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Abstract
This paper presents an end-to-end system

for fact extraction and verification using tex-
tual and tabular evidence, the performance
of which we demonstrate on the FEVEROUS
dataset. We experiment with both a multi-task
learning paradigm to jointly train a graph at-
tention network for both the task of evidence
extraction and veracity prediction, as well as a
single objective graph model for solely learn-
ing veracity prediction and separate evidence
extraction. In both instances, we employ a
framework for per-cell linearization of tabular
evidence, thus allowing us to treat evidence
from tables as sequences. The templates we
employ for linearizing tables capture the con-
text as well as the content of table data. We
furthermore provide a case study to show the
interpretability our approach. Our best per-
forming system achieves a FEVEROUS score
of 0.23 and 53% label accuracy on the blind
test data.1

1 Introduction

Fact checking has become an increasingly impor-
tant tool to combat misinformation. Indeed the
study of automated fact checking in NLP (Vlachos
and Riedel, 2014), in particular, has yielded a num-
ber of valuable insights in recent times. These
include task formulations such as matching for dis-
covering already fact-checked claims (Shaar et al.,
2020), identifying neural fake news (Zellers et al.,
2020), fact verification in scientific (Wadden et al.,
2020) and public health (Kotonya and Toni, 2020b)
domains, and end-to-end fact verification (Thorne
et al., 2018), which is the subject of the FEVER-
OUS benchmark dataset (Aly et al., 2021).

A majority of automated fact checking studies
only consider text as evidence for verifying claims.

* Work done while the author was an intern at J.P. Morgan
AI Research.

1This system was not submitted to the shared task compe-
tition, but instead to the after competition leader board under
the name CARE (Context Aware REasoner).

Recently, there have been a number of works which
look at fact-checking with structured and semi-
structured data, mainly in the form of tables and
knowledge bases (Chen et al., 2020) — but fact-
checking from both structured and unstructured
data has been largely unexplored. Given the so-
phistication in the presentation of fake news, it is
important to develop fact checking tools for assess-
ing evidence from a wide array of evidence sources
in order to reach a more accurate verdict regarding
the veracity of claims.

In this work, we propose a graph-based repre-
sentation that supports both textual and tabular evi-
dence, thus addressing some of the key limitations
of past architectures. This approach allows us to
capture relations between evidence items as well
as claim-evidence pairs, borrowing from the argu-
mentation and argument mining literature (Cabrio
and Villata, 2020; Vecchi et al., 2021), as well as
argument modeling for fact verification (Alhindi
et al., 2018).

We experiment with two formulations for graph
learning. For the first, we employ a multi-task learn-
ing paradigm to jointly train a graph attention net-
work (Velickovic et al., 2018) for both the task of
evidence extraction — which we model as a node
selection task — and a graph-level veracity predic-
tion task. In the second, we explicitly separate the
verification and extraction tasks, where standard
semantic search is used for evidence extraction,
and veracity prediction is treated as a graph-level
classification problem.

For veracity prediction we predict a label for
each claim, one of SUPPORTS, REFUTES, or NOT-
ENOUGH-INFO (NEI), which is conditioned on all
relevant evidence, hence the intuition to frame ve-
racity prediction as a graph-level prediction task.
In both formulations, we employ context-aware
table linearization templates to produce per-cell se-
quence representations of tabular evidence and thus
construct evidence reasoning graphs where nodes

https://eval.ai/web/challenges/challenge-page/1091/leaderboard/2806
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have heterogeneous evidence types (i.e., represent-
ing sentences and tables on the same evidence rea-
soning graph).

Contributions. The three main contributions of
the paper are summarized below:

1. Provide insightful empirical analysis of the
new FEVEROUS benchmark dataset.

2. Propose a novel framework for interpretable
fact extraction using templates to derive
context-aware per-cell linearizations.

3. Present a graph reasoning model for fact ver-
ification that supports both structured and un-
structured evidence data.

Both the joint model and separately trained mod-
els exhibit a significant improvement over the
FEVEROUS baseline, as well as significant im-
provements for label accuracy and evidence recall.
Our separated approach to fact extraction and veri-
fication achieves a FEVEROUS score of 0.23 and
label accuracy of 53% on the blind test data.

2 Related Work

Graph Reasoning for Fact Verification. Sev-
eral works explore graph neural networks (GNN)
for fact extraction and verification, both for fine-
grained evidence modelling (Liu et al., 2020;
Zhong et al., 2020) and evidence aggregation for
veracity prediction (Zhou et al., 2019). Further-
more, graph learning has also been leveraged to
build fake news detection models which learn from
evidence from different contexts; e.g., user-based
and content-based data (Liu et al., 2020; Lu and
Li, 2020). There are also non-neural approaches
to fake news detection with graphs (Ahmadi et al.,
2019; Kotonya and Toni, 2019). However, to the
best of our knowledge, this work is the first to em-
ploy a graph structure to jointly reason over both
text and tabular evidence data in both single task
learning (STL) and multi-task learning (MTL) set-
tings.

Table Linearization. A number of approaches
have been adopted in NLP for table linearization.
For example, Gupta et al. (2020) study natural lan-
guage inference in the context of table lineariza-
tions, in particular they are interested to see if lan-
guage models can infer entailment relations from
table linearizations. The linearization approach em-
ployed by Schlichtkrull et al. (2021) is also used

for automated fact verification. However, they lin-
earize tables row- and column-wise, whereas we
focus on cells as evidence items in the FEVEROUS
dataset are annotated at table-cell level.

3 Data Analysis

Further to the FEVEROUS dataset statistics dis-
cussed by the task description paper (Aly et al.,
2021), we perform our own data exploration. We
present insights from our data analysis of the
FEVEROUS dataset, which we use to inform sys-
tem design choices.

Table types. Wikipedia tables can be categorized
into one of two classes: infoboxes and general
tables. Infoboxes are fixed format tables which
typically appear in the top right-hand corner of
a Wikipedia article. General tables can convey a
wider breadth of information (e.g., election results,
sports match scores, the chronology of an event)
and typically have more complex structures (e.g.,
multiple headers). List items can also be consid-
ered as a special subclass of tables, where the num-
ber of items is analogous to the number of columns
and the nests of the list signify table rows.

Evidence types. The first observation we make
is that, similar to the FEVER dataset (Thorne et al.,
2018), a sizeable portion of the training instances
rely on evidence items which are extracted from the
first few sentences of a Wikipedia article. The most
common evidence items are the first and second
sentences in a Wikipedia article, which appear in
36% and 18% of evidence sets, respectively. The
four most frequent evidence cells all come from
the first table, with 49% of first tables listed as
evidence in the train and dev data being infoboxes.
Further, the vast majority of cell evidence items
are non-header cells, but these only account for
approximately 5.1% of tabular evidence in the train
and dev datasets. A summary of these findings is
provided in Table 1 for the most common evidence
types in the training data.

Evidence item co-occurrences. We investigate
the most common evidence pairs, both in individual
evidence sets and also in the union of all evidence
sets relating to a claim. The most common evi-
dence pair in the training data is (SENTENCE_0,
SENTENCE_1), which accounts for 3.2% of evi-
dence co-occurrences. The most common sentence-
table cell co-occurrence is (CELL_0_2_1, SEN-
TENCE_0). The most common table cell pair is
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Evidence type % Evidence sets

List items 1.6%
Sentences 67.7%
All tables 58.2%

Infoboxes 26.5%
General tables 33.9%

Table 1: Prevalence of evidence types in the training
data by number of evidence sets in which they appear.

(CELL_0_2_0, CELL_0_2_1). All of the ten most
common co-occurrences either contain one of the
first four sentences in an article or evidence from
one of the first two tables.

NEI label. Lastly, we choose to explore in-
stances of the NEI class. We sample 100 instances
of NEI claims from the training data and note their
qualitative attributes. We pay particular attention
to this label as it is the least represented in the data.
Unlike the FEVER score, the FEVEROUS metric
requires the correct evidence, as well as the label,
to be supplied for an NEI instance for credit to
awarded. Our analysis is summarized in Table 2.
We categorize mutations, using the FEVEROUS
annotation scheme, as one of three types: entity
substitution, including more facts than available in
the provided evidence (i.e., including additional
propositions), and paraphrasing or generalizing.
We use Other to categorize claims with a muta-
tion not captured by one of these three categories.

Mutation Type % Sample

Entity Substitution 21%
More facts than in evidence 42%
Paraphrasing or generalizing 36%
Other 1%

Table 2: We sample 100 NEI instances and categorize
them according to the type of lexical mutation which
results in the claim being unverifiable.

We note that a number of NEI examples are
mutations of SUPPORTS or REFUTES examples.
For example the claim in Table 3 is a mutation
of a SUPPORTS instance where entity substitution
(humans → reptiles) has been used to make the
first clause unverifiable, hence changing the label
to NEI.

Claim
Nucleoporin 153, a protein which in reptiles is

encoded by the NUP153 gene,
is an essential component of the basket of

nuclear pore complexes (NPCs) in vertebrates,
and required for the anchoring of NPCs.

Evidence
Nucleoporin 153 (Nup153) is a protein which
in humans is encoded by the NUP153 gene.
It is an essential component of the basket of

nuclear pore complexes (NPCs) in vertebrates,
and required for the anchoring of NPCs.

Table 3: NEI example where the evidence is high-
lighted according to the part of the claim to which it
refers. The text in bold is the substitution which re-
sulted in the label changing from SUPPORTS to NEI.

4 Methods

Our proposed method for fact verification is an
end-to-end system comprising three modules:

(1) A robust document retrieval procedure (see
Section 4.1).

(2) An evidence graph construction and inter-
mediate evidence filtering process (see Sec-
tion 4.2).

(3) A joint veracity label prediction and evidence
selection layer that reasons over the evidence
graph (see Section 4.3).

An illustration of the complete pipeline is provided
in Figure 1, and details of each processing stage
are provided in the following sections.

4.1 Document Retrieval
For document retrieval, we employ an entity link-
ing and API search approach similar to that of
Hanselowski et al. (2018). The WikiMedia API2

is used to query Wikipedia for articles related to
the claim, using named entities and noun phrases
from the claim as search terms. These retrieved
Wikipedia page titles form our candidate document
set. Named entities that are not retrieved by the
API are then extracted from the claim as a hand-
ful of these identify pages which are present in

2https://www.mediawiki.org/wiki/API

https://www.mediawiki.org/wiki/API
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Claim

Document 
Retriever

Graph 
Reasoner

Label
"SUPPORTS"

Evidence 
Ranker 

  
Wolfgang Niedecken is a 

German rock musician who 

founded the Kölsch 

speaking rock group BAP at 

the end of the 1970s

Evidence
["Wolfgang 

Niedecken_sentence_0", 

"Wolfgang 

Niedecken_cell_0_4_1", 

"Wolfgang 

Niedecken_sentence_1"]
Context-Aware 

Linearizer 

Figure 1: Our fact verification pipeline. We employ two graph reasoning approaches: STL where the evidence
extraction and modelled separately, and MTL where further evidence filtering is performed jointly with veracity
prediction by the Graph Reasoner.

the Wikipedia dump (e.g., /wiki/Lars_Hjorth is
present in the provided Wikipedia evidence dump,
but is not returned by the WikiMedia API). In the
same vein, we discard titles which are returned by
the API, but are not in the Wikipedia dump. TF-
IDF and cosine similarity are employed to score
and rerank the retrieved Wikipedia articles with
respect to their similarity to the claim.

As in the approach of Hanselowski et al. (2018),
the seven highest ranked pages are chosen at test
time. For completeness, we also experiment with
approaches to document retrieval which select
pages based on a threshold score (Nie et al., 2019).
Ultimately, we find these methods yield lower pre-
cision.

4.2 Evidence Reasoning Graph

Similar to other fact verification systems (Augen-
stein et al., 2019; Hidey et al., 2020), we jointly
train our model for both the evidence selection and
veracity prediction tasks. In contrast to these ap-
proaches, however, we employ a graph reasoning
module for the joint learning of the two tasks. We
choose this approach to exploit the permutation
invariance of evidence with respect to a claim, as
there is no canonical ordering of evidence. Our
graph formulation differs from previous graph-
based fact verification systems in that we construct
a heterogeneous graph to model both tabular and
sequence evidence data.

In the following sections we will describe two
specific approaches that are taken for the fact ver-
ification task: (1) where we condition the graph
model to learn both node-level, fine-grained evi-

dence selection and graph-level veracity label pre-
diction simultaneously, and (2) where we only learn
graph-level veracity prediction.

Linearizing Tabular Data. We linearize both ta-
ble and list evidence data and generate from these
linearizations a contextualized sequence represen-
tation which captures information about each cell
as well as its surrounding page elements. This is
accomplished using templates that distinguish ex-
plicitly between infoboxes and general tables. For
the latter, we engineer the templates to handle two
particular complexities that are present only in gen-
eral tables: (1) nested headers, and (2) table cells
which span multiple rows and multiple columns
(see Figure 2). Furthermore, we also employ tem-
plates for producing context-rich representations
of item lists (see Table 4 for more details).

Club Season
League

Division Apps Goals
Santa Cruz 2019 Série C 7 1

Athletico Paranaense
2020

Serie A
0 0

2021 0 0

Total 0 0
Guarani (loan) 2020 Série B 5 0

Figure 2: Example of a complex general table taken
from /wiki/Elias_Carioca. This table contains both
multi-row cells and multi-column cells, some of which
are headers. They are shown highlighted .

Graph Structure. We construct a fully con-
nected graphG = (V,E), where each node ni ∈ V
represents a claim-evidence pair, similar to previ-
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Evidence Type Linearization Example from FEVEROUS dataset

Infoboxes

Headers TABLE has CELL_I_J

[in SUBHEADER]
Brewster Productions has Genres .
[/wiki/Brewster_Productions]

Non-headers CELL_I_0 of TABLE
[in SUBHEADER] is
CELL_I_J

Current ranking of Barbora Krejčíková in
Singles is No. 65 (16 November 2020) .
[/wiki/Barbora_Krejcikova]

General tables

Headers TABLE has CELL_I_J

[in SUBHEADER]
The 1964 United States Senate election in Maine
has Party .
[/wiki/1908_Clemson_Tigers_football_team]

Non-headers TABLE/PAGE has
SUBHEADER_0 CELL_I_0
in SUBHEADER_J
of CELL_I_J

2014 Ladies European Tour has Rank 9 in Player
of Florentyna Parker .
[/wiki/2014_Ladies_European_Tour]

List items

Without subheaders TITLE includes ITEM_I_J Site includes Location, a point or an area on the

Earth’s surface or elsewhere.
[/wiki/Site]

With subheaders SUBHEADERS for TITLE
includes ITEM_I_J

The Player Honours for Park Sang-in includes
K-League Best XI: 1985

[/wiki/Park_Sang-in]

Table 4: Templates for encoding tabular evidence. CELL_I_0, SUBHEADER_0, SUBHEADER_J, SUBHEADERS,

TABLE, TITLE and PAGE are all context elements. The content of the evidence item is highlighted . In each

case ITEM_I_J denotes list item content and CELL_I_J denotes table cell content.

ous evidence graphs for automated fact checking
(Zhao et al., 2020; Zhou et al., 2019). Self-loops
are also included in G for each node in order to
improve evidence reasoning, so the set of edges for
the graph is E = {(ni, nj) | ni, nj ∈ V }.

At test time, we take the Wikipedia pages out-
put by the document retrieval module, segment
each Wikipedia page into its constituent page items
(i.e., sentences, table cells, table captions and list
items), and refer to these as evidence items. These
evidence items are then filtered. Using an ensem-
ble of pre-trained S-BERT sentence embeddings
(Reimers and Gurevych, 2019), we perform seman-
tic search with the claim as our query. Cosine simi-
larity is then used to rank the evidence items. For
the joint and single training approaches, we select
a different number of evidence nodes; in particular,
a larger graph is used with the former. For training,
we select nodes to occupy the graph according to
the following rule-set:

(1) If gold evidence, include as a node.

(2) For claims that require a single evidence item,
include the top four candidates returned using
our semantic search approach as nodes.

(3) For claims with more than one gold evidence
item, retrieve the same number of candidates
as gold items.

The union of these sets form the collection of nodes,
V , that occupy the evidence graph G.

Node Representations. For the initial node rep-
resentations, similar to Liu et al. (2020) and Zhao
et al. (2020), we represent evidence nodes with the
claim to which they refer as context. The claim
is concatenated with a constructed context-rich
evidence sequence ei. When constructing the se-
quences, ei, we consider the unstructured evidence
items (i.e, sentences and table captions) and the
structured table and list items separately.

For sentences and table captions the evidence se-
quence is generated by concatenating the evidence
item with the page title which serves as context.
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For table cells and list items we perform a per cell
linearization, where this linearization forms the ev-
idence sequence for table and list item evidence
items (see Table 4 for the templates used). For
each evidence item, we feed this claim-evidence
sequence pair to a RoBERTa encoder (Liu et al.,
2019), and each node ni ∈ V in an evidence graph
has the pooled output of the last hidden state of the
[CLS] token, h0

i as its initial state:

ni = h0
i = RoBERTaCLS(c, ei). (1)

4.3 Evidence Selection and Veracity
Prediction

Training graphs. We train two graph networks,
one for joint veracity prediction and evidence ex-
traction, and the second solely for the veracity pre-
diction task.

Oversampling NEI Instances. As discussed in
Section 3, the FEVEROUS dataset suffers from
a significant class imbalance with respect to the
NEI instances. Similar to the baseline approach,
we employ techniques for generating new NEI in-
stances in order to address this issue. Concretely,
we use two data augmentation strategies in order
to increase the number of NEI at train time: (1) ev-
idence set reduction, and (2) claim mutation. For
the first case, we randomly sample SUPPORTS and
REFUTES instances and drop evidence. Given the
distribution of entity substituted and non-entity sub-
stituted mutations — as discovered in our data anal-
ysis (see Section 3) — we make the choice to in-
clude in the training data: 15,000 constructed NEI
examples made using the first approach, and 5,946
NEI examples constructed using the second. This
means that a total of 92,237 NEI examples were
used for model training.

STL: Separate Verification and Extraction.
For the first model, we perform the tasks of fact
extraction and verification of evidence selection
and veracity prediction separately. We make use of
an ensemble semantic search method for extract-
ing top evidence items for claims. We employ S-
BERT3 to encode the claim and the evidence items
separately. We then compute cosine similarity for
the claim evidence pair.

The 25 highest ranking tabular evidence items
were chosen, and the top-scoring 5 sentences (and

3We use the ‘msmarco-distilbert-base-v4’ and ‘paraphrase-
mpnet-base-v2” pretrained models.

captions) for each claim were selected as the nodes
of our evidence reasoning graph at test time. This
is the evidence limit stated by the FEVEROUS
metric.

When constructing the evidence graph at test
time, we choose to exclude header cells and list
items evidence types as nodes as they account for
a very small portion of evidence items (see Section
3), and experimentation shows that the evidence ex-
traction model has a bias to favour these evidence
elements over sentences. We use two GAT lay-
ers in our graph reasoning model, with: a hidden
layer size of 128, embeddings size of 1024, and a
global attention layer for node aggregation. The
logits generated by the model are fed directly to
a categorical cross entropy loss function, and the
veracity label output probability distribution pi, for
each evidence graph Gi ∈ G, is computed using
the relation

pi = softmax(MLP(Woi + b)), (2)

where

oi =

ni∑
ni∈V

softmax (hgate(xn))� hΘ(xn). (3)

MTL: Joint Verification and Extraction. We
also experiment with a joint training or multi-task
learning (MTL) approach in order to explore if
simultaneously learning the veracity label and evi-
dence items can lead to improvements in the label
accuracy metric and also evidence prediction re-
call and precision. For this approach, we construct
larger evidence graphs at test time, including the
thirty-five highest ranked evidence items according
to the S-BERT evidence extraction module. The
intention is for the graph network to learn a binary
classification for each claim-evidence pair in the
network.

For the multi-task learning model, we increase
the dimensions of our graph network by feeding
our initial input graphs to two separate GAT compo-
nents (in order to increase the model’s capacity for
learning the more complex multi-task objective),
the outputs of which, ha and hb, are concatenated
to form representation h over which we compute
global attention, where the combined representa-
tion takes the form:4

h = [ha;hb]. (4)
4We denote the concatenation of vectors x and y, by [x;y].
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The binary cross entropy loss is then used for the
node-level evidence selection task, and, as with the
separated model, we use categorical cross entropy
to compute the graph-level veracity prediction, as
shown in (2) and (3). The resulting joint graph neu-
ral network is then trained with the linear-additive
objective

Ljoint = λLevidence + Llabel, (5)

taking the form of a Lagrangian with multiplier
λ ≥ 0, where

Levidence = sigmoid(MLP(Wih+ b)). (6)

As with the previous approach, we feed the model
logits to our loss functions and use an Adam opti-
mizer to train the network, and set λ = 0.5.

4.4 Hyper-parameter Settings

For all models, we make use of a ROBERTA-
LARGE model which is pre-trained on a number of
NLI datasets including NLI-FEVER (Nie et al.,
2020). We use a maximum sequence length of
512 for encoding all claim-evidence concatenated
pairs. We experiment with the following learning
rates [1e-5, 5e-5, 1e-4], ultimately choosing the
learning rate underlined. Training was performed
using batch size of 64. We train the single objective
model for 20k steps, choosing the weights with the
minimum veracity prediction label loss, and train
the joint model for 20k steps, taking the model with
highest recall for evidence extraction. The Adam
optimizer is used in training for both approaches.

5 Results

We report the results of the entire fact extraction
and verification pipeline, as well as the evalua-
tion of the pipeline’s performance for intermediate
stages of the fact verification system, e.g., docu-
ment retrieval and evidence selection.

Document retrieval. Our method for DR shows
significant improvement on the TF-IDF+DrQA ap-
proach used by the baseline. In particular we find
that our document retrieval module sees gains from
querying the Wikipedia dump for pages related to
entities which are not retrieved by the WikiMedia
API. However, we do note that our approach strug-
gles to retrieve Wikipedia pages in cases relating to
specific events which can only be inferred through
reasoning over the claim.

For example, consider the following claim from
the development dataset: “2014 Sky Blue FC sea-
son number 18 Lindsi Cutshall (born October 18,
1990) played the FW position.”. In this case, the
document selection process returns “Sky Blue FC”,

“Lindsi Cutshall”, and “2015 Sky Blue FC season”,
but does not return the gold evidence page “2014
Sky Blue FC season” which is required for verifi-
cation of the claim.

We report recall@k for k = {3, 5, 7} where k is
the number of Wikipedia page documents retrieved
by the module. Our approach shows significant
improvements over the baseline (see Table 5).

Method Rec@3 Rec@5 Rec@7

Baseline 0.58 0.69 –
Ours 0.65 0.73 0.80

Table 5: Document retrieval results measured by
Recall@k, where k is the number of documents re-
trieved. Results reported for the dev set.

Evidence selection and veracity prediction.
For evidence selection and veracity prediction, we
observe that the approach trained for the single
objective of veracity prediction marginally outper-
forms the jointly trained module (see Table 6). We
hypothesize that the difficulty of learning to select
the correct evidence nodes along with predicting
veracity might be the cause of this. It is possi-
ble that performance of the joint model could be
improved with better evidence representation or
through the use of a different graph structure, e.g.,
by incorporating edge attributes.

Method Recall LA

Baseline 29.51 53.22
STL 37.20 62.89
MTL 36.25 62.21

Table 6: System performance of the dev set for evi-
dence recall and label accuracy.

Finally, we submitted our blind test results for
STL, which is our best performing method, to the
after-competition FEVEROUS leaderboard. Our
system outperforms the baseline significantly on
both the FEVEROUS metric and also label accu-
racy as reported in Table 7. Furthermore, our re-
sults on the blind test data show almost no degra-
dation from development to test set with respect to
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the evidence recall which remains at 37%. So the
cause of our reduced FEVEROUS score between
the development and test data is mainly due to a
decrease in label accuracy from 63% on the de-
velopment data to 53% for the test data. We are
confident that this could be improved with better
label accuracy for the NEI class.

Method Dev Test

LA FS LA FS
Baseline 53.22 19.28 47.60 17.70

Ours 62.81 25.71 53.12 22.51

Table 7: Results for label accuracy (LA) and FEVER-
OUS score (FS) for the full pipeline on both the devel-
opment and blind test datasets.

5.1 Case Study and System Interpretability
We present an example of a claim from the develop-
ment dataset, which requires both tabular and tex-
tual evidence to be verified. We show how it is la-
belled by our pipeline (see Table 8). For this exam-
ple, our evidence selection module correctly identi-
fies all three evidence items required to fact-check
the claim. Furthermore, two of the three evidence
items receive the highest relevance scores from our
evidence selection module. Of the irrelevant ev-
idence items retrieved for this claim, eleven out
of twenty-two come from an unrelated Wikipedia
page (“Scomadi Turismo Leggera"). The correct la-
bel of SUPPORTS is also predicted for this instance.

In order to explore the interpretability sys-
tem predictions, for this same instance, we anal-
yse the node attention weights for the first GAT
layer, they are shown in parenthesis for each pre-
dicted evidence item in Table 8. We can see that
the two evidence nodes with the highest values
both correspond to items in the gold evidence
set. However the third gold evidence item, SCO-
MADI_SENTENCE_15, has a much lower weight
than a number of items which are not in the gold
evidence set.

6 Conclusion and Future Work

In this work, we have demonstrated two novel ap-
proaches for fact extraction and verification that
support both structured and unstructured evidence.
These architectures were motivated by literature in
argumentation, and also by the empirical analysis
presented in Section 3. Our results show signifi-
cant improvement over the shared task baseline for

Claim “In 2019, Scomadi, a private limited
company with limited liability, was bought by
a British owner which changed Scomadi’s man-
agement structure."

Evidence
Scomadi_cell_0_0_1,
Scomadi_sentence_14, Scomadi_sentence_15.
Predicted Evidence
(1) Scomadi_cell_0_0_1 (0.1794),

(2) Scomadi_sentence_14 (0.1203),
(3) Scomadi_table_caption_0 (0.0871),
(4) Scomadi_cell_0_3_1 (0.0685),
(5) Scomadi_cell_0_7_1 (0.0561),
(6) Scomadi_cell_0_2_1 (0.0472)
(7) Scomadi_cell_0_8_1 (0.0405)
(8) Scomadi_sentence_15 (0.0360),
(9) Scomadi_sentence_11 (0.0324),
(10) Scomadi_sentence_0 (0.0292),
(11) Scomadi_cell_0_6_1 (0.0266),
(12) Scomadi_cell_0_5_1 (0.0243),
(13) Scomadi_cell_0_1_1 (0.0224),
(14) Scomadi_cell_0_4_1 (0.0208).

Label SUPPORTS

Predicted Label SUPPORTS

Table 8: Example claim from the development dataset
which requires extracting both tabular and textual ev-
idence in order for it to be verified. For brevity we
only show the top fourteen (out of twenty-five) ex-
tracted evidence items, correctly predicted evidence is

highlighted .

both the joint and separated models, with the latter
generating a marginal improvement on the FEVER-
OUS metric compared with the former. Overall, we
conclude that the use of graph-based reasoning in
fact verification systems could hold great promise
for future lines of work.

We hypothesize that exploring varied task formu-
lations could potentially yield strong improvements
in model performance, for example: constructing
reasoning graphs on an evidence set level, or us-
ing the FEVER dataset to augment the NEI claims
used during training, or further fine-tuning sentence
embeddings on the FEVEROUS dataset. Further-
more, we believe further insights could be gained
by evaluating our table linearization approach on
other datasets related to fact verification over tab-
ular data. In addition to this, we hope to conduct
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further experiments with our graph based approach
using structured and unstructured evidence inde-
pendently, to further investigate which aspect of our
approach led to the improvement on the FEVER-
OUS score.

Incorporating prior knowledge or constraints
into the training procedure would also be an in-
teresting direction. Finally, we believe that our
graph-based approach lends itself well to the extrac-
tion of veracity prediction explanations (Kotonya
and Toni, 2020a), obtained from evidence extracted
from our underpinning graphs as justifications for
claims. The ability to provide evidence for a claim,
and to justify this, would better enable the integra-
tion of these techniques in practical systems.

Disclaimer This paper was prepared for informa-
tional purposes by the Artificial Intelligence Re-
search group of JPMorgan Chase & Co and its af-
filiates (“J.P. Morgan”), and is not a product of the
Research Department of J.P. Morgan. J.P. Morgan
makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, ac-
curacy or reliability of the information contained
herein. This document is not intended as invest-
ment research or investment advice, or a recom-
mendation, offer or solicitation for the purchase
or sale of any security, financial instrument, finan-
cial product or service, or to be used in any way
for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such so-
licitation under such jurisdiction or to such person
would be unlawful. © 2021 JPMorgan Chase & Co.
All rights reserved.
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