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Abstract

Recently, driven by numerous publicly available
machine reading comprehension (MRC) datasets,
MRC systems have made some progress. These
datasets, however, have two major limitations: 1)
the defined tasks are relatively simple, and 2) they
do not provide explainable evaluation which is crit-
ical to objectively and comprehensively review the
reasoning capabilities of current MRC systems. In
this paper, we propose GCRC, a new dataset with
challenging and high-quality multi-choice ques-
tions, collected from Gaokao Chinese (Chinese
subject from the National College Entrance Ex-
amination of China). We have manually labelled
three types of evidence to evaluate MRC systems’
reasoning process: 1) sentence-level relevant sup-
porting facts in an article required for answering a
given question, 2) error reason of a distractor (i.e.,
an incorrect option) for explaining why a distractor
should be eliminated, which is an important reason-
ing step for multi-choice questions, and 3) types
of reasoning skills required for answering ques-
tions. Extensive experiments show that our pro-
posed dataset is more challenging and very useful
for identifying the limitations of existing MRC sys-
tems in an explainable way, facilitating researchers
to develop novel machine learning and reasoning
approaches to tackle this challenging research prob-
lem.1

*These authors contributed equally.
†Corresponding author
1Resources will be available through https://

github.com/SXUNLP/GCRC

1 Introduction

Machine Reading Comprehension (MRC) is a crit-
ical task in many real-world applications, which
requires machines to understand a text passage,
and answer relevant questions. It evaluates ma-
chines’ understanding and reasoning capabilities
on the underlying natural language text. Numerous
MRC datasets have been proposed and facilitate
the progress of MRC systems, which have achieved
near-human performance on some datasets. How-
ever, this does not indicate the MRC systems have
owned human-like language understanding and rea-
soning capabilities.

One reason is that questions in current data are
not challenging enough, leading to most of them
get “solved” very soon. (Sugawara et al., 2018)
demonstrate that in many MRC datasets, a consid-
erable number of easy questions can be answered
based on the first few tokens of the questions or
word matching, without complex reasoning capa-
bilities. The other reason is that most datasets only
provide a black-box and overall evaluation on the
accuracy of predicted answers, which does not pro-
vide explainable evaluation on a system’s internal
reasoning capabilities. In other words, it is unable
to explain whether a system gets a correct answer
via the right reasoning process, and not enough to
identify the specific limitations of a system.

Recently, in order to address the problems men-
tioned, some datasets, focusing on reasonings and
providing additional information to evaluate the
internal reasoning steps of a system, have been
proposed. For example, MultiRC (Khashabi et al.,
2018) and HotpotQA (Yang et al., 2018) include
the questions requiring multi-sentence reasoning

1

https:// github.com/SXUNLP/GCRC
https:// github.com/SXUNLP/GCRC
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Figure 1: An annotated instance in GCRC, which is from the real Gaokao Chinese in 2019 (* indicates
the correct option). The sentences marked in yellow/green are respectively the SFs for Option A and C.
As mentioned in Option B, the SFs of Option B are the first paragraph. Similarly, the SFs of Option D are
the whole article. The contents marked in blue are the required reasoning skills for the options and the
ERs of distractors.

or multi-hop reasoning. Moreover, MultiRC and
HotpotQA both provide sentence-level supporting
facts (SFs), which can be used as a kind of internal
explanation for the answers, although locating SFs
is just the first step for question answering (QA), as
many questions need to integrate the SF informa-
tion with reasoning. R4C (Inoue et al., 2020) and
2WikiMultiHopQA (Ho et al., 2020) introduce a
chain of facts (reflecting entity relationships) as the
derivation steps to evaluate the internal reasoning
step of systems.

However, these kinds of reasonings are quite
limited and not enough to answer those complex
and comprehensive questions. For example, Fig-
ure1 shows a multi-choice question, where the op-
tion D “This article reflects the concerns about
biodiversity crisis and proposes countermeasures”
is a summarization of the whole given article, and
its judgement cannot be made by simply reasoning

over some entity relationships. Instead, the reason-
ing over the full information across the article will
be needed.

To address the above real challenges, we pro-
pose GCRC, a new challenging dataset with 8,719
multi-choice questions, collected from reading
comprehension (RC) tasks of Gaokao Chinese
(short for Chinese subject from the National Col-
lege Entrance Examination of China). GCRC is
of high quality and high difficulty level, because
Gaokao Chinese examinations are designed by ed-
ucational experts, with high-level comprehensive
questions and complicated articles, aiming to test
the language comprehension of adult examinees.

In order to provide explainable evaluation, in-
stances (e.g. Figure 1) in the dev. and test sets
(including 1725 questions and 6900 options, as pre-
sented in Table 2 and Section 4) of GCRC are anno-
tated with three kinds of information: (1) sentence-
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level supporting facts (SFs), serves as the basic
evaluation for a system’s internal reasoning; and
(2) error reasons (ERs) of a distractor (i.e. an
incorrect option) for explaining why a distractor
should be eliminated. In Gaokao Chinese, distrac-
tors are often designed in a very confusing way and
look like a correct option, although they are incor-
rect. Identifying the semantic difference between
a distractor and the given article, and knowing ex-
actly why a distractor is wrong could help systems
or examinees to choose the correct answers. There-
fore, we spend considerable effort to thoroughly
understand articles and manually label seven types
of ERs of a distractor as a form of internal reason-
ing step for multi-choice questions; and (3) types of
reasoning skills required for answering questions
in Gaokao Chinese. We introduce eight typical
reasoning skills in GCRC, which enable us to eval-
uate whether a system has corresponding reasoning
capability at individual question level.

Our main contributions can be summarized as:

• We construct a new challenging dataset
GCRC that is collected from Gaokao Chi-
nese, consisting of 8,719 multiple-choice
questions, which will be released on Github
in future.

• Three kinds of critical information are man-
ually annotated for explainable evaluation.
To the best of our knowledge, GCRC is the
first Chinese MRC dataset to provide most
comprehensive, challenging, high-quality ar-
ticles and questions for more deep explain-
able evaluation on different MRC system per-
formance. In particular, error reasons of a
distractor are the first introduced in this area
as an important reasoning step for complex
multi-choice questions.

• Extensive experiments show that GCRC is
not only a more challenging benchmark to
facilitate researchers to develop novel mod-
els, but also help us identify the limitations
of existing MRC systems in an explainable
way.

2 Related Work

2.1 Datasets from standard tests

There exist some datasets, collected from standard
exams/tests, including English datasets RACE (Lai

et al., 2017), DREAM (Sun et al., 2019), ARC
(Clark et al., 2018), ReClor (Yu et al., 2020), etc.,
and Chinese datasets C3 (Sun et al., 2020), MCQA
(Guo et al., 2017), GeoSQA (Huang et al., 2019)
and MedQA (Zhang et al., 2018) etc.

Some of these datasets are of specific domains.
For example, ARC is of the science domain and
the questions are from the American science exams
from 3rd to 9th grade. ReClor targets logical rea-
soning and the questions are collected from the Law
School Admission Council. MCQA and GeoSQA
are extracted from Gaokao History and Gaokao Ge-
ography respectively. Other datasets cover generic
topics. For example, RACE and DREAM are both
collected from the English exams for Chinese stu-
dents, while C3 is collected from the Chinese ex-
ams for Chinese-as-a-second-language learners.

GCRC is more similar to C3, RACE and
DREAM, as their questions are all generic ones.
However, their question difficulty level is different,
because questions in GCRC target for adult native
speakers, while questions in other datasets target
for second-language learners. As such, the GCRC
is much more challenging than other datasets. Ad-
ditionally, GCRC provides three kinds of rich in-
formation for more deep explainable evaluation.

2.2 Datasets with explanations

Some datasets provide explanation information.
(Wiegreffe and Marasovic, 2021) identified three
types of explanations: highlights, free-text and
structured explanations. Highlights are subsets of
the input elements (words, phrases, snippets or full
sentences) to explain the prediction. Free-text ex-
planations are textual or natural language explana-
tions containing the information beyond the given
input. Structured explanations have various forms
for specific datasets. One of the most common form
is a chain of facts as the derivation of multi-hop
reasoning for an answer.

(Inoue et al., 2020) classified explanations into
two types: justification explanation (collections of
SFs for a decision) and introspective explanation
(a derivation for a decision), which are respectively
corresponding to highlights and structured expla-
nations.

For the MRC task, a few datasets are with
explanation information. For example, MultiRC
(Khashabi et al., 2018) and HotpotQA (Yang et al.,
2018) provides sentence-level SFs, belonging to
justification explanations, to evaluate a system’s
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ability to identify SFs from articles that related to
a question/option. R4C (Inoue et al., 2020) and
2WikiMultiHopQA (Ho et al., 2020) provide both
justification and introspective explanations. In both
datasets, introspective explanations are a set of fac-
tual entity relationships. Their difference is that
the explanation of R4C is of semi-structured form,
while the explanation of 2WikiMultiHopQA is of
structured data form.

The dataset C3 provides the types of required
prior knowledge for 600 questions, and its goal is
to study how to leverage various knowledge to im-
prove the system’s ability for text comprehension.

Inspired by these datasets, we provide more
rich explanations in GCRC. Different from the ex-
isting work, besides SFs, we provide two additional
information. Specifically, we propose innovative
ERs of a distractor as a reasoning step for multi-
choice questions. In addition, we annotate the re-
quired reasoning skills for each instance, which
enable us to clearly identify the limitations of ex-
isting MRC systems. Note that prior knowledge
annotated in C3 is different from reasoning skills
in GCRC, as prior knowledge in C3 mainly in-
clude linguistic, domain specific, and general world
knowledge, while reasoning skills in GCRC focus
on the abilities of making an inference. Generally,
reasoning needs to integrate prior knowledge and
the information in the given text. As far as we know,
GCRC is the first Chinese MRC dataset with rich
explainable information for evaluation purpose.

3 Dataset Overview

Questions in GCRC are of multi-choice style.
Specifically, given an article D, a question Q and
its options O, the evaluation based on GCRC will
measure a system from the following aspects:

• QA accuracy. It is a common evaluation met-
ric, also provided by the other QA datasets.

• The performance of locating the SFs in D,
which is a basic evaluation metric to assess
whether MRC system can collect all neces-
sary sentences from articles before reason-
ing.

• The performance of identifying ERs of a dis-
tractor, which evaluates whether a system
is able to exclude incorrect options by deep
reasoning for multi-choice questions.

• The performance of different reasoning skills
required by questions. This evaluation shows
the limitations of reasoning skills for a MRC
system.

Next, we clearly define the ERs of a distractor and
the reasoning skills required for choosing a correct
option in Section 3.1 and Section 3.2 respectively.
The ERs of a distractor are concrete and focus on
the forms of the errors, while reasoning skills are
more abstract, referring to the abilities of making
an inference.

3.1 Error reasons of a distractor

As mentioned in Section 1, knowing exactly why
a distractor is wrong will help MRC systems or an
examinee select correct answers. Therefore, we in-
troduce error reasons of a distractor as an important
internal reasoning step, and present seven typical
ERs of a distractor after investigating the instances
in GCRC.

Wrong details. The distractor is lexically simi-
lar to the original text, but has a different meaning
caused by alterations of some words, such as modi-
fiers or qualifier Words.

Wrong temporal properties. The distractor
describes an events with wrong temporal properties.
Generally, we consider five temporal properties
defined in (Zhou et al., 2019): duration, temporal
ordering, typical time, frequency, and stationary.

Wrong subject-predicate-object triple rela-
tionship. The distractor has a triple relationship
of subject-predicate-object (sub-pred-obj) , but the
relationship conflicts with the ground truth triple
in the given article, caused by substituting one of
the components in the triple. For example, in Fig-
ure 1, Option A “The global ecosystem, which is
deeply influenced by human beings, helps alleviate
the biodiversity crisis.” has a sub-pred-obj triple

“the global ecosystem—alleviate—the biodiversity
crisis. However, from the given article, the correct
triple is “the global ecosystem—result in —the bio-
diversity crisis”, leading to the wrong distractor.

Wrong necessary and sufficient conditions.
The distractor intentionally misinterprets the nec-
essary and sufficient conditions expressed in the
original article. A necessary condition is a con-
dition that must be present for an event to occur,
while a sufficient condition is a condition or set
of conditions that will produce the event. For ex-
ample, the statement “Plants will grow as long as
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with air” is wrong, as air is the necessary condition
for plant growing, but besides air, plants also need
water and sunshine to grow.

Wrong causality. The distractor re-
verses/confuses the causes and effects mentioned
in an original article or add non-existent causality.
Generally, the cause-effect relationship is explicitly
expressed with causal connectives in distractors.

Irrelevant to the question. The distractor’s
contents are indeed mentioned in the given article,
but are irrelevant to the current question.

Irrelevant to the article. The distractor’s con-
tents are not mentioned in the original article. For
example, in Figure 1, “proposes countermeasures”
expressed in Option D “This article reflects the
concerns about biodiversity crisis and proposes
countermeasures.” is not mentioned in the given
article. Thus, Option D should be excluded.

3.2 Required reasoning skills

In Gaokao Chinese, RC tasks measure an exami-
nee’s text understanding and logical reasoning abil-
ities from different perspectives. We investigate the
skills required for answering questions in GCRC,
and introduce eight typical skills, which are orga-
nized into the following three levels according to
the amount of information needed and the com-
plexity of reasoning for QA. Some of the reasoning
skills (marked with *) are similar to those proposed
by Sugawara et al. (2017).

3.2.1 Level 1: Basic information capturing

This level covers the ability to capture relevant
detailed information distributed across the article,
and combine them to match with options.

Detail understanding. It focuses on distin-
guishing the semantic differences between the
given article and an option. The option, most of the
time, preserves the most lexical surface form of the
original article, but has some minor differences in
details by using different modifiers or qualifying
words.

3.2.2 Level 2: Local information integration

This level covers how to identify different types of
relationships linked between sentences in an article.
In Gaokao Chinese, the relationship’s expressions
are often implicit in a given article.

Temporal/spatial reasoning*. It aims to un-
derstand various temporal or spatial properties of
events, entities and states.

Coreference resolution*. It aims to under-
stand the coreference and anaphoric chains by rec-
ognizing the expressions referring to the same en-
tity in the given article.

Deductive reasoning. It focus on taking a gen-
eral rule or key idea described in an article, and
applying it to make inferences about a specific ex-
ample or phenomenon expressed in the option. For
example2, the statement of “we rely on mobile nav-
igation to travel and lose the ability to identify
routes.” is a specific phenomenon of the statement
of “while we are training artificial intelligence sys-
tems, we may also be trained by artificial intelli-
gence systems”.

Mathematical reasoning*. It performs some
mathematical operations, such as numerical sorting
and comparison, to obtain a correct option.

Cause-effect comprehension*. It aims to un-
derstand the causal relationships explicitly or im-
plicitly expressed in a given article.

3.2.3 Level 3: Global information integration

This level involves information integration of mul-
tiple sentences or the whole articles to comprehend
the main ideas, article organization structures and
the authors’ emotion and sentiment.

Inductive reasoning. It integrates information
from separate words and sentences, and makes in-
ferences about an option, which is often a summa-
rization of several sentences, a paragraph or the
whole article.

Appreciative analysis. It aims to understand
the article organization method, the authors’ writ-
ing style and method, attitude, opinion and emo-
tional state. For example, in Figure 1, Option B
“The first paragraph highlights the severity of the
biodiversity crisis by giving some statistics” is the
analysis result of authors’ writing style and method.

4 Construction and Annotation of
GCRC

We have spent tremendous effort to construct the
important GCRC dataset. Firstly, we search and
download about 10,000 latest (year 2015 to 2020)

2This example is translated from real Gaokao Chinese in
2018.
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multiple-choice questions of real and mock Gaokao
Chinese from five websites. Then, for preprocess-
ing, we remove those duplicated questions and
questions with figures and tables, and keep those
questions with four options (only one of them is cor-
rect). Next, we identify and rectify some mistakes,
such as typos, in articles or corresponding ques-
tions/options. Finally, the total number of ques-
tions in GCRC is 8,719. Moreover, we adjust the
labels of the correct answers, making them evenly
distributed over the four different options, i.e., A,
B, C, D.

Next, we will annotate the questions according
to the following three steps. We would emphasize
that the annotation process is extremely challeng-
ing, as it requires human annotators to fully under-
stand both syntactic structure and semantic infor-
mation of the articles and corresponding questions
and options, as well as identify the error reasons of
distractors, and reasoning skills required.

• Step 1: Annotation preparation. We
first prepare an annotation guideline, includ-
ing task definition and annotated examples.
Then, we invite 12 graduate students of our
team to participate in the annotation work.
To maintain high quality and consistent an-
notations, our annotators first annotate these
questions individually, and subsequently dis-
cuss and reach agreements if there is any dis-
crepancy between two annotators. The pro-
cess further improves the annotation guide-
line and better trains our annotators.

• Step 2: Initial annotations. Firstly, each
question is annotated by an annotator inde-
pendently, where we show an article, ques-
tion, all candidate options and the label of the
answer. Annotators have completed the fol-
lowing three tasks: (1) select the sentences in
the article, which are needed for reasoning,
as the sentence-level SFs; (2) provide ERs
of a distractor from the types discussed in
Section 3.1; (3) provide the reasoning skills
required for each option based on the skills
described in Section 3.2.

• Step 3: Annotation consistency. When
two annotators disagree with their own an-
notations, we invite the third annotator to
discuss with them, and reach the final anno-
tations. In the rare cases where they cannot
agree with each other, we will keep the an-
notations with at least two supports.

The annotators’ consistency is evaluated by the
Inter Annotator Agreement IAA) value and the
IAA value is 83.8%.

As mentioned before, manual annotations of
GCRC is expensive and complicated, because ques-
tions in Gaokao Chinese are designed for adult na-
tive speakers and thus are challenging. It requires
deep language comprehension to solve these ques-
tions. As a result, making explainable annotations
in GCRC across multiple levels implies GCRC is
a very precious dataset with valuable annotations.
Although the size of the dataset is not too big, it is
big enough to be used for providing diagnosis of
existing MRC systems. It also provides an ideal
testbed for researchers to propose novel transfer
learning or few-shot learning methods to solve the
tasks.

Statistics. We partition our data into train-
ing (80%), development (dev, 10%) and test set
(10%), mainly according to the number of ques-
tions. We have annotated three types of information
for a subset of GCRC. Specifically, we annotate
the sentence-level SFs for 8,084 options (of 2,021
questions) sampled from the training set, and 6,900
options (of 1725 questions) in the dev and test sets.

In addition, we annotate ERs of 6,159 distrac-
tors in the training, dev and test sets, and reasoning
skills for 6,900 options in the dev and test sets. We
believe our dataset with relatively big annotation
sizes can ensure us to identify the limitations of
existing RC systems in an explainable way. Table
1 shows the the details of GCRC data splitting and
corresponding annotation size.

Table 2 shows the detailed comparisons for
GCRC and other three RC datasets collected from
standard exams, including C3 (Sun et al., 2020),
RACE (Lai et al., 2017), DREAM (Sun et al.,
2019). As shown in Table 2, we observe that GCRC
is the longest in terms of the average length of arti-
cles, questions and options.

Table 3 shows the distribution of types of rea-
soning skills based on the dev and test sets. We
observe that 48.77% questions need detail under-
standing, and 33.10% questions require inductive
reasoning. In addition, Figure 2 presents the ERs
types distribution of distrators based on the dev and
test sets, in which 33.2% of distractors are with
wrong details and 26.4% of distractors include in-
formation irrelevant to the corresponding articles.
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Splitting Train Dev Test Total

# of articles 3790 683 620 5093

# of questions 6994 863 862 8719

# of questions/options with SFs 2021/8084 863/3452 862/3448 3746/14984

# of questions/distractors with ERs 2000/3261 863/1428 862/1470 3725/6159

# of questions/options with rea. ski. - 863/3452 862/3448 1725/6900

Table 1: Statistics of data splitting and annotation
size.

GCRC C3 GCRC C3 RACE DREAM
(in Chinese
Characters)

(in tokens)

Article len.
(avg)

1119.2 116.9 329.6 53.8 352.4 66.1

Question len.
(avg)

20.9 12.2 14.2 7.8 11.3 7.4

Option len.
(avg)

43.8 5.5 27.1 3.2 6.7 4.2

Table 2: Statistics and comparison among four
MRC datasets collected from standard exams.

5 Experiments

With our newly constructed GCRC dataset, it is
interesting to evaluate the performance of existing
models, and better understand GCRC’s characteris-
tics comparing with other existing data sets.

5.1 QA accuracy and GCRC difficulty
level

We evaluate the QA performance of several popular
MRC systems on GCRC, which will reflect the dif-
ficulty level of GCRC. Specifically, for comprehen-
sive evaluation, we employ four models, including
one rule-based model and three recent state-of-the-
art models based on neural networks.

• Sliding window (Richardson et al., 2013).
It is a rule-based baseline and chooses the
answer with the highest matching score. In
particular, it has TFIDF style representation
and calculates the lexical similarity between
a sentence (via concatenating a question and
one of its candidate options) and each span
in the given article with a fixed window size.

• Co-Matching (Wang et al., 2018). It is a
Bi-LSTM-based model and consists of a co-
matching component and a hierarchical ag-
gregation component. The model not only
matches the article with a question and each
candidate option at the word-level, but also
captures sentence structures of the article. It
has achieved promising results on RACE.

Figure 2: Distirbution(%) of types of ERs of dis-
tractors based on the dev and test sets, including
3,725 questions and 6,159 distractors.

Reason skills Dev Test all
Level 1: Basic information capturing Detail 47.11 50.44 48.77

Level 2: Local information integration

Temporal/Spatial 0.84 0.73 0.79
Co-reference 5.42 4.88 5.15
Deductive 3.53 3.79 3.66
Mathematical 0.45 0.67 0.56
Cause-effect 5.67 4.76 5.21

Level 3: Global information integration Inductive 34.75 31.45 33.10
Appreciative 2.23 3.30 2.76

Leve 1: Basic information capturing 47.11 50.44 48.77
Level 2: Local information integration 15.91 14.83 15.36
Level 3: Global information integration 36.98 34.75 35.87

Table 3: Distribution (%) of types of required skills
based on the annotated examples, totally including
1,725 questions and 6,900 options.

Note that we have used 300-dimensional
word embeddings based on GloVe (Global
Vectors for Word Representation).3

• BERT (Devlin et al., 2019). It is a pre-
trained language model, which adopts multi-
ple bidirectional transformer layers and self-
attention mechanisms to learn contextual re-
lations between words in a text. BERT has
achieved very good performance on numer-
ous NLP tasks, including the RC task defined
by SQuAD. We employ Chinese BERT-base
and English BERT-base released on the web-
site.4

• XLNet (Yang et al., 2019). It is a generalized
autoregressive pretraining model, which uses
a permutation language modeling objective
to combine the advantages of autoregressive
and autoencoding methods. XLNet outper-
forms BERT on 20 tasks. For experiments on
Chinese datasets, we use XLNet-large and
its Chinese version released on the website.5

3The English word embed-
ding:https://nlp.stanford.edu/projects/glove/; and the Chinese
word embedding: https://nlp.stanford.edu/projects/glove/

4https://github.com/google-research/bert
5https://github.com/brightmart/xlnetzh
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In addition to evaluate the performance of differ-
ent models on GCRC, we also want to see how
these models perform on other datasets, namely
C3, RACE, and DREAM. In order to fairly and ob-
jectively compare with them, we randomly sample
from these datasets, and create three new datasets
with the same sizes of the splits (train, dev, test) as
GCRC (shown in Table 1). The hyper-parameters
of these neural baselines can be seen in Appendix.

Human Performance. We obtain the human
performance on 200 questions, which are randomly
sampled from the GCRC test set. We invite 20 high
school students to answer these questions, where
they are provided with the questions, options and
articles. The average accuracy of human is 83.18%.

We first use the training sets from four datasets
to train four models, which are subsequently used
to evaluate their accuracies on respective test data.
Dev sets are used to tune the values of the param-
eters of different models. Table 4 shows the com-
parison results. We observe that the neural network
based models outperform the rule based sliding
window model. In addition, pretrained models per-
form better than the non-pretrained models in most
cases. Moreover, it is interesting to observe that
all four existing models generally perform worse
on GCRC than other three datasets, and the human
performance on GCRC is also the lowest among
the four datasets. This clearly indicates that GCRC
is more challenging. Meanwhile, it can be seen
that the performance gap between human and the
best system on GCRC is 46.45%, suggesting that
there is sufficient room for improvement, which
contradicts with some overly optimistic claims that
machines have exceeded humans on QA. As there
is a significant performance gap between machines
and humans, GCRC dataset facilitates researchers
to develop novel learning approaches to better un-
derstand its questions and bridge the huge gap.

GCRC C3 RACE DREAM
Sliding window 27.70% 36.70% 30.85% 40.08%
Co-Matching 35.73% 45.01% 35.38% 48.91%
BERT 30.74% 64.96% 46.13% 53.36%
XLNet 35.15% 60.90% 50.00% 59.63%
Human 83.18% 96%* 95.5%* 94.5%*

Table 4: Accuracy comparison between four com-
putational models and human on four benchmark
datasets (* indicates the performance is based on
the annotated test set and copied from the corre-
sponding paper).

In the next few subsections, we will study
whether a representative model, i.e. BERT, can
perform well in the explainable evaluation related
subtasks, namely locating sentence-level SFs, iden-
tifying ERs, and the performance of different rea-
soning skills required by questions.

5.2 Performance of locating sentence-
level SFs using BERT

We investigate whether BERT benefits from
sentence-level SFs. We conduct an experiment,
in which we input the ground-truth SFs, instead
of the given article, to BERT for question answer-
ing. We observe that the accuracy of QA on the
test set of GCRC is 37.47%. Comparing with the
result shown in Table 4, the accuracy is increased
by 6.73%, indicating that locating SFs is helpful
for QA. On the other hand, we can see that the im-
provement is still far from closing the gap to human
performance because the questions are difficult and
need further reasoning to solve.

Due to the usefulness of SFs, we train a BERT
model to identify whether a sentence belongs to
SFs. We regard this task as a sentence pair (i.e.,
an original sentence in the given article and an
option) classification task. We use the GCRC
subset (2,021/863/862 questions as shown in Ta-
ble 1) annotated with SFs for training and test-
ing, where the training, dev and test sets include
200,798/85,024/83,656 sentence-option pairs re-
spectively. The experimental results are shown in
Table 5. We can see that performance of locating
the SFs is still low (in terms of precision P, recall R
and F1 measure), indicating that accurately obtain-
ing the SFs in GCRC is challenging and directly
applying BERT will not work well.

P R F1
Dev 78.07% 50.18% 61.10%
Test 70.20% 51.46% 59.39%

Table 5: Results of BERT locating SFs.

5.3 Performance of identifying ERs of a
distractor using BERT.

In order to evaluate whether BERT model under-
stands why a distractor is excluded, we modify
BERT model and add a new component to perform
the identification of distractors’ ERs. The com-
ponent is a multi-label (i.e., 8 labels including 1
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ERs #of options R P
Wrong details 484 1.65% 9.09%
Wrong temporal properties 29 13.79% 0.55%
Wrong subject-predicate-object triple 190 2.11% 5.88%
Wrong causality 218 24.77% 7.62%
Wrong necessary and sufficient conditions 106 1.89% 2.22%
Irrelevant to the question 85 17.65% 2.21%
Irrelevant to the article 352 4.83% 17.35%
Correct options 1984 28.18% 56.69%

Table 6: Results of BERT identifying ERs of dis-
tractors.

correct type and 7 types of ERs) classifier to pre-
dict the probability distribution of the types of ERs,
and is jointly optimized with normal QA, and it
shares the low-level representations. The classi-
fier’s objective is to minimize a cross entropy loss,
which is jointly optimized with normal QA, and
they share the low-level representations. For this
task, the contextual input of BERT is ground-truth
SFs, instead of the given article. The results are
shown in Table 6. We observe that the performance
of identification of ERs is quite low, indicating the
significance and value of our dataset, which is to
identify the limitations of existing systems on ex-
plainability and facilitates researchers to develop
novel learning models.

5.4 Performance of different reasoning
skills required by questions using
BERT

We also investigate BERT’s performance on the
questions requiring different reasoning skills. We
categorize the performance for each type of reason-
ing skills on the test set of GCRC. Table 7 shows
the results. Note that the reasoning skills are anno-
tated for options of questions. We observe BERT
obtains the lowest score on the options requiring
deductive reasoning. Overall, the system generally
performs worse on each type of options, indicating
the reasoning power of the system is not strong
enough and needs to be significantly improved.

Reasoning Detail understanding Temporal/spatial Coreference Deductive
#of options 1683 42 179 143
Accuracy 31.97% 61.90% 39.66% 35.66%

Mathematical Cause-effect Inductive Appreciative
#of options 40 175 1056 130
Accuracy 60.00% 40.00% 33.14% 47.69%

Table 7: Results of BERT on GCRC by reasoning
skills required for QA.

From the above, it can be seen that no baseline
is realized to output answers, sentence-level SFs
and ERs of a distractors together, but it doesn’t

affect our dataset to diagnose the limitations of ex-
isting RC models. For each task, we modify the
existing model of BERT, output the corresponding
explanations, and report their performance. Thus,
the limitations of the model can be clearly identi-
fied. In the future, we will realize such a baseline
that can do all the tasks together, and we will de-
sign a new joint metric for evaluating the whole
question-answering process.

6 Conclusions

In this paper, we present a new challenging ma-
chine reading comprehension dataset (GCRC), col-
lected from Gaokao Chinese, consisting of 8,719
high-level comprehensive multiple-choice ques-
tions. To the best of our knowledge, this is cur-
rently the most comprehensive, challenging, and
high-quality dataset in MRC domain. In addition,
we spend considerable effort to label three types of
information, including sentence-level SFs, ERs of
a distractor, and reasoning skills required for QA,
aiming to comprehensively evaluate systems in an
explainable way. Through experiments, we observe
GCRC is very challenging data set for existing mod-
els, and we hope it can inspire innovative machine
learning and reasoning approach to tackle the chal-
lenging problem and make MRC as an enabling
technology for many real-world applications.
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Appendix

A. Hyper-parameters of Neural Baselines
The hyper-parameters of Co-Matching, BERT,

XLNet are shown in Table 8, Table 9 and Table 10.

GCRC C3 RACE DREAM
train batch size 8 16 16 32
dev batch size 8 16 8 32
Test batch size 8 16 8 32
epoch 50 100 50 100
learning rate 3e-5 1e-3 1e-3 2e-3
seed 128 64 256 128
dropoutP 0.2 0.2 0.2 0.2
emb dim 300 300 300 300
mem dim 150 150 150 150

Table 8: Hyper-parameters of Co-Matching

GCRC C3 RACE DREAM
train batch size 32 16 16 32
dev batch size 4 16 4 16
Test batch size 4 16 4 16
len 320 384 450 384
epoch 6 3 10 3
learning rate 3e-5 1e-5 2e-5 1e-5
gradient accumulation steps 8 8 8 8
seed 42 42 42 42

Table 9: Hyper-parameters of BERT

GCRC C3 RACE DREAM
train batch size 2 2 1 2
dev batch size 2 2 1 2
Test batch size 2 2 1 2
len 320 320 320 180
epoch 16 16 5 8
learning rate 2e-4 1e-3 2e-5 1e-5
gradient accumulation steps 2 2 24 2

Table 10: Hyper-parameters of XLNet


