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Abstract

Despite considerable advancements with deep
neural language models (LMs), neural text
generation still suffers from degeneration: the
generated text is repetitive, generic, self-
contradictory, and often lacks commonsense.
Our analyses on sentence-level attention pat-
terns in LMs reveal that neural degeneration
may be associated with insufficient learning
of task-specific characteristics by the atten-
tion mechanism. This finding motivates on-
the-fly attention modulation1– a simple but ef-
fective method that enables the injection of
priors into attention computation during infer-
ence. Automatic and human evaluation results
on three text generation benchmarks demon-
strate that attention modulation helps LMs gen-
erate text with enhanced fluency, creativity,
and commonsense reasoning, in addition to
significantly reduce sentence-level repetition.

1 Introduction

Neural text generation is critical for a wide range
of downstream natural language applications. How-
ever, the standard approach – using a Transformer-
based (Vaswani et al., 2017) language model (e.g.,
Radford et al., 2019) with maximum likelihood
fine-tuning and non-stochastic decoding – is known
to exhibit degeneration (Welleck et al., 2019). De-
spite being pre-trained on large amounts of data,
text generated by neural models is observed to be
repetitive, generic, self-contradictory, and lacking
commonsense (Holtzman et al., 2020).

Many explanations have been proposed for neu-
ral text degeneration, including inappropriate train-
ing objectives (Welleck et al., 2019) and decoding
discrepancies relative to human language (Holtz-
man et al., 2018, 2020). While the aforementioned
may be factors for neural degeneration, we show

∗*This work was done when the first author was an intern
at AI2.

Figure 1: Example of fine-tuned GPT2-L outputs with-
out (top) and with (bottom) attention modulation on
αNLG. The task is to generate a plausible explana-
tory hypothesis H for observations O1 and O2. Our
proposed attention modulation injects the task-specific
prior – LMs should consider both observations rela-
tive equally – through balancing the sentence-level at-
tention weights (Eqn. 5) in Transformer blocks dur-
ing inference. Applying attention modulation with the
aforementioned prior make sentence-level attentions
from generation to observation pairs (O1,O2) more bal-
anced2, which are reflected in the sentence-level atten-
tion heatmaps of GPT2-L (darker = lower attention)
across layers (y-axis) and heads (x-axis).

that insufficient learning of task-specific character-
istics – reflected in the self-attention mechanism in
transformer blocks – is associated with neural text
degeneration. We demonstrate that degeneration
is alleviated if we inject priors through attention
modulation (AttnM) during inference.

Self-attention – the ubiquitous component of
Transformers – is task-agnostic with a large learn-
ing capacity for many NLP tasks (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020). It

2attention ratios are normalized mean sentence-to-sentence
attention from generation H to observations O1 and O2
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learns the general characteristics of language pro-
cessing through pre-training on large amounts of
unlabeled data. For example, multiple analyses
have suggested that attention patterns in pre-trained
Transformers implicitly encode syntactic informa-
tion (Raganato and Tiedemann, 2018; Michel et al.,
2019; Vig and Belinkov, 2019). In sequence trans-
duction tasks, these learned characteristics, embed-
ded in attention, make pre-trained Transformers a
powerful language model (Radford et al., 2019).

A final task-specific step is typically required
for adapting a task-agnostic language model to
perform the desired task3. However, these task-
specific characteristics might not sufficiently co-
incide with general characteristics even after fine-
tuning. For example, task-specific characteristics
embedded in attention patterns – such as word
alignments for machine translation – are often
noisy and imperfect for generalization (Kobayashi
et al., 2020).

We show that insufficient learning of task-
specific characteristics, reflected in sentence-level
attention patterns4 often being out of focus, may
be associated with neural text degeneration (§3).
Based on this observation, we propose a simple
attention modulation framework that can dynami-
cally redistribute sentence-level attention weights
by injecting task-specific priors in Transformer
blocks for different downstream tasks (§4). Re-
markably, in long-range narrative story generation,
abductive reasoning generation and constrained
commonsense text generation, both automatic and
human evaluation have shown improved quality
in fluency, dullness, repetition, and commonsense
reasoning with attention modulation (§6).

2 Background

We briefly discuss how vanilla attention works, as
well as Transformer architecture used in this paper.

Single-headed attention Given a sequence of d-
dimensional input vectors x = {x1, . . . ,xn}, at-
tention mechanism computes a set of weights based
on a query vector yi ∈ Rd:

Attn(x,yi) = (αi,1(x,yi), . . . , αi,n(x,yi)) (1)

3Brown et al. (2020) have shown that GPT3 greatly im-
proves task-agnostic, few-shot performance, but still struggles
on tasks with strong task-specific characteristics.

4We study the global context in the multi-sentence prompts
and choose sentence-level attention (Eqn. 7) as the experiment
unit, since sentences are linguistic units of complete meaning.

where αi,j is the attention weight that yi pays to xj .
One formulation of attention — scaled dot product
attention — is computed as:

αi,j := softmax
xj∈x

(q(yi)k(xj)
>

√
d

)
∈ R (2)

where query q(·) and key k(·) functions are linear
transformations. In self attention, every xi is used
as the query vector (yi). An updated representation
x̃i is computed as a weighted sum of value vectors
that are linearly transformed by v(·):

x̃i =
∑
xj∈x

αi,jv(xj). (3)

Multi-head attention In multi-headed attention
(MHA), Nh attention heads are computed indepen-
dently to obtain the updated x̃i:

x̃i = Wo

Nhn

h=1

( ∑
xj∈x

αh
i,jv

h(xj)
)
. (4)

αh
i,j follows Eqn. 2 except the model dimension

in each head h is often reduced to dh = d
Nh

. x̃i is
obtained by the concatenation of lower-rank repre-
sentations from all heads and Wo ∈ Rd×h·dh .

GPT2-L GPT2 (Radford et al., 2019) is a family
of Transformer-based language models (LMs) that
follows the architecture of stacked decoder. As
GPT2 follows a multi-layer and multi-headed set-
ting, αi,j is specific to a layer l and head h, noted as
αl,h
i,j . We use the GPT2-L model that has 36 layers

with 20 heads per layer (762M total parameters).

3 Neural text degeneration vs. attention

As researchers have sought to understand the in-
ternal mechanisms of Transformers, the attention
patterns exhibited by these heads have drawn con-
siderable study (Vig and Belinkov, 2019; Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019). We
perform sentence-level attention analysis to explore
whether aggregated attention patterns are associ-
ated with neural text degeneration.

3.1 Sentence-level attention

We first define the sentence-to-sentence attention
of a language modelM with L layers andH heads.
Given two sentences p and g such that p precedes g,



1263

the mean ᾱl,h
g,p and max α̂l,h

g,p sentence-to-sentence
attentions from g to p for layer l and head h are:

ᾱl,h
g,p =

|g|∑
i=1

|p|∑
j=1

αl,h
i,j (gi, pj)

|g| · |p|
(5)

α̂l,h
g,p = max

i∈{1,...,|g|}
j∈{1,...,|p|}

αl,h
i,j (gi, pj). (6)

The aggregated sentence-to-sentence attention
over the Transformer architectureM is defined as:

αMg,p =

L∑
l=1

H∑
h=1

αl,h
g,p

L ·H
(7)

where α ∈ {ᾱ, α̂} computes either the mean or the
max sentence-level attention overM.

3.2 Is neural text degeneration related to
attention patterns?

We conduct experiments to evaluate whether neural
text degeneration is associated with sentence-level
attention patterns. Empirical results on two types
of neural degeneration that are easy to detect – rep-
etition and lacking commonsense reasoning under
constraints – reveal their association.

Repetition vs. attention One common form of
neural text degeneration is sentence-level repetition
(Welleck et al., 2019). This type of degeneration
happens frequently in our experiment on ROCSto-
ries test set (§6.1): given a five-sentence prompt,
35.4% of the consecutive sentences from the next
five greedily generated sentences by the fine-tuned
GPT2-L are exact repetitions. We check whether
sentence-level attention patterns behave differently
when generating repeated or different consecutive
sentences.

We inspect the attention behavior by measur-
ing the change of sentence-level attention when
generating two consecutive sentences. The genera-
tions of fine-tuned GPT2-L on ROCStories test set
are separated into two subsets {Drepeated,Ddifferent}:
in which consecutive sentences that are either re-
peated (i.e., degenerate) or different. Given the fine-
tuned GPT2-L language modelM, we measure the
sentence-level attention change ∆ on the prompt
sentence pj∈{1,...,5} while generating the consecu-
tive sentence pair (gi, gi+1), i ∈ {1, . . . , 4}, aggre-

Figure 2: Mean sentence-level attention change of
GPT2-L on ROCStories test set, while generating dif-
ferent (red) or repeated (blue) consecutive sentences.

gated over the subset D ∈ {Ddifferent,Drepeated}:

∆(j,D) =
∑
d∈D
|ᾱM

gdi+1,p
d
j
− ᾱM

gdi ,p
d
j
|/|D| (8)

where ᾱMgi,pj is the mean sentence-level attention
from sentence gi to sentence pj defined in Eqn. 7.

Figure 2 plots the aggregated mean sentence-
level attention change over prompt sentences when
GPT2-L generates repeated (red) or different (blue)
consecutive sentences. The sentence-level attention
changes are vastly lower on all prompt sentences
when generating repeated consecutive sentences.
Thus, sentence-level repetition may be correlated
with the insufficient change of sentence-level atten-
tion. In §4 and §6, we show that generation quality
can be vastly improved by injecting the prior – at-
tention should look at the prompt differently when
generating different sentences – through our pro-
posed attention modulation.

Lack of commonsense reasoning vs. attention
Text generated by neural language models is also
observed to be lacking commonsense reasoning
(Mao et al., 2019). We check whether this type
of neural degeneration is associated with attention
patterns. A benchmark dataset for generative com-
monsense reasoning – CommonGen (Lin et al.,
2020) – is used as our test bed. CommonGen is
designed for constrained commonsense reasoning:
given a set of common concepts (e.g., use, tool,
piece, metal); the task is to generate a coherent
and plausible sentence covering all these concepts
(e.g., "a piece of metal is used for making tools").
Covering the concepts in generation requires rela-
tional reasoning with background commonsense
knowledge.



1264

agg. max attn. SD #

covered 0.434 0.0040 4515
uncovered 0.376 0.0068 1473

Table 1: Aggregated max sentence-level attention of
the fine-tuned GPT2-L; the results are aggregated from
the generation to covered or uncovered concepts on the
CommonGen test set. agg. max attn., SD, # refer to
aggregated max sentence-level attention, standard devi-
ation, and the number of instances.

Each concept is represented as a prompt sen-
tence in our experiments.5 During generation, a
concept (e.g.swim) is covered if its reflected form
(e.g.{swim, swimming, swam, swum}) is gener-
ated in the CommonGen test set. We use a fine-
tuned GPT2-L for the generation. Among the 5988
concepts in the prompt, about 75% of them are
covered in the generation of GPT2-L. We can then
easily separate sentence-level attention from the
generation to the concept into two subsets: concept
in the prompt that is covered or uncovered by the
generated sentence.

Table 1 shows the results of max sentence-level
attention (Eqn. 7) of the finetuned GPT2-L on
the CommonGen test set6. We can observe that
sentence-level attention from the generation to the
concept is vastly higher when the concept is cov-
ered. Compared to that of uncovered concepts, the
aggregated max sentence-level attention is 15.4%
higher. Therefore, failing to generate a common
concept through reasoning may be associated with
insufficient attention to the concept.

In both cases, neural text degeneration is asso-
ciated with insufficient attention to elements that
are important for downstream generations. This
motivates us to explore whether we can inject these
priors in the language model by altering the atten-
tion mechanism to alleviate degeneration.

4 Method

This section describes our method – attention mod-
ulation – that can alleviate neural text degeneration.
In §4.1, we describe the general attention modula-
tion framework. In §4.2, §4.3, and §4.4, we discuss
the priors injected through attention modulation

5We can obtain a clear boundary for each concept with this
design choice of adding a period as the separator, as concepts
can be tokenized into multiple subwords by GPT2 tokenizers.

6We measure the max sentence-level attention rather than
the mean sentence-level attention on CommonGen, as the
attention to a concept is usually reduced once it is generated.

for three different tasks: narrative story generation,
abductive reasoning generation, and constrained
commonsense reasoning.

4.1 Attention Modulation

Attention modulation aims to change the attention
weights of a Transformer-based language model
during inference, so that the generation can reflect
priors that alleviate neural text degeneration. This
additional signal is added to the self-attention com-
putation in the Transformer blocks.

We reformulate the attention computation of Eqn.
2 by adding an attention reweighting function f ,
where priors can be injected. Given a sequence
of input tokens x, the self-attention from xi to xj

(i ≥ j) while generating the t-token is reformulated
to:

αt
i,j := softmax

xj∈x

(q(xi)k(xj)
>

√
d

+ fi,j(x,α
t−1)

)
(9)

where f(x,αt−1) is the attention reweighting func-
tion and αt−1 is the attention weight matrix for all
layers and heads in the Transformer architecture
at time step t− 1. The attention reweighting func-
tion f can be either pre-defined or learned. In our
experiments, we inject pre-defined sentence-level
priors (heuristics) through f and show that this
injection alleviates neural text degeneration. We
leave the learning of better reweighting functions
automatically to future work.

In the following sections, we describe sentence-
level attention reweighting functions that are used
for three different text generation tasks.

4.2 ROCStories: narrative generation

As shown in §3, sentence repetition in long-form
generation may be associated with insufficient at-
tention change while generating consecutive sen-
tences. To amplify the attention changes, we can
redistribute sentence-level attention with some pri-
ors while generating consecutive sentences.

We choose the prior that language model should
consider long-range context during generation, as
we observed that attention mostly focuses on the
near history in many cases (Appendix A.1). Note
this prior also increases the sentence-level attention
change while generating consecutive sentences: the
sentence-level attention for all previous sentences
is always re-balanced based on the newly-generated
sentence. To balance the attention of tokens in
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each sentence received while generating the next
sentence, we define the attention reweight func-
tion in Eqn. 9 with the aforementioned prior for
ROCStories as:

fi,j(x,α
t−1
i,j ) =

1

αt−1
gi,pj

. (10)

As later sentences in the prompt usually receive
larger sentence-level attention weights (Appendix
A.1), attention reweighting function defined in Eqn.
10 will add a large weight to tokens in the early
sentences and a small weight to tokens in the late
context sentences. The simple heuristic of balanc-
ing context sentences to be considered relatively
equal, namely more weights on early context sen-
tences, might not be optimal prior. However, it im-
proves the long-form story generation in multiple
measures, including fluency, interesting, newness,
and repetition (§6.1).

4.3 αNLG: abductive reasoning generation
The second benchmark dataset we tested with at-
tention modulation is αNLG (Bhagavatula et al.,
2020). This dataset is proposed for abductive rea-
soning generation: given two observations O1 and
O2, the model needs to generate a valid hypothesis
h that explains what happened between the two
observations. For example, given O1: "Today was
the first day of school." and O2: "I hate school.",
the task is to generate h such as "The teacher made
fun of me." as a plausible explanation.

Bhagavatula et al. (2020) has shown that the
fine-tuned GPT2 performs far below human per-
formance on the αNLG task. We hypothesis that
this may be associated with insufficient learning of
sentence-level attention to both observations; for
example, the model might over-fit to one of the
observations for generation. Thus, we inject the
prior – the language model should consider both
observations relative equally – while generating a
plausible explanation. This prior can be injected
with attention reweighting function defined in Eqn.
10.

4.4 CommonGen: constrained commonsense
generation

The third benchmark is CommonGen – a con-
strained text generation challenge for generative
commonsense reasoning. CommonGen requires
machines to generate a realistic sentence using all
concepts from a given concept set by conducting
commonsense reasoning over the relations among

the given concepts. To successfully generate a plau-
sible and grammatical sentence that follows the
commonsense, models need to conduct common-
sense reasoning over the relations among the given
concepts. Our experiment in §3.2 shows that the
fine-tuned GPT2-L can only cover about 75% of
concepts during generation. We infer from Table
1 that this may be associated with GPT2-L giving
insufficient sentence-level attention to uncovered
concepts. Thus, we propose a simple heuristic –
model should pay more attention to concepts that
are not covered yet – to be injected with attention
modulation.

Consider the prompt with m concepts c =
{c1, . . . , cm} and a partially generated sentence
y1, . . . , yt−1. While generating the t-th token, the
sentence-level reweighting function from the i-th
token to the j-th token in ck is defined as:

fi,j(x) =

{
1/m if ck ⊂ y1:t−1
1 else

(11)

Intuitively, if a concept ck is covered in the par-
tial generation, attention modulation with Eqn. 11
will reduce the attention weights of the tokens in
concept ck.

5 Experimental Setups

This section describes the experiment setups,
including the baselines, decoding algorithms,
datasets, and evaluation metrics.

Model architecture & baseline Attention mod-
ulation is architecture-agnostic and can be applied
to any Transformer-based models that contain self-
attention computation. We choose GPT2-L (Rad-
ford et al., 2019) for our experiments, which has
achieved state-of-the-art performance on a variety
of generation tasks (Vig and Belinkov, 2019). At-
tention modulation can be applied to any range
of layers in the Transformer. To compare models
with and without attention modulation on each of
the three generation tasks, we use the best fine-
tuned GPT2-L based on the validation set after
fine-tuning for 4 epochs with the default settings.

Decoding Attention modulation directly changes
the attention weights of the context tokens during
inference. It is orthogonal to different decoding al-
gorithms that change the searching strategies based
on the softmax distribution emitted by Transform-
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next 1 sent. next 2 sent. next 3 sent. next 4 sent. next 5 sent.
uniq. % rel. uniq. % rel. uniq. % rel. uniq. % rel. uniq.↑ % rel.↑ % rep.↓

w/o AttnM 9.08k 48.59 13.58k 48.78 15.71k 49.20 16.01k 49.97 17.03k 50.52 35.43
w/ AttnM (ours) 10.39k 52.92 15.12k 54.23 18.33k 55.35 20.41k 55.78 22.69k 55.78 17.49
ratio 1.14 1.12 1.16 1.24 1.34

Table 2: Test results of the fine-tuned GPT2-L w/ and w/o attention modulation on ROCstories with the greedy
decoding algorithm. uniq. represent the unique number of tokens generated in the whole test corpus, which
measures the number of new unique tokens generated. rel. represent relevancy, which measures the percentage
of tokens generated appears in the prompt. rep. measures the sentence-level repetition – whether two sentences
generated are identical.

ers.7 We present the results with non-stochastic
decoding algorithms (i.e. greedy decoding and
beam search), as generations based on them truly
reflect the token-level probabilities predicted by the
model (Holtzman et al., 2018).

Datasets We use three different generation
datasets – ROCStories (Mostafazadeh et al., 2016),
αNLG (Bhagavatula et al., 2020), and Common-
Gen (Lin et al., 2020). For ROCStories, we used
the 2017 version and split the data into 75/10/15
for train/val/test.

Evaluation On ROCStories, we measure dull-
ness, relevancy and repetition similar to Welleck
et al. (2019). We report the number of unique to-
kens generated, where the generation is less dull if
more unique tokens are generated. For repetition,
we directly measure sentence-level repetition: two
generated sentences are repeated if their strings are
the same. For relevancy, we measure the percent-
age of generated tokens that appear in the prompt.
Besides, we perform a human evaluation, where
three annotators are asked to rate the generations
based on fluency, interestingness, newness, rele-
vancy, and repetition.

On αNLG, we score the generated explanation
with respect to the reference using the following
automatic metrics: BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015).
In addition, we ask annotators to compare the gen-
erated explanations without and with attention mod-
ulation. Human judges are asked to decide which
system provides a more plausible explanation of
the observations.

On CommonGen, we report SPICE (Anderson
et al., 2016) – a measure that evaluates seman-
tic propositional content, in addtion to BLEU,

7These search-based decoding algorithms do not resolve
the poorly generated token-level probabilities.

Figure 3: Human evaluation results on the next 1 to
5 sentences generated without (dashed lines) and with
(solid lines) attention modulation (1000 samples).

ROUGE, METEOR, CIDEr. We also report Cover-
age (Lin et al., 2020), which computes the average
percentage of input concepts that appear in the lem-
matized outputs. We conduct a human evaluation
following the protocol of Lu et al. (2020). Hu-
man judges are asked to compare two systems in
terms of fluency, coverage (covers the concept),
and overall quality (covers the concepts and fol-
lows commonsense).

6 Result

In this section, we present the vast improvements of
the fine-tuned GPT2-L with attention modulation
on three narrative generation and generative reason-
ing tasks: ROCStories, αNLG, and CommonGen.

6.1 ROCstories

Table 2 indicates that attention modulation signif-
icantly reduces repetition in narrative generation,
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R-2 R-L B-3 B-4 Meteor CIDEr SPICE Coverage

greedy w/o AttnM 14.06 34.13 26.19 17.92 25.82 10.81 22.14 76.50
w/ AttnM (ours) 14.71 35.15 27.53 18.91 26.23 11.61 23.22 79.18

beam=5 w/o AttnM 16.68 36.92 32.39 23.36 26.87 12.24 22.83 76.99
w/ AttnM (ours) 17.14 38.23 33.92 24.03 27.48 12.88 24.24 81.27

beam=10 w/o AttnM 17.25 37.37 33.81 24.39 27.51 12.58 23.24 78.68
w/ AttnM (ours) 17.59 38.71 35.72 25.93 27.71 13.32 24.36 81.24

beam=20
Lin et al. (2020) 16.85 39.01 33.92 23.73 26.83 12.19 23.57 79.09
w/o AttnM 17.98 38.07 35.14 25.61 27.63 12.90 23.28 79.62
w/ AttnM (ours) 18.11 39.32 36.69 26.80 28.02 13.71 23.94 81.85

Table 3: CommonGen test results of the fine-tuned GPT2-L w/ or w/o attention modulation based on different
decoding algorithms.

B-4 R-L Meteor CIDEr Human

w/o AttnM 13.51 18.29 13.18 47.69 14%
w/ AttnM (ours) 13.52 18.01 13.18 48.20 33%

Table 4: Evaluations of the fine-tune GPT2-L on αNLG
using greedy decoding.

while increasing the relevancy of generated sen-
tences to the original story. We can observe a vast
improvement in the number of unique generated
tokens using attention modulation, indicating a re-
duced repetition rate (confirmed by the % number
of repeated sentences in the next five sentence gen-
erated – 35.43 vs. 17.49 for our approach). This
intuition is confirmed by our human evaluation in
Figure 3, where the GPT2-L with attention modula-
tion produces sentences that are more fluent, more
interesting, more novel, and less repetitive than
the original decoder. Furthermore, we note that
the difference in performance across these evalua-
tion categories generally increases as the number
of generated sentences increases, indicating less
sensitivity to long-form degeneration.

6.2 αNLG

Table 4 presents the automatic and human evalua-
tion results on αNLG. We can see that our model
performs similarly with and without attention mod-
ulation in terms of automatic evaluation. How-
ever, our human evaluation results in the last col-
umn show that overall, the human judges prefer
the explanations produced using attention modula-
tion significantly more than those of the original
model. With 100 samples generated, 33% of the
time, human judges select explanations generated
with attention modulation as more plausible. In
contrast, explanations from the original model are

only preferred 14% of the time.

6.3 CommonGen

Table 3 shows the automatic evaluation results on
the CommonGen dataset. We separate different
settings of decoding algorithms in blocks. By in-
jecting the prior – the model should put more at-
tention on uncovered concepts – into the GPT2-L
with attention modulation, we can improve the text
generated in every automatic measure significantly.
Interestingly, despite our attention-reweighted de-
coder only encouraging coverage, we see all the
other measures such as ROUGE, BLEU, METEOR,
CIDEr, SPICE improve, as well.

These improvements also hold when we use a
different base decoding algorithm, such as beam
search. Again, the performance improvement for
using attention modulation is significant over all
measures. Thus, unlike decoding algorithms that
improve downstream tasks through truncation of
the sampling distribution, we directly re-calibrate
the token-level probabilities predicted by the model
by altering attention patterns in the Transformer
blocks during inference.

We also conduct a human evaluation to check
whether this improvement in the automatic met-
rics transfers to human judgments. In Table 6, we
see that our attention modulation algorithm signifi-
cantly outperforms the original inference model on
every measure – from fluency, quality, and overall
performance.

6.4 Vast improvements on few-shot learning

Table 5 presents the results of attention modula-
tion on GPT2-L that are fine-tuned on different
numbers of training examples from CommonGen.
We observe the improvements on all measures are
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Training size Method R-2 R-L B-3 B-4 Meteor CIDEr SPICE Coverage

10
w/o AttnM 2.15 16.07 6.39 3.63 10.02 1.23 5.07 27.12
w/ AttnM (ours) 3.38 18.89 7.24 3.48 12.47 1.63 7.21 36.55 ↑ 9.43

1000
w/o AttnM 7.61 27.03 14.01 7.38 20.67 6.40 16.79 62.33
w/ AttnM (ours) 8.54 27.97 15.51 8.78 22.13 6.68 18.02 69.31 ↑ 6.98

10000
w/o AttnM 10.70 30.06 17.40 10.02 23.40 7.15 20.20 73.39
w/ AttnM (ours) 11.53 30.70 18.43 11.12 24.42 7.29 21.33 78.74 ↑ 5.35

full (∼39k)
w/o AttnM 14.06 34.13 26.19 17.92 25.82 10.81 22.14 76.50
w/ AttnM (ours) 14.71 35.15 27.53 18.91 26.23 11.61 23.22 79.18 ↑ 2.68

Table 5: CommonGen test results of the fine-tuned GPT2-L w/ or w/o attention modulation trained on different
size of training examples (greedy decoding).

Fluency Quality Overall

w/o AttnM 85.07 39.30 44.77
w/ AttnM (ours) 89.55 48.76 52.73

Table 6: Human evaluations of the fine-tuned GP2-L
w/o or w/ attention modulation on CommonGen.

more prominent when the fine-tuning data size is
small. For example, adding attention modulation
can improve coverage by 9.43% on the GPT2-L
fine-tuned with only 10 examples. This not only
validates that priors we injected into the model are
suitable for improving the downstream task perfor-
mance, but also shed lights to use attention modula-
tion on different few-shot learning scenarios where
the number of training examples is limited.

7 Related Work

We propose to use attention modulation to heuristi-
cally re-balance sentence-level attention for neural
text degeneration. At least three domains of work
are closely related to our proposal, namely, atten-
tion pattern analysis, work that focuses on changing
or approximating learned attention patterns, and
work for countering neural text degeneration.

Attention analysis: Previous work has investi-
gated the attention patterns within the local context
of a sentence. These works highlighted that at-
tention patterns in Transformers implicitly encode
syntactic information such as dependency relations
(Htut et al., 2019), and part-of-speech tags (Vig and
Belinkov, 2019; Raganato and Tiedemann, 2018).
Other works observed that attention patterns can
provide explanations (Wiegreffe and Pinter, 2019)
or coarse word alignments in machine translation
(Zenkel et al., 2019; Kobayashi et al., 2020). In

contrast to these works, we analyze sentence-level
attention patterns for neural text degeneration, and
propose to directly modify the attention computa-
tion to reduce it.

Alternative attention: Many works have been
proposed to change attention mechanisms to op-
timize their O(n2) complexity. Some promising
directions in this space include sparse attention
mechanisms (Beltagy et al., 2020; Zaheer et al.,
2020) and linearized attention (Choromanski et al.,
2021). These alternative attention mechanisms re-
quire training the model and are used as replace-
ments to the original attention mechanism for fast
training or reduced computation. Our work is fun-
damentally different as we seek to inject priors into
the standard attention mechanism during inference
(without re-training the model).

Neural text degeneration: Previous works seek
to solve neural text degeneration by changing the
training objective to reduce the likelihood of com-
mon tokens (Welleck et al., 2019), or modifying
the decoding algorithm by truncating the sampling
distribution (Holtzman et al., 2018, 2020). Specifi-
cally, Welleck et al. (2019) introduce an additional
training loss that reduces the likelihood of com-
mon tokens. Holtzman et al. (2018, 2020) propose
stochastic decoding algorithms with truncation of
the sampling distribution. Our work is orthogo-
nal to these methods by injecting priors into the
model’s attention computation during inference.

8 Conclusions and future work

Neural language models often exhibit degeneration:
the output texts are repeated, bland, and inconsis-
tent. Our empirical analyses show that neural text
degeneration may be associated with insufficient
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learning of task-specific characteristics by the atten-
tion mechanism. We propose a simple but effective
module – attention modulation – that can inject
priors for better generation through re-balancing
the attention weights during inference. Results on
three different narrative and commonsense gener-
ation tasks indicate that attention modulation can
reduce repetition and enhance commonsense rea-
soning while maintaining fluency and coherence.
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Figure 4: Sentence-level attention distribution across
different layers in GPT2-L. The result is aggregated
by computing the mean sentence-level attention from
the next generated sentence to the five sentences in the
prompt of ROCStories development set. Lower number
represents lower layers in the Transformer.

Figure 5: Attention entropy of each sentence in the
prompt aggregated over the ROCStories dev. set. In
the first sentences, there are particularly high-entropy
attention heads that produce bag-of-vector-like repre-
sentations.

A Appendices

A.1 How does a language model use attention
to model a multi-sentence prompt?

Sentence-level attention portion To reveal
which part of context – near or distant history – are
important for context representation, we compute
aggregated mean sentence-level attention (Eqn.5
in the main text) each prompt sentence pi received,
while generating the sentence g1 after the prompt.
We observe from Figure 4 that GPT2-L mostly
attends to the nearest sentence (p5) during the gen-
eration. This effect is especially prominent in the
early and middle layers. In the late layers, the at-
tention from different sentences evens out. This
observation is consistent with previous analysis of
attention patterns within sentences such that deeper

train dev. test

ROCStories 39498 5269 7899
αNLG 169,654 1,532 3,059
CommonGen 67,389 4,018 7,644

Table 7: Dataset Statistics

layers focus on longer-range context (Vig and Be-
linkov, 2019).

Sentence-level attention entropy Khandelwal
et al. (2018) observed that LSTM represent distant
context as topics; only a few token in the distant
context are used to compute the context representa-
tion. We check whether this observation also holds
on Transformer-based models by computing atten-
tion entropy. This sentence-level attention entropy
of pi based on the attention from g1 to pi at layer
lm over a corpus X is defined as:

EA(g1, pi, lm) = −

∑
x∈X

∑
h∈lm

|pi|∑
j=1

|g1|∑
k=1

αh
j,klog(αh

j,k)

|X| · |H| · |pi| · |g1|
(12)

where h is a head in layer lm and αh
j,k is the atten-

tion weight from xj ∈ pi to xk ∈ g1 for h. Figure
5 shows a clear separation of entropy over different
sentences in the prompt, where more distant sen-
tences have lower entropy values. This suggests
that LMs only modelling distant sentences as topics
– attention over key words being a proxy.

A.2 Hyperparameters
Attention modulation can be applied to any layer
and any head in the Transformer based on our im-
plementation. However, the weights learned by
different heads in a particular layer have a large
variance (Vig and Belinkov, 2019) and are subject
to change from different training sessions. There-
fore, we only reweight attention on all heads in
different layers, where what layers are re-weighted
are hyperparameters. We choose to reweight the
consecutive layers from a starting layer ls to an
end layer le and performed a grid search on dif-
ferent layer ranges. For the start layer, we experi-
mented with ls ∈ {0, 4, 8, 12, 16, 20, 24, 28, 32};
for the end layer, we experimented with le ∈
{4, 8, 12, 16, 20, 24, 28, 32, 36}. The reweighting
layers are chosen based on the validation set per-
formance. On ROCstories, the GPT2-L are re-
weighted with ls = 8 and le = 32; On αNLG, the
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propmt attention
reweight

Generated sentence with attention-decoding

field. stand. look. = (1,3,2) A man stands looking at a sign in a field.
field. stand. look. = (1,2,3) He looks up and sees a group of people standing in the field.
field. stand. look. = (2,3,1) He stands in the middle of the field, looking down at the stands.

Table 8: An example of attention modulation with different attention reweighting functions on CommonGen dev
set. Only by redistributing the sentence-level attention during inference, we can generate sentences following the
desired order specified in the attention reweighting function.

R-2 R-L B-3 B-4 Meteor CIDEr SPICE Coverage

beam=20
w/o AttnM 17.98 38.07 35.14 25.61 27.63 12.90 23.28 79.62
w/ AttnM 18.11 39.32 36.69 26.80 28.02 13.71 23.94 81.85
w/ AttnMpm 19.78 41.17 38.28 28.36 30.97 15.38 28.24 91.89

Table 9: Results on CommonGen test set with beam search and permutations defined in A.3.

GPT2-L are re-weighted with ls = 12 and le = 32;
On CommonGen, the GPT2-L are re-weighted with
ls = 24 and le = 32.

A.3 Attention modulation and generation
order

CommonGen provides the concept set in a random
order, where models need to perform a relational
commonsense reasoning to find the optimal order
of them for generating a plausible sentence. We
found that attention modulation provide signals for
generation order given different reweighting func-
tions (examples in Table 8). In this experiment, we
guide the generation order by providing different
initialization weights in the reweighting functions.
We enforce different attention modulation weights
based on the order we want the concepts to be gen-
erated. For examples, row 1 in table 8 means the
concepts of (FIELD, STAND, LOOK) are initialized
to be re-weighted by scales of (1,3,2).

This interesting finding motivates us to conduct
a permutation experiment on CommonGen. For
a k concept set, we initialize the attention modu-
lation weights based on the permutations of 1 to
k (k! permutations in total) and generate k! sen-
tences with attention modulation. We then select
the generation that covers the most concepts8 from
these k! generations as output. We call this method
"attention modulation with permutation". Table 9
presents the results of attention modulation with
permutation. We see that just by enforcing the or-
der in attention modulation, the coverage can be
improved by another 10%.

8If there is a tie, we choose the shorter generation.

A.4 Human evaluation details
Figure 6 and 7 show the evaluation templates for
tuckers for Rocstories and CommonGen9, respec-
tively. On ROCstories, the inter-annotator agree-
ments is 0.743 and fleiss kappa is 0.229 aver-
aged over the five dimensions on 200 × 5 sam-
ples. The inter-annotator agreements are 84.6%,
72.2%, 76.1%, 78.5%, and 59.9% for fluency, in-
terestingness, newness, relevance, and repetition.
On αNLG, the human evaluation results are 33%,
14%, 10%, 32%, 11% for preferring outputs with
attention modulation, without attention modulation,
both, neither and no agreement. The inter-annotator
agreements is 0.835 and kappa is 0.439 over 100
samples. On CommonGen, the inter-annotator
agreements are 77.94%, 71.64%, and 67.50% for
fluency, quality, and overall on 200 samples.

9omitted αNLG template due to space limitation.
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prompt Jen was always afraid of flying. She needed to fly to Japan for an important meeting. Jen took
some Dramamine and boarded her plane. Jen dozed off shortly after the plane took off.

w/o
AttnM

Jen woke up to a huge headache. She had to cancel her trip to Japan. Jen was glad she had
taken Dramamine. She was able to fly safely. Jen was glad she had taken Dramamine.

w/ AttnM She woke up to a loud bang and felt sick. She had to sit in the back of the plane. She was so
scared she couldn’t even get out of her seat. Jen was so embarrassed she never flew again. She
was so scared she never flew again.

Table 10: A generation example (greedy decoding) without and with attention modulation on ROCStories. Adding
attention modulation during inference improves the commonsense reasoning and consistency of the generation.

prompt Neil had been journeying through Asia. But he contracted malaria on a Thai island, and had to
be flown home for treatment.

w/o
AttnM

He was so sick that he couldn’t go to the hospital. He was so sick that he couldn’t go to the
hospital. He was so sick that he couldn’t go to the hospital. He was so sick that he couldn’t go
to the hospital. He was so sick that he couldn’t go to the hospital.

w/ AttnM He was very sick and had to be hospitalized. He was in the hospital for a week. He recovered
and was released. Neil was very happy to be home. He was able to get better and was able to
go back to his home country.

Table 11: Example (greedy decoding) of the fine-tuned GPT2-L without and with attention modulation on story
completion. Adding attention modulation during inference significantly reduces the sentence-level repetition.

Figure 6: Mechanical Turk template used to evaluate ROCstories generations.
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propmt Generated sentence with attention-decoding

w/o AttnM run. team. field. drill. = person runs a drill during a practice at training camp.
w/ AttnM. run. team. field. drill. = person runs a drill during a training session with his team.

w/o AttnM use. tool. piece. metal. = tool or piece of metal used in manufacturing.
w/ AttnM use. tool. piece. metal. = piece of metal used to make tools.

Table 12: Examples produced by GPT2-L without and with attention modulation. Use attention modulation would
have higher concept coverage (details in Table 3 in the main text with 5% coverage improvements on all decoding
algorithms we tested);

Figure 7: Mechanical Turk template used to evaluate CommonGen generations.


