
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER) at EMNLP 2021, pages 113–120
November 10, 2021. ©2021 Association for Computational Linguistics

113

A Fact Checking and Verification System for FEVEROUS Using a
Zero-Shot Learning Approach

Orkun Temiz, Özgün Ozan Kılıç, Arif Ozan Kızıldağ, Tuğba Taşkaya Temizel
Graduate School of Informatics

Middle East Technical University
{orkun.temiz, ozank, arifozan, ttemizel}@metu.edu.tr

Abstract

In this paper, we propose a novel fact checking
and verification system to check claims against
Wikipedia content. Our system retrieves rel-
evant Wikipedia pages using Anserini, uses
BERT-large-cased question answering model
to select correct evidence, and verifies claims
using XLNET natural language inference
model by comparing it with the evidence. Ta-
ble cell evidence is obtained through looking
for entity-matching cell values and TAPAS ta-
ble question answering model. The pipeline
utilizes zero-shot capabilities of existing mod-
els and all the models used in the pipeline re-
quires no additional training. Our system got
a FEVEROUS score of 0.06 and a label accu-
racy of 0.39 in FEVEROUS challenge.

1 Introduction

Misinformation on online mediums has caused sev-
eral problems in recent years. For instance, during
the initial spread of the Covid-19 pandemic, in-
appropriate treatments or incorrect statistics have
been widely disseminated through posts. Manually
checking the content of such posts against the fact
checking sites is not feasible as it is labor inten-
sive. As a remedy, many automated fact-checking
solutions have started to emerge in the last decade.

To challenge researchers and advance the do-
main in this research area, the Fact Extraction and
Verification (FEVER) (Thorne et al., 2018) chal-
lenge was introduced in 2018. This challenge con-
tained 185,445 claims, and the most successful
group (Nie et al., 2019) obtained a 0.63 fever score
in the test set. In 2021, a new challenge, Fact Ex-
traction, and VERification Over Unstructured and
Structured information (FEVEROUS) (Aly et al.,
2021) was organized with a new dataset compris-
ing 87,026 claims where the average length of the
claims increased significantly. A Wikipedia dump
with more than 5.4 million articles was provided for
claim verification, which included sentences and

other page elements such as lists and table cells as
potential evidence while the previous challenge’s
dataset contained only sentences. Moreover, the to-
tal number of page elements included in the dump
increased significantly compared to the previous
challenge. Although FEVEROUS challenge con-
tains less number of claims, it has a higher com-
plexity than FEVER challenge. In this challenge,
participants were not only required to label each
claim as “SUPPORTS,” “REFUTES,” or “NOT
ENOUGH INFO” but also provide the correct evi-
dence for it.

The baseline model in FEVEROUS challenge
obtained around 18% FEVEROUS score. This
model contains two steps, which are retrieval and
verdict prediction. The model firstly retrieves rele-
vant pages and then sentences and cells separately
from each page. During cell retrieval, tables are
linearized to obtain the most relevant cells. Then
cell retrieval is handled as a binary sequence la-
beling task. Verdict prediction is made using the
Robustly Optimized BERT Pretraining Approach
(RoBERTa) model (Liu et al., 2019). In addition,
the FEVEROUS score assumes that the prediction
is correct when the label is correct and a set of
evidence is present in the predicted evidence.

In this challenge, we developed a pipeline that
utilizes zero-shot learning capabilities of existing
models where we have considered claims as a ques-
tion and our retrieved documents as a solution text
instead of extracting cells and sentences after the
document retrieval. We applied different question
answering (QA) models to solve the claim for sen-
tences and cells. We obtained our labels from sen-
tences by using Natural Language Inference (NLI)
model. After that, we added the cells after the sen-
tence solutions. Our model obtained 0.06 FEVER-
OUS score, 0.39 label accuracy, and 0.06 evidence
F1 score.



114

Table 1: The details of the top approaches with respect to document retrieval, sentence retrieval, and claim verifi-
cation tasks in the first FEVER challenge compared to the FEVER and the FEVEROUS baseline models

Document Retrieval Sentence/Cell Retrieval Claim Verification

FEVER-baseline
(Thorne et al., 2018)

TF-IDF TF-IDF Decomposable atten-
tion

FEVEROUS-baseline
(Aly et al., 2021)

TF-IDF TF-IDF RoBERTa

UNC-NLP (Nie et al.,
2019)

ESIM ESIM ESIM

UCL Machine Reading
Group (Yoneda et al.,
2018)

Logistic regression Logistic regression ESIM + aggregation

Team Athene
(Hanselowski et al.,
2018)

MediaWiki API ESIM ESIM

1.1 Related Works

In the first FEVER challenge, the top three groups
used Enhanced Sequential Inference Model (ESIM)
(Chen et al., 2017) with modifications. The UNC-
NLP team (Nie et al., 2019) used Neural Semantic
Matching Network (NSMN) for both retrieval and
verification tasks while modifying ESIM with ad-
ditional shortcut connections and changing the out-
put layer to max-pool. Team Athene (Hanselowski
et al., 2018) made use of Wikipedia’s MediaWiki
API to search named entities and ESIM in sen-
tence retrieval and claim verification by extending
it to generate a ranking score. This extension adds
a hidden layer with a single neuron output and
gives the claim together with an input sentence.
Finally, UCL Machine Reading Group (Yoneda
et al., 2018) employed logistic regression in docu-
ment and sentence retrieval by utilizing keywords,
and features of sentences, respectively. In addition,
they aggregated the labels created by ESIM with
different models including logistic regression and
Multi-Layer Perceptron (MLP) with two layers for
claim verification. Their results showed that aggre-
gation with MLP yielded a better result than other
aggregation methods.

The FEVEROUS (Aly et al., 2021) baseline
model applies TF-IDF for document and sentence
retrieval, like the first FEVER challenge (Thorne
et al., 2018). On the other hand, the FEVEROUS
baseline uses RoBERTa instead of the decompos-
able attention model for claim verification. Ta-
ble 1 shows the methodological details of the ap-
proaches performed well at the FEVER shared task

and the FEVEROUS baseline model. Moreover,
Akkalyoncu Yilmaz et al. (2019) retrieved docu-
ments while utilizing Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2019) model for re-ranking results returned
by Anserini. Soleimani et al. (2020) applied BERT
for sentence retrieval and claim verification while
fine-tuning it for each task separately. On the other
hand, they made use of Wikipedia’s MediaWiki
API, similar to Team Athene (Hanselowski et al.,
2018) for document retrieval.

2 Method

In the following subsections, we will explain how
our system works. An overview of the system in
the form of pseudocode is given in Algorithm 1.

2.1 Preprocessing & Keyword Extraction

The claims themselves were directly used to form
the base query for retrieving the relevant pages.
Since some claims had alternative space charac-
ters, these were replaced with a single standard
space character. The queries were enhanced with
the relevant keywords, which were formed by the
named entities extracted from the text using spaCy
(n.d.). To improve spaCy’s performance, other can-
didate entities with capitalized first letters were also
added. Moreover, to handle the cases where spaCy
could not detect the whole word chunk (i.e. Adam
Smith), the contingency parser was employed to
detect noun chunks. If the named entity found by
spaCy was located inside a noun chuck, we added
that noun chunk to the keyword list. Date entities



115

Algorithm 1 The pseudocode of our proposed pipeline

1: Input:
2: claims: A list including the claims that will be verified.
3: raw_docs: A database including the Wikipedia documents provided by FEVER.
4: indexed_docs: A formatted sentence corpus of the provided Wikipedia documents, indexed using

Anserini.
5: Initialize:
6: results ← [] // Create a list with eventual dimensions of [claims.length,3] to store the claim,

predicted label, and predicted evidence
7: for each c in claims do
8: Extract entities from claim c using spaCy, uppercase detection, and chunking, store it in entities
9: Obtain a query by appending entities to claim c, and set it into query

10: Obtain the most relevant documents based on query from indexed_docs and set it into
docs[doc_title, doc_content, relevance]

11: Apply string matching to document titles from docs with entities, maximize relevance scores of
the matched documents (see Section 3.1 for its explanation)

12: sentence_evidence← {} // Create empty sets that will be filled with evidence
13: table_evidence← {}
14: for each d in docs do
15: if sentence_evidence.length < 5 then
16: Divide document d into subdocuments subdocs (See Section 2.3)
17: for each sd in subdocs do
18: Retrieve the evidence sentence and its immediate predecessor as ev using c, sd, and BERT

QA model
19: Add ev.sentence_ids, doc_title of d, and ev’s confidence score (according to the universal

sentence encoder) to sentence_evidence
20: end for
21: end if
22: if table_evidence.length < 25 then
23: Extract the document tables from raw_docs, normalize their formats (see Section 2.3), and

set them into tables
24: Retrieve cell values from tables that match entities, and add all the cell IDs from their

corresponding rows to table_evidence
25: Apply TAPAS QA model to c and tables, and add the retrieved cells’ IDs to table_evidence
26: end if
27: end for
28: Rank evidence in sentence_evidence based on confidence scores
29: // Ensure evidence do not exceed the limit (5 and 25 for sentence and table evidence, respectively)

by slicing them, combine them and push to the results list
30: predicted_evidence← sentence_evidence[0:5] + table_evidence[0:25]
31: Verify claim c using c, sentence_evidence[0:5], and XLNET model, set it into predicted_label
32: results.push([c, predicted_label, predicted_evidence])
33: end for
34: Output:
35: results: A list with claims, their predicted label, and predicted evidence.



116

were ignored. These obtained entities were concate-
nated twice to the query to give them more weight,
since our document retrieval module uses OKAPI
BM25 (Robertson et al., 1994), where including a
phrase more than once causes the module to give it
more weight in the document retrieval process.

2.2 Document Retrieval
To retrieve Wikipedia texts efficiently, we use
Anserini indexing, which uses OKAPI BM25
(Robertson et al., 1994) for indexing the Wikipedia
pages. Anserini (Yang et al., 2017) is a toolkit de-
veloped on Apache Lucene, open-source search
software. To use Anserini indexing, we trans-
formed the Wikipedia dump into an indexable for-
mat while discarding lists, tables, and section titles.
Then, we indexed it using Anserini toolkit with the
help of Pyserini (Lin et al., 2021), a Python inter-
face for Anserini. We fed the query and the key-
words in a concatenated way to the Anserini. By re-
trieving 70 pages per claim, and also obtaining the
documents that link to the retrieved relevant docu-
ments, the algorithm could successfully retrieve all
of the documents that have the necessary evidence
for 7255 claims out of the 7891 (91.94%) from
the development set. However, we later saw that
better document retrieval does not always translate
well to evidence retrieval and verification. These
settings were causing the retrieved evidence to be
noisy and taking too much time. Therefore, look-
ing for the incoming links was later scrapped, and
only 10 documents were retrieved for every claim
to speed up the process.

2.3 Evidence Selection
In this section, we selected the sentences related
to or considered as potential evidence with respect
to the query from the retrieved Wikipedia pages.
To select the relevant parts, we employed BERT-
large-cased (Devlin et al., 2019) question answer-
ing model instead of a sentence similarity model
even though the claims were not including a ques-
tion. Although sentence similarity models were
highly used in FEVER (Thorne et al., 2018) tasks,
with the help of QA models, search may grasp the
nuance and semantic meaning of the query better
than sentence similarity models. In line with our
approach, Google also employs a BERT question
answering model for its searches (Nayak, 2019).

Since BERT is able to handle a maximum of 512
tokens at once and Wikipedia pages contain long
texts, we split the retrieved text into chunks of 10

sentences. This way, we were also able to retrieve
more than one answer from one document, since
we would get an answer from each split. Although
splitting the page helped with the token limit, it did
not ensure that truncation would not occur. For this
purpose, after the initial split, we split the chunks
further with 10% overlapping words into chunks of
at most 512 words in order not to lose the semantic
meaning of the chunks. Then, the QA model was
applied to all the chunks and the answer with the
highest score was labeled as the final answer. As
evidence identifiers such as “sentence_1” created
noise and negatively affected the QA model, these
identifiers were cleaned. After that, we retrieved
the sentence including the answer and its preceding
one to ensure to obtain the full answer. Correct
evidence identifiers were then obtained through the
returned pieces of evidence as the answer. Then,
we sorted them with the universal sentence encoder
according to its similarity (confidence) score with
the query (Cer et al., 2018). We found that retriev-
ing pages related to people with very similar names
to the “PERSON” entity in the query was throwing
the results off. To tackle this issue while sorting the
answers, we doubled the similarity score obtained
after a softmax normalization if the document title
matched the “PERSON” named entity recognized
by the spaCy. Page title and person entity are con-
sidered to be matched when one includes the other.
For the task scoring constraints, we kept only the
top 5 pieces of evidence. As a result of the textual
QA module, we ended up with a query, its answers
and the confidence scores between the query and
the textual answers. Also, note that since we got a
sentence which included the answer, and the sen-
tence before it, a full answer text may contain more
than one evidence. In Wikipedia pages, evidence
or answers may have been located in the provided
table cells. To address this gap, we employed two
methods; The first method involved using the non-
person entities from the claim and matching them
with the cell values from the tables of the relevant
page. A cell value was considered to be a match
when its original or link-removed version had a
Levenshtein ratio of 0.8 or higher with the non-
person entity.

The second method involved using TAPAS (TA-
ble PArSing) (Herzig et al., 2020), a weakly super-
vised transformer-based question answering model
developed by Google Research. Given a table with
column header names and cell values, the model



117

can predict the answer according to the given query,
similar to the textual question answering model, ex-
cept our answer is cell values instead of text chunks.
To make this method work, tables of relevant pages
were obtained in a normalized form such that cells
with row/column spans larger than one are divided
into 1x1 cells sharing the same value, compatible
with the model. Since TAPAS requires tables to
have column headers, the table rows were removed
from the beginning one by one until the first row
included the header cells. Dividing the cells into
1x1 cells and duplicating their values led some ta-
bles to be very crowded and caused memory issues.
To address this problem, firstly, if a row has more
than 700 characters combined, the row is removed.
Secondly, if the final table has more than 1000 to-
kens when it is tokenized, it is skipped as a whole.
We chose to do so due to the time constraints and
our anecdotal findings of marginally large tables
having tangential information.

These two methods were applied to the pages
in order from the highest to the lowest confidence
scores, and only the first 25 cells (belonging to the
most relevant evidence’s pages) were kept. Since
cells usually do not form complete sentences,
we did not use them in the textual entailment
step to decide whether a claim is supported or
not. Internal links to other Wikipedia pages are
formatted in the dataset as "[[Page_ID|Visible
text]]" where "Page_ID" denotes the identifier
through which the page can be accessed (like
"https://en.wikipedia.org/wiki/Page_ID") while
"Visible text" denotes the text (mostly the linked
page’s title) shown to the user. Since these
links create noise and prevent matches, they are
simplified to obtain plain text cells with both cell
evidence retrieval methods.

2.4 Textual Entailment

For the entailment model, we used XLNET (Yang
et al., 2019) trained on the composition of SNLI
(Bowman et al., 2015), MultiNLI (Williams et al.,
2018), FEVER (Thorne et al., 2018), ANLI
(Williams et al., 2020) and NLI (Nie et al., 2019)
datasets. By using the pre-trained model, we eval-
uated the entailment between the textual answers
and the query. As a result of the textual entail-
ment model, we retrieved the Support, Contradict
or Neutral (NOT ENOUGH INFO) scores between
one query and one answer instance.

2.5 Heuristic Verdict Assignment

After utilizing the textual entailment module, we
concluded the final verdict, which will be one of
Support, Contradict or Neutral (NOT ENOUGH
INFO) via the following heuristic:

• If there was no answer with a similarity score
of 0.6 between the query and the answer
threshold, it was assigned as Neutral.

• If the “neutral” score between the query and
the answer was higher than 0.8, it was counted
as a Neutral vote. For the other cases, we look
for the contradiction and entailment scores
between the query and the answer. If the en-
tailment score was higher, we added one vote
for Support label. If the contradiction score
was higher, we added one vote for the Contra-
dict label.

• At the end, a majority vote was taken between
the “Support” and “Contradict” label votes
and then we determined the final verdict.

If the outcome is Neutral, we can conclude that
there is no information, which support or contra-
dict the claim in the Wikipedia pages. Even if the
verdict was NOT ENOUGH INFO, we still fetched
the evidence as well.

3 Results and Discussion

Based on the official leaderboard (Fact Extrac-
tion and VERification, 2021), our pipeline’s scores
along with the baseline, minimum, and maximum
FEVEROUS scores are shown in Table 2. Exclud-
ing the baseline, our FEVEROUS score is the ninth
out of 12 groups.

The label accuracy of our method (0.39) is rel-
atively close to the baseline (0.48). For reference,
the accuracy obtained with random guesses on the
development set is 0.33 while randomly guessing
the label using the class distribution yields an accu-
racy of 0.45.

Our pipeline’s success in identifying the ex-
pected evidence and consequently our FEVEROUS
score are significantly lower than the baseline. Hav-
ing a recall of 0.10 and precision of 0.05 suggests
we have more false positives than false negatives.
The fact that we also retrieved the previous sen-
tence of the sentence retrieved from the question
answering model may have an effect on this, but a
significantly lower evidence precision compared to



118

Table 2: Our model’s results compared to the baseline, minimum, and maximum FEVEROUS scores among the
participant groups

FEVEROUS
Score

Accuracy Evidence F1 Evidence
Precision

Evidence
Recall

Maximum 0.2701 0.5607 0.1308 0.0773 0.4258
FEVEROUS Baseline 0.1770 0.4760 0.1610 0.1121 0.2855
Ours 0.0636 0.3897 0.0634 0.0462 0.1011
Minimum 0.0223 0.3999 0.0282 0.0245 0.0330

the evidence recall is seemingly the norm among
the participant groups.

We had not run the final version of the pipeline
on the whole development set before our test sub-
mission. We later ran it on the development set and
obtained very similar results (a FEVEROUS score
of 0.0642 and label accuracy of 0.3867), which
suggests dataset splits are well-balanced. The con-
fusion matrix for the development set is shown in
Table 3.

Table 3: Confusion matrix for the development set pre-
dictions with the base model, “N.E.I.” indicating NOT
ENOUGH INFO label

Predicted
SUPPORTS REFUTES N.E.I.

A
ct

ua
l SUPPORTS 1009 1366 1533

REFUTES 530 1834 1117
N.E.I. 112 181 208

3.1 Limitations, Improvements, and Future
Work

Numerous improvements can be made on the
pipeline. Based on the confusion matrix for the
development set, our pipeline is seemingly too
much inclined towards finding that there is not
enough information as 2858 claims from the devel-
opment set are labeled as NOT ENOUGH INFO
compared to the expected number of 501 while
only 208 of them were true positives. This sug-
gests the claim verification model requires fine-
tuning. Even a more heuristic solution can slightly
improve the results. Since the mean and median
number of expected non-cell evidence were approx-
imately two, we observed that randomly assigning
the label as either SUPPORTS or REFUTES for
claims that have more than two retrieved non-cell
evidence increases the label accuracy to 0.51 and
the FEVEROUS score to 0.07. We found that it is
also possible, to some extent, to verify the claims

based on whether the retrieved documents men-
tion entities extracted from the claim. We naively
assumed that if a claim’s entities are completely
matched in the documents, the claim is correct.
If most of the entities were not found, then there
was not sufficient information. Using the ratio of
entities matched in the documents and some thresh-
old values, we obtained a lowered FEVEROUS
score (0.0457) but a higher label accuracy (0.4593).
More importantly, we saw that applying this naive
approach only when the predicted label is wrong
(4839 claims out of 7890) significantly improves
both FEVEROUS score (0.0812) and label accu-
racy (0.6718). While this is not applicable when we
do not have the expected label, this suggests that
a complementary naive approach can significantly
improve the results if we can identify which cases
are more likely to be misclassified.

Due to time constraints, several parameters (like
the number of retrieved documents) were kept at
minimal and not optimized. While we limited doc-
ument retrieval to 10 results per claim, we had
observed that some expected Wikipedia pages for
the claims in the development set were being re-
trieved at much lower ranks (such as 50 and up).
As explained, deep learning models used within
the pipeline are pre-trained models that are not fine-
tuned for this task. Fine-tuning these parameters
and models may yield better results. However, us-
ing a subset of the development set, we saw that
retrieving 70 results for each claim only improved
the label accuracy by 0.02 and FEVEROUS score
did not change while the pipeline became 5-6 times
slower.

We found that people’s names in the claims
and their Wikipedia pages do not always perfectly
match. For example, Sir Arthur Conan Doyle was
mentioned in a claim as “Conan Doyle” while his
Wikipedia page was called “Arthur Conan Doyle.”
Our pipeline requires the entity to be included in



119

the page title or the page title to be included in an
entity to double its confidence score, so these sim-
ple differences could be handled. However, while
it is rarer, we saw that certain entities have more
significant differences between their mentioned
names and their Wikipedia page titles. For exam-
ple, Eleanor Francis “Glo” Helin was mentioned
as “E. F. Helin” in a claim while her Wikipedia
page was titled “Eleanor F. Helin.” For these cases,
removing the disambiguation parentheses, using a
Levenshtein ratio threshold, and initial matching
when there is initialism involved may improve the
results. Since these name differences can be seen
anywhere, a more flexible and tolerating approach
may be helpful while dealing with entities. With a
subset of the development set, using Levenshtein
ratio as an alternative to partial matching (with-
out dealing with initialism) increased FEVEROUS
score by about 0.01, which is not significant.

Fundamentally changing some parts of the
pipeline may have positive effects as well. Our
question answering model can retrieve multiple ev-
idence sentences, but the retrieved sentences must
be in consecutive order since the model actually
retrieves a piece of the document that is deemed rel-
evant which can span multiple sentences. This lim-
itation is partially alleviated since we split all the
documents into chunks of sentences before using
the question answering model. Separately feeding
each piece of evidence or splitting the documents
using a sliding window approach with a small win-
dow may improve the results, but it would also
increase the inference time. Similarly, splitting the
tables further can prevent truncation and may im-
prove evidence recall. While tables may mislead
the model, the existence of matching entities in
them may, in general, give some clues about the
claim’s veracity. Based on the complicatedness of
the claims, it might be possible to improve the re-
sults by adjusting the entailment score when there
is table cell evidence.

Inference takes a considerable amount of time as
the pipeline becomes more complex with multiple
models. Due to verification and evidence retrieval
taking roughly eight or nine seconds per claim,
we ran the pipeline with two computers in parallel.
Reducing the inference time can help with speeding
up the iterative improvements and experimentation.

4 Conclusion

In this work, we proposed a fact extraction and
verification pipeline that mainly uses Anserini to
retrieve documents, a BERT-based question answer-
ing model to retrieve textual evidence, TAPAS to
retrieve table cell evidence, and an XLNET-based
entailment model to judge the claim without fine-
tuning them. We believe parameter optimization
and challenge-specific fine-tuning can significantly
improve the results.

References
Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei

Yang, Haotian Zhang, and Jimmy Lin. 2019. Apply-
ing BERT to document retrieval with birch. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP): System Demonstra-
tions, pages 19–24, Hong Kong, China. Association
for Computational Linguistics.

Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,
James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. FEVEROUS: Fact Extraction and
VERification over unstructured and structured
information.

Apache Lucene. Apache Lucene - welcome to Apache
Lucene.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1657–1668, Vancouver, Canada. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

https://doi.org/10.18653/v1/D19-3004
https://doi.org/10.18653/v1/D19-3004
http://arxiv.org/abs/2106.05707
http://arxiv.org/abs/2106.05707
http://arxiv.org/abs/2106.05707
https://lucene.apache.org/
https://lucene.apache.org/
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://arxiv.org/pdf/1803.11175.pdf
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


120

Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Fact Extraction and VERification. 2021. 2021 shared
task. [Online] Available at: https://fever.ai/task.html
[Accessed August 8, 2021].

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil
Sorokin, Benjamin Schiller, Claudia Schulz, and
Iryna Gurevych. 2018. UKP-Athene: Multi-
sentence textual entailment for claim verification.
In Proceedings of the First Workshop on Fact Ex-
traction and VERification (FEVER), pages 103–108,
Brussels, Belgium. Association for Computational
Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4320–4333, Online. Association for
Computational Linguistics.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’21, page
2356–2362, New York, NY, USA. Association for
Computing Machinery.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Pandu Nayak. 2019. Understanding searches
better than ever before. [Online] Available
at: https://blog.google/products/search/search-
language-understanding-bert/ [Accessed August 8,
2021].

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6859–6866.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.

1994. Okapi at TREC-3. In Proceedings of the
Third Text REtrieval Conference (TREC 1994).

Amir Soleimani, Christof Monz, and Marcel Worring.
2020. BERT for evidence retrieval and claim verifi-
cation. In Advances in Information Retrieval, pages
359–366, Cham. Springer International Publishing.

spaCy. n.d. spaCy · Industrial-strength Natural Lan-
guage Processing in Python. [Online] Available at:
https://spacy.io/ [Accessed August 8, 2021].

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: A large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Adina Williams, Tristan Thrush, and Douwe Kiela.
2020. ANLIzing the adversarial natural language in-
ference dataset. arXiv preprint arXiv:2010.12729.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the use of Lucene for information retrieval
research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1253–1256.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. Advances in neural infor-
mation processing systems, 32.

Takuma Yoneda, Jeff Mitchell, Johannes Welbl, Pon-
tus Stenetorp, and Sebastian Riedel. 2018. UCL ma-
chine reading group: Four factor framework for fact
finding (HexaF). In Proceedings of the First Work-
shop on Fact Extraction and VERification (FEVER),
pages 97–102, Brussels, Belgium. Association for
Computational Linguistics.

https://fever.ai/task.html
https://fever.ai/task.html
https://doi.org/10.18653/v1/W18-5516
https://doi.org/10.18653/v1/W18-5516
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
https://ojs.aaai.org/index.php/AAAI/article/download/4662/4540
https://ojs.aaai.org/index.php/AAAI/article/download/4662/4540
https://link.springer.com/chapter/10.1007/978-3-030-45442-5_45
https://link.springer.com/chapter/10.1007/978-3-030-45442-5_45
https://spacy.io/
https://spacy.io/
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://arxiv.org/pdf/2010.12729.pdf
https://arxiv.org/pdf/2010.12729.pdf
https://dl.acm.org/doi/pdf/10.1145/3077136.3080721
https://dl.acm.org/doi/pdf/10.1145/3077136.3080721
https://dl.acm.org/doi/pdf/10.1145/3077136.3080721
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.18653/v1/W18-5515
https://doi.org/10.18653/v1/W18-5515
https://doi.org/10.18653/v1/W18-5515

