46 65.65 5.19 64.00

Table 2: Performance comparisons of different methods for fully-supervised KG-to-text generation under three
domains. B-n and R-n are short for BLEU-n and ROUGE-n. Bold and underline fonts denote the best and the
second best methods (the same as below).

Datasets AGENDA WEBNLG GENWIKI FINE

#Instances 50 100 200 500 50 100 200 500 50 100 200 500

BART-large 5.71 6.15 7.59 10.71 9.05 15.70 19.38 27.91 9.14 13.38 15.39 24.14
T5-large 2.69 2.73 4.65 7.52 7.18 14.52 16.88 21.68 6.30 6.36 10.37 17.72
Ours 6.22 9.40 10.21 17.93 10.60 17.46 20.00 31.79 10.75 14.44 16.84 28.89

Table 3: BLEU-4 results of different methods for few-shot KG-to-text generation under three domains. To mitigate
the randomized effects of samples, we report the average results over five training runs (the same as below).

Datasets AGENDA WEBNLG GENWIKI FINE

#Instances 50 100 200 500 50 100 200 500 50 100 200 500

BART-large 14.33 15.28 16.94 20.70 22.57 26.21 30.68 49.34 26.59 29.60 34.56 47.50
T5-large 14.11 14.17 15.88 21.72 20.80 22.71 24.18 38.36 21.02 21.36 20.07 35.72
Ours 15.10 16.65 18.88 25.72 24.80 28.38 33.12 55.13 28.02 31.36 38.07 50.72

Table 4: ROUGE-L results of different methods for few-shot KG-to-text generation under three domains.

• CycleGT (Guo et al., 2020) jointly learns two
dual tasks (graph-to-text generation and text-to-
graph relation classification) via cycle training.

• BART-Base/Large (Ribeiro et al., 2020b) lin-
earizes the KG into sequence and applies BART-
Base/Large (Lewis et al., 2020) to generate text.

• T5-Base/Large (Ribeiro et al., 2020b) lin-
earizes KG into a triple sequence and employs
T5-Base/Large (Raffel et al., 2020) to generate text.

Among these baselines, GraphWriter and CGE-
LW are GNN-based generation models; CycleGT is
an unsupervised model using cycle training; GPT2-
Base/Large and BART-Base/Large are the most rele-
vant comparisons, which also employ PLMs in KG-
to-text generation. These baselines were trained on
the whole training dataset, i.e., all KG-text pairs.
Following previous few-shot work (Chen et al.,
2020), we train our model on different few-shot
settings with training dataset size ranging from 50,
100, 200 to 500. All the comparison methods are

optimized based on validation performance. In
our model, the entity embeddings of GNN are ini-
tialized with pretrained KG embeddings and the
GNN weights are transferred from CGE-LW. We
also pretrain GNN weights based on the large-scale
KG, i.e., Wikipedia. Based on the pretrained entity
embeddings and weights, we continue to train our
model.

Evaluation Metrics. For performance compari-
son, we adopt five automatic evaluation metrics
widely used by previous graph-to-text work (Guo
et al., 2020), i.e., BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), CIDEr (Vedantam et al.,
2015) and CHRF++ (Popovic, 2015). Specifi-
cally, BLEU-n and ROUGE-n compute the ratios
of overlapping n-grams between generated and
real text, CIDEr computes the TF-IDF weights for
each n-gram in generated/real text, and CHRF++
computes F-score averaged on both character- and
word-level n-grams.
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Models B-4 R-L CIDEr Chrf

Ours 31.79 55.13 3.94 57.38

w/o RA 23.14 41.34 1.90 43.34
w/o GR 27.56 46.69 2.82 48.90
w/o PG 29.30 48.66 3.58 53.44

Table 5: Ablation analysis on WEBNLG dataset.

5.2 Main Results
Table 2, 3, and 4 present the fully-supervised and
few-shot results of our model and other baselines,
respectively.

First, by combining global and local entity con-
text, CGE-LW performs better than GraphWriter.
Furthermore, with two elaborate designed dual
tasks, CycleGT becomes the best non-PLM base-
line, outperforming GraphWriter and CGE-LW.

Second, as the most direct comparison with our
model, BART-Base/Large and T5-Base/Large per-
form better than baselines by leveraging encoded
semantics in PLMs, which reveals the feasibility of
utilizing PLMs for KG-to-text generation.

Finally, we observe that our model achieves the
best performance on both fully-supervised and few-
shot settings. Large-scale PLMs can encode world
knowledge by reading a large amount of text, mak-
ing it easier to recover KG facts. Given only a
handful of examples, the performances of base-
lines drop drastically, while the performance of
our model only descents slightly. Furthermore,
with only 500 labelled instances, our model im-
proves over CGE-LW and CycleGT, and achieves
the best performance in most cases. Compared to
these PLM-based KG-to-text baselines, we adopt
GNN to explicitly encode KG structure and rep-
resentation alignment to bridge the semantic gap
between PLM and GNN. This helps produce effec-
tive semantic representations for few-shot learning.
Furthermore, we incorporate an auxiliary KG re-
construction task to learn semantic correspondence
between input KGs and output text. These results
indicate that our model can achieve more superior
performance on KG-to-text generation task in a
few-shot setting.

5.3 Detailed Analysis
Next, we conduct detailed analysis experiments
on our model. We only report the test results on
WEBNLG dataset with 500 training instances due
to similar findings in other datasets.

Ablation Analysis. In our ablation study, we eval-

RBFS-Train RDFS-Train FFS-Train RS-Train20

25

30

35

BL
EU

RBFS-Test
RDFS-Test

FFS-Test
RS-Test

Figure 3: Linearization analysis on WEBNLG dataset.

Models #Supp.↑ #Cont.↓ Naturalness↑

Gold 4.40 0.36 4.26
Ours 3.77 1.01 3.96
BART-Large 3.20 1.90 3.55
CEG-LW 2.87 2.13 2.56

Table 6: Human evaluation on WEBNLG dataset. Co-
hen’s kappa coefficients for labelling three factors are
as follows: 0.78, 0.71, and 0.75.

uate the effect of each loss LPG, LRA and LGR on
the overall model performance. Here, we consider
three variants:

• w/o PG: the variant removes the copy loss
LPG.

• w/o RA: the variant removes the representation
alignment loss LRA.

• w/o GR: the variant removes the KG recon-
struction loss LGR.

As can be seen from Table 5, by removing any
of the three losses, the BLEU/ROUGE/CIDEr per-
formance drops compared to the complete model,
especially removing LRA and LGR. The proposed
representation alignment bridges the semantic gap
between PLM and GNN, which is helpful for adapt-
ing KG representations to PLM. The KG recon-
struction task learns the correspondence between
KG and text ensuring faithful generation about KG.
We also observe a small performance drop by re-
moving LPG. It is likely because PLM has learned
some common phrase expressions about these KG
facts from large-scale pretraining corpus.

KG Linearization Analysis. In Section 4.2, we
propose a novel relation-biased BFS (RBFS) strat-
egy to linearize the input KG into entity sequence.
To verify the effectiveness of this strategy, we con-
duct linearization analysis by comparing RBFS
with three traversal strategies, including relation-
biased depth-first search (RDFS), forest fire search
(FFS) and random search (RS). Specifically, RDFS
combines both DFS and the relation factor similar
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Real

Knowledge
Graph

asam pedas

malaysia

sumatra and malay peninsula

putrajava

malaysian malay

malaysian chinese

region

country

ethnicgroup

ethnicgroup

capital

athens

greece

athens international airport

greek language

alexis tsipras

nikos voutsis

cityserved

country

leadername

leadername

language

Reference

asam pedas is a food found in the region of
sumatra and malay peninsula in malaysia ,
the capital of which is putrajaya , and whose
ethnic groups include malaysian malay and
malaysian chinese .

athens international airport serves the
city athens in greece , greek language is
spoken in greece and the leaders names in
greece are alexis tsipras and nikos voutsis .

BART

Linearized
KG 1© 3©→ 1© 2©→ 1© 6©→ 2© 5©→ 2© 4© 1© 2©→ 2© 4©→ 2© 5©→ 1© 3©→ 2© 6©

Generated
Text

asam pedas is a dish from malaysia and
sumatra where the capital is putrajava .
malaysian malay and chinese are ethnic
groups in sumatra .

athens in greece is led by alexis tsipras
and is served by athens international
airport greece speaks greek language .

Ours

Linearized
KG 1©→ 3©→ 2©→ 6©→ 5©→ 4© 1©→ 3©→ 2©→ 6©→ 5©→ 4©

Generated
Text

asam pedas comes from the region of sumatra
and malay peninsula in malaysia , where the
capital is putrajava , malaysian malay and
malaysian chinese are ethnic groups .

athens is served by athens international
airport in greece , which speaks greek
textbflanguage . greece is led by alexis
tsipras and nikos voutsis .

Table 7: Sample text generated by BART-Large baseline and our model from the Food and Airport domains of the
WEBNLG benchmark. Since BART linearizes KG as triple sequence and an entity may involve in several triples,
there are repeated entities used by BART (we omit the relations between entities). Bold and underlined words
correspond to entity words and keywords.

to RBFS, where DFS starts at the root node and
explores as far as possible along each branch be-
fore backtracking2; FFS is a randomized version
of RBFS randomly exploring all the nodes at the
same layer (Leskovec and Faloutsos, 2006); and
RS randomly traverses all the nodes in the input
KG. By re-training our model with the above three
strategies, we report the comparison of BLEU re-
sults in Figure 3. It can be observed that, RBFS and
FFS strategies achieve better results compared to
the rest strategies. Nodes at the same layer tend to
express more relevant semantics, thus searching by
layer could produce more reasonable and coherent
entity sequence especially considering the relations
of entities as our RBFS strategy.

Human Evaluation. Following previous work in
data-to-text (Chen et al., 2020), we conduct human
evaluation on the generated text. We randomly sam-
ple 200 KG subgraphs along with corresponding
generated text from CGE-LW, BART-Large and our
model. In order to reduce the variance caused by
human, three workers were asked to score the text
with respect to two aspects: Factual correctness
and Language naturalness. The first criterion eval-
uates how well the generated text correctly conveys

2https://en.wikipedia.org/wiki/Depth-first_search

information in the KG, by counting the number
of facts in text supported by the KG (denoted as
#Supp.) and contradicting with or missing from the
KG (denoted as #Cont.). The second criterion eval-
uates whether the generated text is grammatically
correct and fluent. The scoring mechanism adopts
a 5-point Likert scale (Likert, 1932), ranging from
1-point (“very terrible”) to 5-point (“very satisfy-
ing”). We further average the three scores from
the three human judges over the 200 inputs. The
results in Table 6 show that our model produces
more fidelity and fluent texts than previous models.
In our approach, the KG reconstruction task and
pointer generator enhance the awareness of KG
facts and alleviate producing incorrect facts. Also,
with some learned common phrase expressions in
PLMs, our model can generate natural text while
keeping fidelity.

Qualitative Analysis. In this part, we present
intuitive explanations why our model performs
well. Table 7 presents two descriptions and the
corresponding generated entity sequences and texts
by BART-Large baseline and our model. As we
can see, based on KG linearization, the generated
texts by our model show reasonable and similar
content sketch with real texts (e.g., peninsula (re-
gion)→malaysia (country)→putrajava (capital)).
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Besides, the baseline model incorrectly merges and
generates unfaithful facts (e.g., malaysia and suma-
tra) or misses facts (e.g., nikos voutsis), while our
model describes all the KG facts correctly. This
improvement could be attributed to the KG recon-
struction task, which enables our model to learn
the correspondence between the input KG facts and
output text. Finally, the entity words in our gener-
ated text are enriched and connected by meaningful
keywords (e.g., entity greek language and keyword
speaks). The reason might be that, with the help of
representation alignment, the GNN entity embed-
dings are aligned with the PLM word embeddings.

6 Conclusion

This paper presented a few-shot KG-to-text gen-
eration model based on PLMs. We make three
important technical contributions, namely repre-
sentation alignment for bridging the semantic gap
between KG encodings and PLMs, relation-biased
KG linearization for deriving better input KG repre-
sentations, and multi-task learning for learning the
correspondence between KG and text. Extensive
experiments on three benchmark datasets demon-
strate the effectiveness of our few-shot KG-to-text
generation model. As future work, we will con-
sider adopting KG-enhanced PLMs (Zhang et al.,
2019; Peters et al., 2019) for improving the task
performance, which explicitly inject knowledge
information into PLMs.
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