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Abstract

We present a new approach to encourage neu-
ral machine translation to satisfy lexical con-
straints. Our method acts at the training step
and thereby avoiding the introduction of any
extra computational overhead at inference step.
The proposed method combines three main in-
gredients. The first one consists in augment-
ing the training data to specify the constraints.
Intuitively, this encourages the model to learn
a copy behavior when it encounters constraint
terms. Compared to previous work, we use
a simplified augmentation strategy without
source factors. The second ingredient is con-
straint token masking, which makes it even
easier for the model to learn the copy behav-
ior and generalize better. The third one, is a
modification of the standard cross entropy loss
to bias the model towards assigning high prob-
abilities to constraint words. Empirical results
show that our method improves upon related
baselines in terms of both BLEU score and the
percentage of generated constraint terms.

1 Introduction

Neural Machine Translation (NMT) systems en-
joy high performance and efficient inference
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015; Vaswani et al., 2017). However,
when it comes to domain specific scenarios, where
it is often necessary to take into account terminol-
ogy constraints, NMT models suffer from the lack
of explicit source-target correspondences making
it challenging to enforce such constraints. For in-
stance, consider the following sentence from the fi-
nancial domain : “Holders may submit instructions
based on a minimum quantity being accepted by the
offeror.”. According to the financial terminology,
the words Holders and offeror should be translated
porteurs and initiateur respectively. Unfortunately,
a generic English-French NMT model would trans-
late the above sentence as: “Les titulaires peuvent

soumettre des instructions en fonction d’une quan-
tité minimale acceptée par l’offrant.”, where the
words Holders and offeror are translated into tit-
ulaires and offrant respectively. To address this
limitation various approaches have been proposed.
They can be grouped into two categories based on
whether they enforce constraints at inference or
at training time. The former family of methods
changes the decoding step to inject the constraint
terms in the output. While effective at satisfying
constraints, these techniques tend to suffer from
several weaknesses such as high computational
cost at the decoding stage, decreased translation
quality due to strict enforcement of terminology
constraints (Hokamp and Liu, 2017; Post and Vilar,
2018), or ineptness if there are multiple constraints
in the input/output (Susanto et al., 2020).

The other category of methods, which we follow
in this work, integrates lexical constraints during
training (Dinu et al., 2019). More precisely, they
augment the training data in such a way as to in-
form the NMT model of the constrains that need to
be satisfied (Crego et al., 2016; Song et al., 2019;
Dinu et al., 2019). This type of approaches has the
advantage of not changing the NMT model as well
as of not introducing any additional computational
overheads at inference time. One limitation of these
methods is their soft nature, i.e, not all constraints
are guaranteed to be present in the output.

In this paper we pursue the latter line of research
and improve upon the recent work of Dinu et al.
(2019) by (i) only using tags –without source fac-
tors – to distinguish between constraints and other
words, (ii) performing constraint token masking for
robustness/generalization purposes and (iii) mod-
ifying the standard cross-entropy loss to bias the
model towards generating constraint terms. Em-
pirical results show that our approaches improve
both the BLEU sore and the number of satisfied
constrains compared to previous work.
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2 Related Work

Existing approaches can be cataloged based
on whether they integrate constraints at infer-
ence/decoding (Chatterjee et al., 2017; Hasler et al.,
2018; Hokamp and Liu, 2017) or at training time
(Dinu et al., 2019).

Among methods of the first category, we can
mention the Grid Beam Search (GBS) algorithm,
which consists in reorganizing the vanilla beam
search to place constraints correctly in the output
as well as infer accurately the constraints-free parts.
While successful in placing constrains compared
to the original BS algorithm, GBS suffers from a
high decoding time, it increases inference complex-
ity exponentially with the number of constraints.
To alleviate this issue, several improvement have
been proposed, such as Dynamic Beam Allocation
(DBA) (Post and Vilar, 2018) and its optimized ex-
tension, namely vectorized DBA (Hu et al., 2019).
Despite an important gain in computational time,
these methods still significantly increase the decod-
ing time. For instance, the method of Post and Vilar
(2018) is three times slower than the constraint-free
beam search. More recently, Susanto et al. (2020)
rely on the levenstein transformer (Gu et al., 2019),
which uses an edit-based decoder iteratively refin-
ing the output using deletion and insertion oper-
ations. To enforce constraints using this model,
Susanto et al. (2020) add one step to the decoder
that consists in placing constraint terms in the out-
put, and they further disallow the deletion opera-
tion on constraint terms. Albeit effective, the main
limitation of this approach is in constraint order-
ing – when there is more than one constraint term
in the output. That is, the initial order in which
constraints have been placed remains unchanged.

Different from the above, the second family of
methods integrates lexical constraints at training
time. For instance, Crego et al. (2016) replace the
terminology terms with placeholders during train-
ing and then add them back in a post-processing
step. Song et al. (2019) proposed to annotate the
training set by adding the target side of the terminol-
ogy terms in the source sentences. A transformer
model (Vaswani et al., 2017) is then trained on this
augmented training set. This training data annota-
tion has been also explored to teach the NMT to
use translation memories (Gu et al., 2018) or to
enforce copy behavior (Pham et al., 2018). Dinu
et al. (2019) proposed two different ways to aug-
ment the training data, namely the append and the

replace approaches. The former is similar to ap-
proach proposed in (Song et al., 2019), and the
second requires to replace the source term of the
constraints in the source sentence by its correspond-
ing target side in the terminology entries. This
method further uses source factors in order to dis-
tinguish the constraints from the rest of the source
sentence. This is the closest approach to ours. The
key differences are as follows. Our method uses
only tags (without source factors) to specify con-
straints in the training set, and we further perform
constraint-token masking, which improves model
robustness/generalization as supported by our ex-
periments. Moreover, we investigate a biased cross-
entropy loss to encourage the NMT model to assign
higher probabilities to constraint words.

3 Method

Our objective is to encourage neural machine trans-
lation to satisfy lexical constraints. To this end we
introduce three changes to the standard procedure,
namely training data augmentation, token masking,
and cross-entropy loss modification.

TrAining Data Augmentation (TADA). Simi-
lar to previous work, the key idea is to bias the
NMT model to exhibit a copy behavior when it
encounters constraints. To this end, given some
source sentence along with some constraints, we
use tags to specify the constraints in the source sen-
tence where relevant, as depicted in Figure 1. Note
that as opposed to previous work, we do not intro-
duce any further information (e.g., source factors),
the constraints are specified using tags only.

Token MASKing (MASK). We further consider
masking the source part of the constraint – tokens
in blue – as illustrated in Figure 1 last row. We
postulate that this might be useful from at least two
perspectives. For one, this provides a more general
pattern for the model to learn to perform the copy
operation every time it encounters the tag < S >
followed by the MASK token. For another, this
makes the model more apt to support conflicting
constraints, i.e., constraints sharing the same source
part but which have different target parts. This may
be useful if some tokens must be translated into
different targets for some specific documents and
contexts at test time.

Weighted Cross-Entropy (WCE) Loss. Let
x = (x1, . . . , xTx) denote a sentence in some input
language represented as a sequence of Tx words,
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Source His critics state that this will just increase the
budgetary deficit .

Constraint budgetary deficit → Haushaltsdefizit
TADA His critics state that this will just increase the

<S> budgetary deficit <C> Haushaltsde-
fizit </C> .

+MASK His critics state that this will just increase the
<S> MASK MASK <C> Haushaltsdefizit
</C> .

Figure 1: Illustration of TrAining Data Augmentation
(TADA) and MASK.

and y = (y1, . . . , yTy) its translation in some target
language. From a probabilistic perspective neural
machine translation can be cast as estimating the
conditional probability p(y|x) parametrized with
neural networks, and which is usually assumed to
factorize as follows,

p(y|x) = p(y1|x)
Ty∏
t=2

p(yt|x, y1:t−1) (1)

where y1:t−1 denote previously generated tokens.
A predominant loss function in this context is the
well know cross-entropy given by,

L = − log p(y|x) = −
Ty∑
t=1

log p(yt|x, y1:t−1) (2)

As our objective is to encourage the NMT model
towards generating the desired constraints, we pro-
pose to modify the above loss to provide a stronger
learning signal to the model when it assigns a low
probability to a constrain token yt, as follows.

L = −
T∑
t=1

wyt log p(yt|x, y1:t−1) (3)

where, wyt = α ≥ 1 if yt is a constraint word,
and wyt = 1 otherwise. As long as α is strictly
greater than 1, the model would be biased towards
assigning higher probabilities to constraint tokens.
In practice one can set α to either a fixed value (e.g.,
selected based on some validation set) or using
some annealing heuristic, i.e., start with α = 1
and then gradually increase its value as learning
progresses.

4 Experiments

4.1 Parallel Data
Following previous work (Dinu et al., 2019; Su-
santo et al., 2020), we assess our approach using

the WMT 2018 English-German news translation
tasks1. Our training dataset consists of nearly 2.2
million English-German parallel sentences from
Europarl and news commentary. To compare our
approach against existing works, we use two paral-
lel English-German test sets extracted from WMT
newstest 2017, and made available by Dinu et al.
(2019) (see section 4.2 for details). Following the
same authors, we use WMT newstest 2013 for vali-
dation containing 3000 parallel sentences.

4.2 Terminologies

In order to take into account lexical constraints,
training, test and validation sets were annotated
using two English-German bilingual terminologies
extracted from IATE2 and Wiktionary3. The two
test sets released by (Dinu et al., 2019) have been
extracted from WMT 2017 using IATE and Wik-
tionary respectively. The lexical constraints are
added in the source sentences when source and tar-
get terms in the dictionaries entries are present in
source and target sentences in the parallel dataset
respectively. The test set extracted using IATE
(wiktionary) contains 414 (727) sentences and 452
(884) term annotations. The training and validation
sets have been annotated using both dictionaries
making sure there is no overlap with the term anno-
tations used in the test sets. For the training dataset,
only 10% of the original data have been annotated
with lexical constraints in order to preserve as far
as possible the same performance when the model
is not terminology-grounded (Dinu et al., 2019).

4.3 Settings

We use Moses tokenizer (Koehn et al., 2007) to
tokenize our corpus and we learn a joint source and
target BPE encoding (Sennrich et al., 2015) with
40k merge operations to segment it into sub-word
units, resulting in a vocabulary size of 40388 words.
Our models are trained using the transformer archi-
tecture (Vaswani et al., 2017) with three stacked
encoders and decoders. The same hyperparameters
as in (Dinu et al., 2019) were used where source
and target embeddings are tied with the softmax
layer. The models are trained for a minimum of 50
epochs and a maximum of 100 epochs with a batch
size of 3000 tokens per iteration. Our validation set
WMT 2013 is used to compute the stopping crite-
rion. We use a beam size of 5 during inference for

1http://www.statmt.org/wmt18/translation-task.html
2https://iate.europa.eu
3https://www.wiktionary.org/
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Without MASK

Source For a while, one major problem has been finding homes subsequently for refugees that have been given
<S> certified <C> anerkannt </C> status.

TADA Seit geraumer Zeit besteht ein großes Problem darin, Häuser für Flüchtlinge zu finden, die zertifiziert
wurden.

With MASK

Source For a while, one major problem has been finding homes subsequently for refugees that have been given
<S> MASK <C> anerkannt </C> status.

TADA+MASK Seit einiger Zeit besteht ein großes Problem darin, später Heime für Flüchtlinge zu finden , die anerkannt
wurden.

+ WCE Loss Seit einiger Zeit besteht ein großes Problem darin, später Heime für Flüchtlinge zu finden, die anerkannt
worden sind.

Target Ein schwerwiegendes Problem ist es seit einiger Zeit , Wohnungen für die Anschlussflüchtlinge zu finden,
die anerkannt worden sind.

Figure 2: IATE : Example of en-de translation generated with TADA only and with TADA+MASK. With TADA
only we observe that a variant of the target side of the constraint has been used (zertifiziert). In contrast, with
MASK we observe that the target side of the constraint has been copied directly. Furthermore, using WCE loss
leads to a translation which is even closer to the ground truth.

Without MASK

Source If perpetrators have to leave the country quicker , that will boost security and increase the <S> general
public <C> Bevölkerung </C> ’s <S> approval <C> Zustimmung </C> of refugee politics .

TADA Wenn die Täter das Land schneller verlassen müssen , wird dies die Sicherheit erhöhen und die Zustim-
mung der Öffentlichkeit zur Flüchtlingspolitik erhöhen .

With MASK

Source If perpetrators have to leave the country quicker , that will boost security and increase the <S> MASK
MASK <C> Bevölkerung </C> ’s <S> MASK <C> Zustimmung </C> of refugee politics .

TADA+MASK Wenn die Täter das Land schneller verlassen müssen , wird dies die Sicherheit erhöhen und die Zustim-
mung der Bevölkerung zur Flüchtlingspolitik erhöhen .

+ WCE Loss Wenn die Täter das Land schneller verlassen müssen , wird dies die Sicherheit erhöhen und die Zustim-
mung der Bevölkerung zur Flüchtlingspolitik erhöhen .

Target Wenn Straftäter schneller das Land verlassen müssten , erhöhe das aber die Sicherheit und stärke auch
die Zustimmung der Bevölkerung für die Flüchtlingspolitik .

Figure 3: IATE : Example with multiple constraints. With TADA we observe that only one constraint is satisfied.
Adding MASK makes it possible to satisfy both constraints.

all models. Regarding the proposed WCE Loss, we
start training with α = 1 for the first ninety epochs,
then we continue learning for ten more epochs with
α = 2. In a pilot experiment, we explored differ-
ent strategies to set the value of α, such as using
α > 1 from the beginning of training, increase the
value of α every 5/10 iterations by +0.1, or train
with α = 1 for most iterations and then set α to a
higher value (e.g., α = 2) for the last few iterations.
We retained the latter approach as it worked best
among the ones we investigated.

4.4 Results

We compare our approach to related NMT mod-
els integrating terminology constraints in terms of

IATE Wiktionary
Term% BLEU Term% BLEU

Previous works
Transformer† 76.30 25.80 76.90 26.00
Const. Dec.‡ 82.00 25.30 99.50 25.80

Source. Fact.§ 94.50 26.00 93.40 26.30
Our work
TADA+MASK 97.80 26.89 96.55 26.69

+WCE Loss 98.02 27.11 96.84 26.73
†:(Vaswani et al., 2017), ‡: (Post and Vilar, 2018), §: (Dinu et al., 2019)

Table 1: Comparison with baselines in terms of BLEU
score and Term usage percentage.

BLEU score (Papineni et al., 2002) and term usage
rate (Term%), which is defined as the ratio between
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(b) Wiktionary test set

Figure 4: Percentage of correctly generated constraints with 10%, 5%, 3% and 1% of constraint-grounded training
source sentences. With MASK the NMT model is less sensitive to the diminution of the percentage constraint-
grounded sentences.

the number of constraints generated by the model
and the total number of constraints. The results are
presented in Table 1, and the main findings are as
follows.

Comparison with baselines. Our methods sig-
nificantly outperform the baselines in terms of
both the BLEU score and the percentage of cor-
rectly generated constraint terms. TADA+MASK
increases the BLEU score with +0.89% and +0.39%
for IATE and Wiktionary test sets respectively. Re-
garding constraints (Terms%) we observe an im-
provement of +3.3% for IATE. Using the WCE
loss further improves performances. For Wik-
tionary, Constrained Decoder reaches the highest
terminology-use rate. However, the latter method
suffers from a high decoding time and decreases
translation quality.

Importance of MASK. To assess the impact
of token masking, we report in Figure 4 the per-
formance of TADA and TADA+MASK when the
percentage of constraint annotations used in the
training varies from 10% to 1%. Using MASK
makes the model more robust to the diminution of
the percentage of constraint-grounded sentences.
The qualitative examples of Figures 2 and 3 fur-
ther illustrate the benefit of token masking. In the
former example, masking the source part of the
constraint “certified” seems to have prevented the
model from generating “zertifiziert” – see Figure
2’s caption for details. Figure 3 shows a translation
example containing multiple constraints to be sat-
isfied. It seems that the use of MASK makes the
model more apt to effectively handle and satisfy
all the constraints. This is not necessarily the case
of the model without MASK, which satisfies one

constraint only. The results of Figures 2, 3 and 4
provide empirical support for the benefits of the
proposed token masking in model generalization
and robustness.

Impact of the WCE loss. To assess the im-
pact of the WCE loss, we revisit the results of
Table 1 and the examples of Figures 2 and 3. In all
cases, we observe that using the proposed weighted
cross-entropy loss further improves the quality of
translation and the percentage of generated con-
straints, which demonstrate the benefits of biasing
the model towards generating constraints tokens.

5 Conclusion

To encourage neural machine translation to satisfy
terminology constraints, we propose an approach
combining training data augmentation and token
masking with a weighted cross-entropy loss. Our
method is architecture independent and in principle
it can be applied to any NMT model. Experiments
on real-world datasets show that the proposed ap-
proach improves upon recent related baselines in
terms of both BLEU score and the percentage of
generated constraint terms.

In face of the multiplicity of methods to integrate
terminology constraints, an interesting future work
is to consider combining our method with other
techniques within an ensemble approach.
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