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Abstract

Identifying events and mapping them to a
pre-defined taxonomy of event types has long
been an important NLP problem. Most previ-
ous work has relied heavily on labor-intensive,
domain-specific, annotation, ignoring the se-
mantic meaning of the event types’ labels.
Consequently, the learned models cannot ef-
fectively generalize to new label taxonomies
and domains. We propose a zero-shot event ex-
traction approach, which first identifies events
with existing tools (e.g., SRL) and then maps
them to a given taxonomy of event types in a
zero-shot manner. Specifically, we leverage la-
bel representations induced by pre-trained lan-
guage models, and map identified events to the
target types via representation similarity. To
semantically type the events’ arguments, we
further use the definition of the events (e.g., ar-
gument of type “Victim” appears as the argu-
ment of event of type “Attack”) as global con-
straints to regularize the prediction. The pro-
posed approach is shown to be very effective
on the ACE-2005 dataset, which has 33 trig-
ger and 22 argument types. Without using any
annotation, we successfully map 83% of the
triggers and 54% of the arguments to the se-
mantic correct types, almost doubling the per-
formance of previous zero-shot approaches1.

1 Introduction

Event extraction, the process of identifying events
triggers and arguments and classifying them into
a set of pre-defined types is an important part of
natural language understanding, and a commonly
studied NLP task (Grishman et al., 2005). Con-
sider the example shown in Figure 1, where two
events (i.e., “war” and “protesting”) are identified.

∗This work was done when the first author was visiting
the University of Pennsylvania.

1Our code and models will be available at http://
cogcomp.org/page/publication_view/942.

Figure 1: Event classification examples. Two events
are highlighted with red and blue colors. Triggers and
arguments are in bold and underline fonts, respectively.

By mapping them to [Conflict:Attack] and [Con-
flict:Demonstrate] and using the knowledge of “At-
tack” might result in “Demonstrate”, we can infer
that the war in Iraq is probably the cause of the
protesting in Pakistan.

Most existing event extraction work (Wadden
et al., 2019; Lin et al., 2020) treats event iden-
tification as a supervised sequence labeling task
and event classification as a supervised classifica-
tion problem, and relies on large amounts of event-
specific annotated text. Take ACE-2005 (Grishman
et al., 2005) as an example; the training set of ACE
consists of 4,419 events, annotated and typed into
33 event types. Such large-scale and high-quality
annotation requires significant expertise, and it fa-
cilitates the success of supervised learning models.
However, scaling these efforts to new domains and
more event types is very costly and unrealistic.

Indeed, there has already been some effort to
address the limitation of supervised models on new
event types via a transfer-learning based zero-shot
event classification approach (Huang et al., 2018).
By jointly encoding the event structures (i.e., the re-
lations between event triggers and their arguments)
of event mentions and of pre-defined event types,
their model learns to map event mentions to the
most similar event types. As a result, at inference
time, the model can be extended to new types as
long as the structures of new types are provided.
Nonetheless, the success of this transfer learning
approach also heavily relies on the similarity be-
tween observed event types and new ones. When

http://cogcomp.org/page/publication_view/942
http://cogcomp.org/page/publication_view/942
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Figure 2: Pre-defined event type demonstration. Event
type “Conflict:Attack” is associated with three argu-
ment types (“Attacker”, “Target”, “Place”) and each of
them is associated with a list of potential entity types.

new event types are different enough from those
the model was trained on, the model will struggle.

This paper shows that the whole event extrac-
tion pipeline (i.e., identification and classification)
can be done without any event-specific annota-
tion. Since the event identification task can also
be viewed as a classification task that determines
whether the event triggers provided by the SRL
models belong to the pre-defined event ontology
or not, in this paper, we focus on the classification
task. Specifically, we explore a reliable zero-shot
solution to mapping observed events to any given
set of event types. Unlike previous approaches,
we do not use any annotation and only rely on the
given event type definitions. We classify events by
matching the semantics of the identified triggers
and arguments to the type names, and then regu-
larize the predictions with the constraints in the
pre-defined event ontology.

A pre-defined event type example is shown in
Figure 2, where domain experts choose to use “at-
tack” to describe the whole event type and the la-
bels “attacker”, “target”, and “place” for its roles,
since the semantics of these words reflect ones’ un-
derstanding of this event type. To fully utilize the
semantics of these labels, we propose to represent
the labels with a cluster of contextualized embed-
dings rather than just words. In the aforementioned
example, we first select several sentences that con-
tain the word “attack” from an external corpus (e.g.,
New York Times (NYT) (Sandhaus, 2008)). For
each selected sentence, we use a pre-trained lan-
guage model (e.g., BERT (Devlin et al., 2019)) to
encode it and then use the resulting embedding of
“attack” as a data point in the “attack" cluster. At
the inference time, we can then acquire the con-
textualized representation of identified triggers and
arguments, and map them to their corresponding
types based on their similarities to those clusters in
the embedding space. Beyond the labels, event def-
initions also provide constraints between types and

roles. For example, the role “Attacker” can only
appear as an argument of “Conflict:Attack” rather
than “Life:Marry,” and only a person or a nation
can take the role of an “Attacker". In our system,
we propose to use these constraints to regularize the
zero-shot model. Specifically, we formulate the fi-
nal inference step as an integer linear programming
(ILP) (Roth and tau Yih, 2004) and only produce
decisions that satisfy all the constraints.

Our experiments show that the proposed model
is very effective on the standard evaluation dataset
ACE-2005, which has 33 event trigger types and
22 argument role types. Without using any annota-
tion, we map 83% of the triggers and 54% of the
arguments to correct types, almost doubling the
performance of the previous best zero-shot event
classification approach. When pipelined with our
improved zero-shot identification step, we exhibit
an zero-shot event extraction pipeline that rivals a
SOTA supervised system (Lin et al., 2020) trained
on over 6,000 sentences.

2 Task Definition and Notations

We denote the overall sets of predefined event trig-
ger types, argument role types, and entity types
as E , R, and T respectively. Each pre-defined
event type (e.g., “Conflict:Attack”) E ∈ E is as-
sociated with several role types R ∈ RE and for
each R ∈ R, the event definition also links it with
several possible entity types T ∈ TR. Given a sen-
tence S, which has a predicate v, several arguments
a, and associated entity types t, the task of zero-
shot event classification is mapping v and a to the
correct types without any annotation.

3 Model Overview

As shown in Figure 3, the whole framework can be
divided into two phases: preparation and prediction.
In the preparation phase, we generate the represen-
tations for all pre-defined event types and argument
roles, which are indicated by blue and orange, re-
spectively. For each type, we select the label word
and its synonyms2 as the anchor words, and then
for each of them, we retrieve a list of anchor sen-
tences that use these words from an external corpus.
After applying the pre-trained language models to
encode all anchor sentences, we can then obtain the
contextualized representations of selected anchor
words and treat the cluster of these embeddings to

2For labels that have multiple words, we select words that
can best represent the label semantics.
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Figure 3: Architecture Overview. Pre-defined types, anchor words, anchor sentences, and contextualized represen-
tations for event trigger types and argument role types are indicated with blue and orange, respectively.

as the type representation. In the prediction phase,
given S, v, and a, we first acquire the contextual-
ized representation for the triggers and arguments.
After that, in the embedding space, we can easily
map them to the most similar types based on the co-
sine distance to each cluster. Based on these initial
predictions, we then leverage constraints provided
by the event definitions to regularize the prediction
by modeling it as an ILP problem.

4 Preparation

In this section, we introduce the preparation details.

4.1 Anchor Words and Sentences Selection
Since the most frequently-occurred POS of triggers
is verb and they typically have multiple senses, we
also include their synonyms of the same meaning as
anchor words to improve the overall representation
quality. In total, we got 107 anchor words for 33
event trigger types and 22 anchor words for 22
event argument types. After that, we then go to an
external corpus (NYT corpus (Sandhaus, 2008) in
our experiment) for finding anchor sentences that
contain the corresponding anchor words.

4.2 Contextualized Representation
Generation

As shown in Figure 4, we propose two different
representation acquisition methods for triggers and
arguments. For triggers, we use all words in S as
the input, while for arguments, we mask the target
anchor words. The motivation is that most triggers
contribute the most important semantic meaning

Figure 4: Demonstration of the proposed two contextu-
alized representation acquisition methods.

while the semantics of arguments are often inferred
from their context rather than the anchor words
themselves. For example, many arguments are pro-
nouns or names, which only have weak semantics
by themselves and we need to understand them by
understanding their context.

For each sentence S and a target anchor word
w?, we first tokenize S based on the type of the
target word:

X, ps, pe =

{
Tokenize_Full(S,w?) for w? ∈ WT

Tokenize_Mask(S,w?) for w? ∈ WA,
(1)

where WT and WA are sets of anchor words
for triggers and arguments, respectively. X =
x1, x2, · · · , xn is the list of tokens. As the to-
kenizer tool may tokenize words into sub-word
pieces, we use ps and pe to record the start and end
token positions for the anchor word. We then input
X into a multi-head transformer module to get the
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Explanation Constraint

One type per trigger.
∑

i∈|E| It(i) = 1

One type per argument. ∀j
∑

k∈|R| Ir(j, k) = 1

Different arguments in
one event must have dif-
ferent types.

∀k
∑

j∈|A| Ir(j, k) ≤ 1

Predicted trigger and ar-
gument type must appear
in the ontology .

∀i, j, k It(i) + Ir(j, k) ≤ 1 if
Ei and Rk cannot be paired in
the ontology.

Entity types of arguments
match the requirements.

∀i, j, k It(i) = 0, Ir(j, k) = 0
if ai does not match the require-
ment of Ek or Rk.

Table 1: Selected constraints for the ILP regularization.

contextualized representations of all tokens.

x1, x2, · · · , xn = Transformer(x1, x2, · · · , xn).
(2)

We omit the technical details of transformers for
the clear representation, but the details are available
in the original paper (Vaswani et al., 2017). In the
end, we took the mean pooling of embeddings for
tokens belonging to the target anchor word as one
of its contextualized representation:

v =

∑
pe≤i≤ps xi
pe − ps

. (3)

By grouping the acquired representations from all
anchor sentences together, we get a cluster of em-
beddings for each pre-defined type, which can be
used for the prediction. For trigger type Ei and
argument type Ri, we denote the corresponding
vector cluster as VEi and VRi , respectively.

5 Prediction

We then introduce the prediction part. For each
identified event, whose trigger and m arguments
are denoted as t and A = a1, a2, · · · , am, we first
acquire the contextualized representations for trig-
ger and arguments following the same way as what
we did for anchor words. Similar to the label rep-
resentations, we acquire the event trigger repre-
sentation without using masks and the argument
embeddings with masks. We denote the resulting
embeddings as t and a1, a2, · · · , am. After that,
we compute the prediction score from t to a pre-
defined event trigger type E as:

f(t, E) = Cos_Dist(t,
∑

v∈VE v
|VE |

), (4)

where Cos_Dist represents the cosine distance
and |VE |means the number of vectors in the cluster

Train Dev Test Overall

# Sentences 19,244 902 676 20,822
# Event triggers 4,419 468 424 5,311
# Event arguments 6,604 759 689 8,052

Table 2: ACE-2005 statistics.

of E’s label representations. Similarly, for any
argument a and pre-defined argument type R, we
compute the prediction score via:

f(a,R) = Cos_Dist(a,
∑

v∈VR v
|VR|

). (5)

After getting the initial predictions with cosine
similarities, the next step would be leveraging
the constraints to regularize the prediction results.
Specifically, we model this problem as an integer
linear programming (ILP) problem (Roth and tau
Yih, 2004), which maximizes the following objec-
tive while satisfying the constraints in Table 1:

argmax
It,Ia

∑
j∈|A|

(
∑
i∈|E|

f(t, Ei) ·It(i) ·λ+
∑

k∈|R|

f(aj , Rk) ·Ia(j, k)).

(6)

Here, λ is the hyper-parameter we use to balance
the weight of trigger and argument predictions, and
It and Ia record the final prediction for the trigger
and arguments, respectively. It is a vector of inte-
ger variables with length |E|, and Ia is a matrix of
integer variables with the size |A| × |R|.

6 Experiment Details

We follow (Lin et al., 2020) and use ACE-2005
(E+) as the dataset. In total, ACE-2005 contains
33 event types and 22 role types. The original
dataset provides the official training, development,
and test splits. However, as the proposed model
is zero-shot and we do not need any training data,
we merge all of them together to be the test set,
which is consistent with the setting in (Huang et al.,
2018). Detailed statistics about ACE-2005 are pre-
sented in Table 2. Considering that (Huang et al.,
2018) trains the model with the most frequent ten
event types and tests on the other 23 types, we
provide two evaluation settings: (A) Evaluation on
the least 23 frequent event types and associated
role types, which is consistent with the previous
work; (B) Evaluation on all 33 event types, which is
used to demonstrate the overall performance of our
model on the whole dataset. We treat the trigger
and argument classification as two separate ranking
problems, and follow the previous work (Huang
et al., 2018) to report Hit@1, Hit@3, and Hit@5.
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Model # Types Event Triggers Event Arguments
Train Test Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

Frequency 0 23 9.6 27.2 42.5 25.9 63.4 80.6
WSD-embedding 0 23 1.7 13.0 22.8 2.4 2.8 2.8

Transfer Learning (A) 1 23 4.0 23.8 32.5 1.3 3.4 3.6
Transfer Learning (B) 3 23 7.0 12.5 36.8 3.5 6.0 6.3
Transfer Learning (C) 5 23 20.1 34.7 46.5 9.6 14.7 15.7
Transfer Learning (D) 10 23 33.5 51.4 68.3 14.7 26.5 27.7

Label Representation 0 23 79.6 (0.6) 88.2 (1.3) 92.5 (1.7) 25.9 (2.2) 63.2 (1.9) 74.6 (2.0)
Label Representation + ILP 0 23 80.5 (0.2) 88.9 (0.3) 93.2 (0.6) 68.5 (0.9) 94.2 (0.1) 96.8 (0.4)

Frequency 0 33 28.9 53.6 62.7 13.8 33.8 51.0

Label Representation 0 33 81.9 (0.5) 92.6 (0.4) 95.7 (0.2) 17.1 (0.7) 38.0 (0.4) 49.5 (0.9)
Label Representation + ILP 0 33 82.9 (0.5) 93.1 (0.1) 96.2 (0.1) 53.6 (1.3) 87.9 (0.4) 92.4 (0.5)

Table 3: Event trigger and argument classification results on ACE-2005. Best performing models are annotated
with the bold font. Standard deviations are shown in brackets.

6.1 Baseline Methods

To the best of our knowledge, only two previous
methods were used to solve event typing in a zero-
shot manner, thus we compare with both of them:

1. WSD-embedding (Huang et al., 2018): The
WSD baseline first obtains the sense of event
mentions with a word sense disambiguation
module (Zhong and Ng, 2010) and then ac-
quires the sense embedding with the skip-gram
model (Mikolov et al., 2013). During the infer-
ence, it can then map triggers and arguments to
the candidate types with the pre-trained word
sense embeddings.

2. Transfer Learning (Huang et al., 2018): The
transfer-learning based zero-shot approach first
learns to map the AMR parsing (Wang et al.,
2015) result of events to a few observed event
types and then apply the learned model to un-
seen event types. In the original paper, four
experiment settings are provided, which are dis-
tinguished by the number of seen event types,
and we consider all of them to be the baselines.

Besides them, we also present the performance
of the “Frequency” baseline, which predicts all trig-
gers and arguments with the most frequent types.

6.2 Implementation Details

We implement our model with Huggingface (Wolf
et al., 2019) and use BERT-large (Devlin et al.,
2019) as the pre-trained language model. For each
anchor word, we randomly select ten anchor sen-
tences from the NYT corpus (Sandhaus, 2008). λ

is set to be 100. We implemented the ILP optimiza-
tion with gurobi3. All other hyper-parameters are
inherited from BERT. We repeat the experiments
five times and report the average performance as
well as the standard deviations. The effect of all
hyper-parameters is carefully evaluated.

7 Result Analysis

From the results in Table 3, we can observe that:

1. Despite the difficulty of this task (we have 33
and 22 candidates types for triggers and argu-
ments), our model can map 83% of the triggers
and 54% of the arguments to the correct types,
which shows that when the class labels are care-
fully designed, their semantics can serve as an
excellent signal for the classification task.

2. Compared with the baseline method, our model
doubles the performance on the selected 23
event type subset. The main improvement we
made is that we do not only use the labels but
also put them back into some real usage and
then use the contextualized representations to
represent them. By doing so, we can best repre-
sent the label semantics and leverage them for
the classification task.

3. The dataset distribution is imbalanced. For ex-
ample, 28.9% of the event triggers are “attack,”
which is relatively simple. This also explains
why our model achieves higher performance for
triggers on the whole dataset, where we need to
map them to 33 types that include “attack”, than

3https://www.gurobi.com/
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(a) Effect of the anchor sentence quantity n. (b) Effect of the predicate weight w.

Figure 5: Hyperparameter Analysis.

Model Hit@1 (T) ∆ Hit@1 (A) ∆

Full model 82.9 - 53.6 -

No Context 40.5 -42.4 29.9 -23.7
BERT-base 55.7 -27.2 33.5 -20.1

Table 4: Ablation study. The Hit@1 performance for
triggers and arguments are denoted as Hit@1 (T) and
Hit@1 (A).

the selected subset, where we only need to map
them to 23 types but without “attack”.

7.1 Ablation Study
We present the following ablation studies to show
the contribution of different modules:

1. No Context: One of the largest contributions of
the proposed model is using contextualized rep-
resentations to represent each label. To demon-
strate the importance of the context, we try to
remove them and acquire the label representa-
tion only with selected anchor words4.

2. BERT-base: To demonstrate the contribution
of a good representation model, we replace
BERT-large with its weaker version (i.e., BERT-
base (Devlin et al., 2019)).

From the results in Table 4, we can see that the
context information is crucial to our success. With-
out the context, the anchor word embeddings can
no longer effectively represent the label semantics.
Besides that, a good language model also helps
better merge the contextual information into the
anchor words, which also shows that leveraging the
context well is the key to our success.

4Context are also removed for candidate triggers and argu-
ments. For arguments, as there is no context, we also remove
the masks.

Trigger Argument Hit@1 (T) Hit@1 (A)

w/o mask w/ mask 82.9 53.6

w/o mask w/o mask 80.9 41.2
w/ mask w/o mask 52.7 36.1
w/ mask w/ mask 52.8 40.0

Table 5: Effect of different representation strategies.

7.2 Hyper-parameter Analysis

The effect of anchor sentence quantity n and trig-
ger weight λ are shown in Figure 5(a) and 5(b),
respectively. First of all, we can observe that ten
anchor sentences are enough to achieve a good per-
formance, which helps verify the motivation of this
paper that with the careful usage, labels can serve
as a crucial semantic signal for zero-shot classifica-
tion tasks. For λ, as shown in Table 3, before the
ILP regularization, the model performs much better
on triggers than arguments, that is why we need
to give more weights to the trigger (i.e., the model
should not change the trigger prediction unless it is
very certain about the argument prediction). On the
other hand, λ cannot be infinitely large, otherwise,
the ILP may simply ignore the argument prediction,
which may also hurt the performance. To achieve
the balance, we select λ = 10.

7.3 Representation Acquisition Strategy

As aforementioned, we adopt two different label
representation strategies for triggers and arguments.
Specifically, we kept the anchor words in the sen-
tence for triggers while masking them for argu-
ments. To clearly show the effectiveness of dif-
ferent strategies, we show the performance of dif-
ferent strategy combinations in Table 5. From the
results, we can see that if we apply masks to the
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P R F1

Trigger (I) 58.9 57.8 58.3
Trigger (I + C) 54.1 53.1 53.6

Trigger + Argument (I) 12.0 26.0 16.4
Trigger + Argument (I + C) 4.6 10.0 6.3

Table 6: Zero-shot event extraction performance. “I”
and “C” mean the identification and classification.

trigger representations or remove the mask from
the argument representation pine, the performance
decreases. This observation verifies the assump-
tion that event triggers are often textually similar
to the trigger labels and thus keeping these words
in the sentence can help to map them. On the other
hand, event arguments are often named entities,
which are often very different from the labels (e.g.,
“victim”) textually, and what helps determine their
roles is the context surrounding them. As a re-
sult, we achieve better performance when we mask
these arguments and only leverage the context to
generate the representations.

8 Zero-shot Event Extraction

Previous experiments have demonstrated that with
the help of the label representations and the post-
regularization, our zero-shot system can effectively
map detected triggers and arguments to the correct
types. However, if the goal is to automatically ex-
tract events from the raw documents, we still need
the support from other NLP modules to identify the
event triggers and arguments first. In this section,
we present the performance of a zero-shot event ex-
traction pipeline, which combines our classification
model with other NLP tools.

8.1 Identification

The first step is identifying event triggers and ar-
guments from the raw sentences. In our pipeline,
we use a BERT-based SRL model (Shi and Lin,
2019) and a nominal SRL model5 to detect verbal
and nominal events. A limitation of these mod-
els is that they adopt a different event ontology
(i.e., FrameNet (Baker et al., 1998)) from ACE-
2005. As a result, they could miss some events or
detect irrelevant events, which are not annotated
as events under the ACE definition. To include
more ACE-specified events, we include all nomi-

5As no previous work has applied BERT to the nominal
SRL task, we trained one BERT-based nominal SRL model
by ourselves.

nal anchor words6 in the sentences as triggers. To
filter out events that are not covered by the ACE
ontology, we introduce an additional filtering step,
whose details are introduced in the next sub-section.
Last but not least, considering that the definition
of arguments in SRL systems varies from ACE,
we include a mention detection module from Cog-
CompNLP (Khashabi et al., 2018) to further detect
mentions as argument candidates.

8.2 Filtering and Classification

For triggers, following the previous work (Huang
et al., 2018), we first combine the 1,161 event types
from FrameNet and 33 event types from the ACE
ontology together. Duplicated event types are man-
ually removed. As a result, we got 1,147 event
types. For each detected event trigger, we try to
map it to all 1,147 event types with the proposed
zero-shot classification approach. Considering that
1,147 event types may still be not enough for cov-
ering all event types, we need to leave room for
other events in the embedding space. To do so,
for each event type, we automatically acquire a
cluster radius by optimizing the F1 score over all
anchor sentences (i.e., the distance from representa-
tions of anchor sentences for that type to the mean
representation should be smaller than the radius
while others should be larger than the radius). If
a trigger is mapped to one of the 33 types in ACE
and its cosine distance to the mean embedding of
that type is smaller than the corresponding cluster
radius, it will be categorized into that type. For
arguments, we select all mentions that overlap with
the ARG0 and ARG1 of selected triggers given by
SRL systems to be candidate arguments. All se-
lected triggers and arguments are jointly classified
with the proposed classification model.

8.3 Result Analysis

The performance of our zero-shot event extraction
pipeline is shown in Table 6. “Identification” re-
quires the model to detect the correct spans of trig-
gers and arguments. “Classification” requires the
model to correctly classify the detected triggers
and arguments. As the identification task is often
viewed as the sequence labeling problem, where

6Some event type labels are nominal (e.g., “bankruptcy”)
and some are verbal (e.g., “execute”). For nominal labels, we
directly use them; for verbal labels, we use their nominal form
(e.g., “execution”) if available. As the used verb SRL system
has already detected almost all verbal triggers, there is no need
to add verbal keywords.
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Figure 6: Comparison to the best supervised model.

the Recall@K metric is no longer suitable, we fol-
low the previous work (Lin et al., 2020) to report
Precision, Recall, and F1. For the “Argument” eval-
uation, we provide gold triggers. But for the “Trig-
ger+Argument” evaluation, the model has to detect
and classify the correct trigger and associated argu-
ments. We also show the comparison of our system
to the current best supervised model OneIE (Lin
et al., 2020) in Figure 6. For triggers, our system
achieves the comparable performance of the super-
vised model that is trained with about 6,000 train-
ing sentences, which is equivalent to approximately
75% of OneIE’s full performance. Considering that
our system does not use any annotation and can be
easily applied to new datasets and new event def-
initions, such performance is quite encouraging.
In the meantime, compared with triggers, our sys-
tem cannot detect arguments very well, which is
mainly due to poor identification performance. As
demonstrated in Figure 7, this is mainly because
SRL and ACE adopt different definitions of argu-
ments. SRL requires the arguments to cover all the
details, whereas arguments in ACE are often just
the key entities. To solve this problem, we propose
to use a mention detection module to detect men-
tions inside the arguments given by SRL systems.
Consequently, we cover more gold arguments but
also introduce noise. How to automatically identify
arguments that fit the ACE definition is a problem
worth exploring in the future.

9 Related Works

In this section, we introduce related works about
the event extraction and NLP without annotation.

Figure 7: Case study for event extraction. Gold triggers
and arguments are indicated with red and blue. Argu-
ments detected by SRL and mention detection module
are indicated with underlines and brackets.

9.1 Event Extraction

Previous event extraction works often aim at learn-
ing supervised models, employing either symbolic
features (Ji and Grishman, 2008; Liao and Grish-
man, 2010; Liu et al., 2016) or distributed fea-
tures (Chen et al., 2015b; Lin et al., 2020). To
address the problem that supervised models can-
not be easily applied to new types, (Huang et al.,
2018) separates the event extraction task into two
parts (i.e., identification and classification) and pro-
poses a zero-shot transfer-learning classification
framework to apply the model trained with seen
event types to unseen ones. However, the prereq-
uisite of their high performance is the similarity
between seen and unseen event types. Unlike pre-
vious works, we do not use any annotation and
only leverage the label semantics to classify event
triggers and arguments. By combining our classi-
fication model and other NLP modules (i.e., SRL
and mention detection), we achieve a decent zero-
shot event extraction pipeline that can be easily
applied to any new documents and event types.

9.2 NLP without Annotation

Solving NLP problems without using annotations
has been explored in many NLP tasks including
text classification (Chang et al., 2008; Yin et al.,
2019), entity typing (Zhou et al., 2018), sequence
classification (Rei and Sogaard, 2018), and intent
detection (Xia et al., 2018). The idea of lever-
aging the label semantics was first proposed in
the dataless classification framework (Chang et al.,
2008), a predecessor name to what is now called
zero-shot classification. The idea was to first map
the text and labels into a common space using Ex-
plicit Semantic Analysis (ESA) (Gabrilovich and
Markovitch, 2007) and then pick the label with the
highest matching score. This direction was later ex-
tended in (Song and Roth, 2014; Chen et al., 2015a;
Li et al., 2016a,b; Song et al., 2016). The most
significant difference between our work and pre-
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vious approaches is that, rather than using a fixed
representation for each label, we use a group of
contextualized embeddings as the representation.

10 Conclusion

In this paper, we present a novel zero-shot classifi-
cation model for event triggers and arguments. By
leveraging the rich semantics contained in labels
and other constraints provided by the event defini-
tions, we successfully classify 83% of event trig-
gers and 54% of arguments to their correct types on
the ACE-2005 dataset. The ablation study demon-
strates that the contextualized usage of the labels
and correct way of using the context is key to our
success. Further experiments demonstrate that af-
ter combining the proposed zero-shot classification
model with other available NLP tools, we can ef-
fectively extract and classify events without using
any annotation. All the codes are submitted.
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