
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 73–83
July 5–10, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_008

73

Testing Cross-Database Semantic Parsers Using Canonical Utterances

Heather LentC˚ Semih YavuzS Tao YuH

Tong NiuS Yingbo ZhouS Dragomir RadevY Xi Victoria LinF

C University of Copenhagen, S Salesforce Research
H Hong Kong University, Y Yale University, F Facebook AI Research

hcl@di.ku.dk, tyu@cs.hku.hk

{syavuz, tniu, yingbo.zhou}@salesforce.com

dragomir.radev@yale.edu, victorialin@fb.com

Abstract

The benchmark performance of cross-database
semantic parsing has climbed steadily in re-
cent years, catalyzed by the wide adoption
of pre-trained language models. Yet existing
work have shown that state-of-the-art cross-
database semantic parsers struggle to gener-
alize to novel user utterances, databases and
query structures. To obtain transparent de-
tails on the strengths and limitation of these
models, we propose a diagnostic testing ap-
proach based on controlled synthesis of canon-
ical natural language and SQL pairs. In-
spired by the CheckList (Ribeiro et al., 2020),
we characterize a set of essential capabili-
ties for cross-database semantic parsing mod-
els, and detailed the method for synthesiz-
ing the corresponding test data. We eval-
uated a variety of high performing models
using the proposed approach, and identified
several non-obvious weaknesses across mod-
els (e.g. unable to correctly select many
columns). Our dataset and code are released
as a test suite at http://github.com/hclent/
BehaviorCheckingSemPar.

1 Introduction

Cross-database semantic parsing, the task of map-
ping natural language utterances to SQL queries
for any database, has attracted increasing atten-
tion since the introduction of benchmarks like Wik-
iSQL (Zhong et al., 2017) and Spider (Yu et al.,
2018). The advent of pre-trained language mod-
els (Peters et al., 2018; Devlin et al., 2019; Liu
et al., 2019; Lewis et al., 2020) has further accel-
erated the progress in this area (Lin et al., 2020;
Yu et al., 2020; Shi et al., 2020; Wang et al., 2020;
Choi et al., 2020).

Despite impressive gains on standard bench-
marks, studies on cross-database semantic pars-
ing models show that they still suffer from out-
of-distribution (OOD) generalization when pre-

˚Work done during an internship at Salesforce Research.

Figure 1: The database (top) is applied to our SCFG
production rule (middle) to produce a new example for
the DISTINCT category (bottom). See Appendix B for
production rules of other categories.

sented with novel user utterances (Suhr et al., 2020;
Radhakrishnan et al., 2020; Shaw et al., 2021),
databases (Suhr et al., 2020) and SQL query struc-
tures (Finegan-Dollak et al., 2018; Suhr et al., 2020;
Shaw et al., 2021). As baseline performance climbs
ever upward, at what point can we confidently de-
ploy our models to end users, and how will we
know we have reached this point?

Inspired by Ribeiro et al. (2020), which has
shown the effectiveness of simple, systematic, and
heuristic behavior checking strategies for evaluat-
ing the robustness of NLP models, we propose a
controllable, non-adversarial unit testing approach
to shed more light on the capabilities of cross-
database semantic parsers. We implement a syn-
chronous context-free grammar (SCFG) to generate
natural language questions based on SQL queries
(Figure 1). This grammar features production rules
that evaluate important categories of SQL element
types such as clauses (e.g. SELECT and WHERE), as
well as commonly used operators including aggre-

http://github.com/hclent/BehaviorCheckingSemPar
http://github.com/hclent/BehaviorCheckingSemPar

74

gators (MAX), conditionals (BETWEEN), and logical
operators (OR). We handcraft the rules for these cat-
egories to ensure that the generated question-query
pairs are simple, natural, unambiguous, and with
minimal cross-category overlap.

We apply our evaluation framework to four state-
of-the-art text-to-SQL models, namely BRIDGE
(Lin et al., 2020), RATSQL-RoBERTa and
RATSQL-GraPPa (Yu et al., 2020), and RATSQL-
GAP (Shi et al., 2020), and observe that these mod-
els struggle to extend their success on the Spider
dev set consistently to our evaluation data, with
the exception of a few categories. Further analy-
sis of the fine grained categories shows that they
also fail on many rudimentary test cases (e.g., se-
lecting multiple columns and properly producing
conjunctions). While existing studies show that
the models tend to fail on challenging cases that
involve novel user expression (Suhr et al., 2020)
and SQL structures (Suhr et al., 2020; Shaw et al.,
2021), our diagnosis exposes more robustness is-
sues in their surface form understanding (even with
seemingly simple inputs), and highlights the im-
portance of addressing such issues in the modeling
foundation (Bommasani et al., 2021). Our dataset
and code are released as an extensible test suite.

2 Related Work

Paraphrasing A number of augmentation meth-
ods have been made to create paraphrases of the
input query, with methods such as synonym re-
placement (Kwiatkowski et al., 2013), use of a para-
phrase model (Berant and Liang, 2014), and back-
wards utterance generation (Zhong et al., 2020).
While these approaches ensure the creation of ad-
ditional examples with more variation on the natu-
ral language side, they can be vulnerable to error,
when a wrong synonym or paraphrase is chosen
by a model. Although such errors may amount to
just noise when used as additional training data in
conjunction with a benchmark dataset, they make
evaluation on such generated sets impossible, un-
less examples with errors are manually removed
from the dataset.

Canonical Utterances Wang et al. (2015)
demonstrated that it is possible to lessen the re-
liance on humans for creating a dataset by first
generating logical forms and canonical utterances,
and then use crowdsourcing to create more natural-
sounding paraphrases of the questions. They note
that this method is particularly effective when you

seek to quickly create data for creating a domain
specific parser. Iyer et al. (2017) also demon-
strated that crowdsourced annotations from such
approaches, as in turn user feedback in an online
setting, can be used improve parses and detect
incorrect queries. Although originally designed
in the context of transfer-based machine transla-
tion to generate translation pairs (Chiang, 2005),
SCFG’s have also been adapted in previous seman-
tic parsing work (Wong and Mooney, 2006, 2007)
for generating new sentence-parse pairs. More re-
cent utilization’s of SCFG’s for semantic parsing
induce the grammar and use the resulting data for
additional training and pre-training (Jia and Liang,
2016; Yu et al., 2020).

Robustness Testing Finally, Ribeiro et al. (2020)
has demonstrated the efficacy of handcrafting tem-
plates for generating data points to “unit test” the
models. We design synchronous context-free gram-
mar (SCFG) production rules to generate test data
for specific cross-database semantic parsing capa-
bilities. Other NLP evaluation frameworks that
look beyond accuracy and target a more general set
of NLP tasks have also been proposed (Goel et al.,
2021; Liu et al., 2021; Kiela et al., 2021).

3 Generating Canonical Natural
Language Utterances Using SCFG

Motivation There are in general two ways to per-
form behavior testing on a model: one with auto-
matically generated data, the other with manually
curated data. In this work we focus on the former
because it not only scales with almost no addi-
tional cost, but also serves as a pre-filtering mech-
anism before we test it further with human-in-the-
loop. The input to text-to-SQL models is a natural
question. However, generating natural language
has two challenges: (i) it is difficult to automat-
ically produce novel human-like utterances with
high-fidelity; (ii) natural language is inherently
ambiguous, while input to text-to-SQL models is
required to be accurate enough to have a one-to-
one mapping between the natural question and the
SQL query. Motivated by the above requirements,
we propose using the inherently non-ambiguous
Synchronous context-free grammar (SCFG) for
generating canonical natural language utterances
in English1.

1This method is also extendable to other languages.

75

Details of SCFG SCFG is a type of formal gram-
mar which produce pairs of utterances that share a
meaning with each other. There are two key com-
ponents of a context-free grammar: symbols and
production rules that connect them. In our case, the
symbols correspond to the SQL elements, which
are presented in the first column of Table 1.2 The
production rules are mappings between SQL el-
ements and natural language words. In Figure 1
we provide such an example where SCFG maps
the SQL element DISTINCT to the word “unique”,
hence converting the SQL query “SELECT DIS-
TINCT Column FROM Table” to the natural lan-
guage question “Select unique Column from Ta-
ble”. The mappings between symbols and query
words are intentionally designed to mimic the lan-
guage in the Spider dataset (Yu et al., 2018), which
ensures that the generated examples remain close
to the training distribution.3

Intuitively, questions produced by the SCFG lie
somewhere in-between natural language and SQL:
they are not as natural as real human questions, but
are much more human-like than the SQL queries.
Accommodating such a trade-off ensures that the
generated queries are both natural and accurate.
More examples of SCFG rules can be found in
Appendix C.

Generation of evaluation data To thoroughly
evaluate each SQL element, we create as many
valid question-query pairs as possible for each
database in Spider, so that there is adequate repre-
sentation for infrequent categories. Note that many
databases have tables that only correspond to a
subset of elements.4 Consequently the number of
collected examples in Table 1 (second column) are
not evenly distributed.5

When generating examples for a given SQL el-
ement, the example operates over only one table,
and we only introduce the minimum amount of
other elements to make the generation grammati-
cal and uncompounded. For example, the operator

2We collected the SQL elements from https://www.
w3schools.com/sql/ and https://www.techonthenet.
com/sqlite/.

3Competent performance across categories in Table 1
demonstrate our data overlap with the training distribution.

4For example, a table with only text-type columns can
not be used to generate pairs with mathematical concepts
minimum or less than.

5To have a uniform distribution, one may perform sub-
sampling (which wastes valuable data), or design a model
to automatically generate new tables – we leave the latter as
future work.

Target

Exact Set Match Acc.

SQL Element # BRIDGE† RATSQL+

RoBERTa GraPPa GAP

Spider Dev 1034 68.2 69.6 73.4 71.8

B
as

ic
C

la
us

es

SELECT 1700 53.6 46.5 62.6 73.5
DISTINCT 850 86.4 86.6 94.5 88.3
WHERE 1003 73.2 70.3 84.4 82.1

ORDER BY 1946 51.0 54.7 71.4 76.5
GROUP BY 653 35.5 51.3 45.9 5.7
HAVING 604 0.1 0.0 0.0 0.0

Cat. Avg. 53.4 53.7 65.7 64.4

A
gg

re
ga

te
O

ps

MIN 794 74.5 59.1 93.7 83.2
MAX 794 75.3 17.5 85.9 47.4
SUM 794 66.0 71.1 52.2 52.1

COUNT 850 34.4 56.3 70.3 66.8
AVG 794 56.7 58.1 81.8 79.7

Cat. Avg. 61.0 52.5 76.7 65.9

C
on

di
tio

n
O

ps ď,ă,ą,ě 440 55.2 37.9 61.3 88.6
! “ 397 27.2 68.3 62.4 92.4

BETWEEN 256 65.9 26.7 34.9 51.0

Cat. Avg. 49.4 44.3 52.9 77.3

L
og

ic
O

ps AND 401 3.2 4.5 7.2 16.2
OR 401 5.1 5.0 8.2 17.1

AND & OR 369 4.1 4.3 8.6 18.1

Cat. Avg. 4.1 4.6 8.0 17.1

Overall Avg. 45.0 42.9 55.3 55.6

Table 1: Results on the models per our SCFG cate-
gories. # shows the number of test examples present.
Cat. Avg. reflects the category average weighted by
the number of examples per each target SQL element.
†BRIDGE results are averaged across three checkpoints
with different random initializations, while the RAT-
SQL results are based on the best checkpoints accord-
ing to the dev set evaluation.

BETWEEN necessitates SELECT and WHERE clauses
to generate a coherent query, but any additional
operators, even if they can make the query more
compositional, are excluded, as our goal is to unit
test each SQL element individually. In turn, our
generated data are also intended to be as easy as
possible for models to succeed on.

Human verification of evaluation data To ver-
ify that our generated examples are indeed human-
like and accurate, we recruited volunteers6 who are
proficient in SQL to label a subset of 40 randomly
chosen question-query pairs, and rate each pair
on its “readability” and “semantic equality”. The
question-query pairs are chosen such that all cate-

6Our annotation task posed no risk or harm to annotators,
and required 30 minutes of the volunteers’ time.

https://www.w3schools.com/sql/
https://www.w3schools.com/sql/
https://www.techonthenet.com/sqlite/
https://www.techonthenet.com/sqlite/

76

Target SQL Element and Example Model Predictions with Highlighted Errors
S
E
L
E
C
T

BRIDGE:SELECT student.ID, student.name, student.dept name,
student.tot cred FROM student

NL: Select name, id, department name,
total credits from student

RS+RoB:SELECT student.name, student.ID, student.dept name,
Sum(student.tot cred) FROM student GROUP BY student.ID

SQL:SELECT name, ID, dept name,
tot cred FROM student

RS+GraPPa:SELECT student.name, student.ID,
student.dept name, Sum(student.tot cred) FROM student

RS+GAP:SELECT student.name, student.ID, student.dept name,
Sum(student.tot cred) FROM student

Table 2: Model predictions on a randomly chosen SELECT example. See Appendix B for additional qualitative
examples of model predictions on different categories.

Columns #
Exact Set Match Acc.

BRIDGE
RATSQL+

RoBERTa GraPPa GAP

1 852 69.1 52.3 70.8 85.4
2 253 60.9 68.8 81.0 88.9
3 191 68.3 63.4 85.9 85.9
4 154 21.0 32.5 61.0 81.8
5 122 0.0 0.0 0.0 0.0
6 69 0.0 0.0 0.0 0.0

Table 3: Performance of models on SELECT clauses
by number of columns being selected.

gories are represented at least twice. Each question-
query pair was annotated by three annotators and
we take their majority vote. An example given to
annotators can be found in Appendix B.

For readability, 77.5% of generated questions
were labeled by annotators to be “easily under-
standable”; 17.5% were labeled “understandable
with some effort” and 5% were labeled “not under-
standable”. We obtain this statistics by taking the
majority vote of the three annotations for each ques-
tion and counting a tie as “not understandable”. In
the same manner, annotators also identified 97.5%
of questions were “semantically equivalent” to their
SQL counterpart and 2.5% were “not equivalent”.

We computed Fleiss’ Kappa to measure inter-
annotator agreement for both readability and equiv-
alency. The results were 0.19 and 0.04, respec-
tively, which are generally considered insufficient
to claim there is strong agreement. However, we
find the low scores a result of the limitation of
Fleiss’ Kappa, which is more reliable when each
example is annotated by more annotators (we have
only 3). Reviewing the annotations for readability
reveals that there were 14 examples without perfect
agreement for readability. For equivalency, there
were only 4 of them.

4 Experiments

4.1 Experiment Setup
Models We evaluate four leading models on the
Spider challenge (Yu et al., 2018) on our gener-
ated question-query pairs: BRIDGE (Lin et al.,
2020), RATSQL-RoBERTa and RATSQL-GraPPa
(Yu et al., 2020) and RATSQL-GAP (Shi et al.,
2020). With the exception of BRIDGE, the other
models were developed upon the original RATSQL
model (Wang et al., 2020), which was notable for
introducing a relation-aware self-attention mecha-
nism for schema linking. Yu et al. (2020) extended
the RATSQL framework by adding pre-training
into their setup, and Shi et al. (2020) also incorpo-
rates supplementary pre-training triplet data gener-
ated by another model. The BRIDGE model is fun-
damentally different from the others, as it consists
of a sequentially-driven architecture, rather than op-
erating over graphs. For schema-linking, BRIDGE
uses a custom encoder powered by BERT (Devlin
et al., 2019) with attention over the sequences.

Evaluation Methodology Our experiments con-
sist of evaluating each model on the generated set
of question-query pairs with the canonical language
questions as inputs. We evaluate Exact Set Match
Accuracy for subsets of the data pertaining to each
target SQL element, and then calculate the average
score for each SQL token category weighted by
number of examples.

4.2 Results
Main Results Table 1 highlights several inter-
esting observations.7 Most models only perform
on par with their baseline (or better) on a few tar-
get SQL elements (e.g. DISTINCT, WHERE). More

7The metrics in Table 1 are diagnostic instead of explana-
tory. There can be multiple factors affecting the model per-
formance on an evaluation point and our tests cannot isolate
them.

77

often they perform below the baseline on most ele-
ments, with a few extreme outliers for total or near
total failure (e.g. HAVING, AND).

Controlled Evaluation All models perform be-
low their own baseline accuracies for simple ex-
amples that test the SELECT clause. We present
an example of such model predictions in Table 2.
One contributing factor to these low scores is the
number of columns being selected. Table 3 shows
that SQL models are only able to successfully pro-
duce queries with a limited number of columns,
although basic column selection should not be such
a difficult task for these models. While it is not
surprising that models show difficulty generalizing
to unseen length or structures (Lake and Baroni,
2017), this finding is concerning because there are
many practical use cases where users will need to
select more than four columns.8

5 Conclusion

We propose a simple and controllable approach
for synthesizing text-to-SQL pairs for unit testing
model performance on various semantic categories.
Our controlled test suites allow for more exten-
sive and fine-grained evaluation of state-of-the-art
text-to-SQL models, which reveal a general lack
of robustness in generalizing beyond the bench-
mark examples across several categories such as
SELECT and WHERE. More importantly, our study
highlights the importance of developing evaluation
strategies beyond fixed test and dev set accuracy
for understanding real progress made by the state-
of-the-art text-to-SQL models and the remaining
key challenges.

6 Acknowledgments
F

F
FFF

F

F

F
F F F

F We would like to thank our reviewers for their
helpful feedback. Heather Lent received fund-
ing from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie
Skłodowska-Curie grant agreement No 801199.

References
Jonathan Berant and Percy Liang. 2014. Semantic pars-

ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–
1425, Baltimore, Maryland. Association for Compu-
tational Linguistics.
8For example, the large tables in Spider’s soccer 1

database

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, Erik Brynjolfsson, Shya-
mal Buch, Dallas Card, Rodrigo Castellon, Ni-
ladri Chatterji, Annie S. Chen, Kathleen Creel,
Jared Quincy Davis, Dorottya Demszky, Chris Don-
ahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-
Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie,
Karan Goel, Noah D. Goodman, Shelby Grossman,
Neel Guha, Tatsunori Hashimoto, Peter Henderson,
John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Juraf-
sky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff
Keeling, Fereshte Khani, Omar Khattab, Pang Wei
Koh, Mark S. Krass, Ranjay Krishna, Rohith Kudi-
tipudi, and et al. 2021. On the opportunities and
risks of foundation models. CoRR, abs/2108.07258.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL’05),
pages 263–270, Ann Arbor, Michigan. Association
for Computational Linguistics.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2020. Ryansql: Recursively
applying sketch-based slot fillings for complex text-
to-sql in cross-domain databases.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Sam-
son Tan, Jason Wu, Stephan Zheng, Caiming Xiong,
Mohit Bansal, and Christopher Ré. 2021. Robust-
ness gym: Unifying the NLP evaluation landscape.
CoRR, abs/2101.04840.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

https://doi.org/10.3115/v1/P14-1133
https://doi.org/10.3115/v1/P14-1133
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258
https://doi.org/10.3115/1219840.1219873
https://doi.org/10.3115/1219840.1219873
http://arxiv.org/abs/2004.03125
http://arxiv.org/abs/2004.03125
http://arxiv.org/abs/2004.03125
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
http://arxiv.org/abs/2101.04840
http://arxiv.org/abs/2101.04840
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089

78

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mo-
hit Bansal, Christopher Potts, and Adina Williams.
2021. Dynabench: Rethinking benchmarking in
NLP. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2021, Online, June 6-11, 2021,
pages 4110–4124. Association for Computational
Linguistics.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1545–1556, Seattle,
Washington, USA. Association for Computational
Linguistics.

Brenden M. Lake and Marco Baroni. 2017. Still not
systematic after all these years: On the composi-
tional skills of sequence-to-sequence recurrent net-
works. CoRR, abs/1711.00350.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Associa-
tion for Computational Linguistics.

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaichen Chang, Junqi Dai, Yixin Liu, Zihui-
wen Ye, and Graham Neubig. 2021. EXPLAIN-
ABOARD: an explainable leaderboard for NLP.
CoRR, abs/2104.06387.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Karthik Radhakrishnan, Arvind Srikantan, and Xi Vic-
toria Lin. 2020. Colloql: Robust cross-domain text-
to-sql over search queries. CoRR, abs/2010.09927.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional general-
ization and natural language variation: Can a se-
mantic parsing approach handle both? In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Pa-
pers), Virtual Event, August 1-6, 2021, pages 922–
938. Association for Computational Linguistics.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, and Bing Xiang. 2020. Learning con-
textual representations for semantic parsing with
generation-augmented pre-training.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388, Online. Association for Computational Lin-
guistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for
text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1332–1342,
Beijing, China. Association for Computational Lin-
guistics.

Yuk Wah Wong and Raymond Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the Human Language

https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
https://www.aclweb.org/anthology/D13-1161
https://www.aclweb.org/anthology/D13-1161
http://arxiv.org/abs/1711.00350
http://arxiv.org/abs/1711.00350
http://arxiv.org/abs/1711.00350
http://arxiv.org/abs/1711.00350
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
http://arxiv.org/abs/2104.06387
http://arxiv.org/abs/2104.06387
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/2010.09927
http://arxiv.org/abs/2010.09927
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
http://arxiv.org/abs/2012.10309
http://arxiv.org/abs/2012.10309
http://arxiv.org/abs/2012.10309
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.3115/v1/P15-1129

79

Technology Conference of the NAACL, Main Confer-
ence, pages 439–446.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 960–967.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for
Computational Linguistics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

A Model Performance on Dev Examples
Corresponding to Categories

Target

Exact Set Match Acc.

SQL Element #train #dev BRIDGE
RATSQL+

RoBERTa GraPPa GAP

SELECT 213 32 82.3 90.6 96.9 81.2

DISTINCT 113 5 86.7 100 100 60.0

WHERE 343 61 77.2 83.6 83.6 100

ORDER BY 560 83 78.3 88.0 90.4 78.3

GROUP BY 16 8 83.3 50.0 50.0 75.0

MIN 2 4 16.7 0.0 50.0 0.0

MAX 10 5 0.0 0.0 0.0 0.0

SUM 25 2 100 100 100 100

COUNT 245 40 99.2 100 97.5 97.5

ă“,ă,ą,ą“ 70 6 77.8 66.7 100 100

! “ 14 52 83.3 85.7 85.7 100

AND 50 5 66.7 60.0 100 60.0

OR 54 10 100 88.0 100 78.3

Table 4: Performance of models on Spider Dev by our
categories. SCFG elements that had zero correspond-
ing examples are removed from the table. Here we in-
clude the number of examples in Spider training and
Spider dev to demonstrate the underlying training and
development distributions. Examples counted here are
strictly relate to the chosen category. (i.e. examples
with multiple SQL elements that do not pertain exactly
to the categories are excluded from these counts).

B Example of Annotation Task

Example database schema given to annotators:

Example question-query pair given to annotators:
/Question: Select year from movie when movie id
is greater than 1
\Query: SELECT Year FROM movie WHERE

movie id > 1 ;

Annotators are asked to choose one answer from
the list below, to describe the readability and equiv-
alency of the question-query pair, above:

1. Readability:

• I can easily understand the question

http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

80

• I have some problems understanding the
question, but I can understand with some
effort
• I do not understand the question after

trying my best to interpret it

2. Equivalency:

• The question and the SQL query match
perfectly
• The question and SQL query do not fully

match, but the answer to the question can
be inferred from the SQL query results
• The SQL query does not return the an-

swer to the question

C Example Model Predictions and
SCFG Production Rules

See Table 5 for model predictions, and Figures
2 and 3 for example SCFG production rules.

81

Target SQL Element and Example Model Predictions with Highlighted Errors & Highlighted Missing Elements
G
R
O
U
P
B
Y

BRIDGE:SELECT time slot.time slot id, MIN(time slot.end hr) FROM
time slot GROUP BY time slot.time slot id

NL: Select time slot id and minimum end minute
from time slot grouped by time slot id

RS+RoB:SELECT time slot.time slot id, MIN(time slot.end min) FROM
time slot GROUP BY time slot.time slot id

SQL:SELECT time slot id, MIN(end min)
FROM time slot GROUP BY time slot id

RS+GraPPa:SELECT time slot.time slot id, Min(time slot.end min) FROM
time slot GROUP BY time slot.time slot id

RS+GAP:SELECT time slot.time slot id, Min(time slot.end min),
Min(time slot.end min) FROM time slot GROUP BY time slot.time slot id

H
A
V
I
N
G

BRIDGE:SELECT people.Name, MAX(people.Height) FROM people
JOIN perpetrator ON people.People ID = perpetrator.People ID WHERE
people.People ID = 2 GROUP BY people.People ID people.Name HAVING
MAX(people.People ID) =2)

NL: Select name from people grouped by name
with maximum people id equal to 2

RS+RoB:SELECT people.Name FROM people GROUP BY people.Name HAVING
Count(*) >= MAX(people.People ID =) ’terminal’

SQL:SELECT Name FROM people GROUP BY
Name HAVING MAX(People ID) = 2

RS+GraPPa:SELECT people.Name, Max(people.People ID) FROM perpetrator
JOIN people ON perpetrator.People ID = people.People ID GROUP BY
people.Name HAVING Count(*) >= MAX(people.People ID) = ’terminal’

RS+GAP:SELECT people.Name FROM people JOIN perpetrator WHERE
GROUP BY Name HAVING MAX people.People ID = ’terminal’

O
R

BRIDGE:SELECT classroom.building FROM classroom WHERE
classroom.building = ’Stabler’ OR classroom.capacity = 115
UNION SELECT * FROM classroom WHERE classroom.building = ’Stabler’
OR classroom.room numer = 261

NL: Select building from classroom when build-
ing equals Stabler or capacity equals 115 or room
number equals 261

RS+RoB:SELECT classroom.building FROM classroom WHERE
classroom.building = ’terminal’ OR classroom.capacity = ’terminal’
OR classroom.room number = 261

SQL:SELECT building FROM classroom
WHERE building = ’Stabler’ OR
capacity = 115 OR room numer = 261

RS+GraPPa:SELECT classroom.building FROM classroom WHERE
classroom.building = ’terminal’ OR classroom.capacity = ’terminal’
OR classroom.room numer = 261

RS+GAP:SELECT classroom.building FROM classroom WHERE
classroom.building = ’terminal’ OR classroom.capacity
= ’terminal’ AND OR classroom.room number = ’terminal’
AND classroom.room number = ’terminal’

Table 5: Example predictions on selected target SQL elements from the BRIDGE, and RATSQL (RS) based models
using RoBERTa (+RoB), GraPPa, and GAP.

82

SELECT
RuleÑ x Select Column from Table, SELECT Column FROM Tabley
Example:
TableÑ x school performance , school performance y
ColumnÑ x class a , Class A y
Output Production:
NL: Select class a from school performance
SQL: SELECT Class A FROM school performance

RuleÑ x Select Columns from Table, SELECT Columns FROM Tabley
Example:
TableÑ x people , people y
ColumnsÑ x (height, name, weight, people id) , (Height, Name, Weight, People ID) y
Output Production:
NL: Select height, name, weight, people id from people
SQL: SELECT Height, Name, Weight, People ID FROM people

ORDER BY
RuleÑ x Select Column1 from Table sorted by Column2,
SELECT Column1 FROM Table ORDER BYColumn2y

Example:
TableÑ x circuits , circuits y
Column1Ñ x longitude, lng y
Column2Ñ x latitude, lat y
Output Production:
/ NL: Select longitude from circuits sorted by latitude
\SQL: SELECT lng FROM circuits ORDER BY lat

RuleÑ x Select Column1 from Table sorted by Column2 Order,
SELECT Column1 FROM Table ORDER BY Column2 Ordery

Example:
TableÑ x debate people , debate people y
Column1Ñ x debate id, debate id y
Column2Ñ x negative, Negativ y
OrderÑ x in ascending order , ASC y
Output Production:
/ NL: Select debate id from debate people sorted by negative in ascending order
\SQL: SELECT Debate ID FROM debate people ORDER BY Negative ASC

HAVING
RuleÑ x Select Column1 from Table grouped by Column1 with Degree imum Column2 equal to ColumnValue,
SELECT Column1 FROM Table GROUP BY Column1 HAVING Degree Column2 “ ColumnValue y

Example:
TableÑ x climber , climber y
Column1Ñ x name, Name y
Column2Ñ x points, Points y
DegreeÑ x min , MIN y
ColumnValueÑ x 6.0, 6.0 y
Output Production:
/ NL: Select name from climber grouped by name with minimum points equal to 6.0
\SQL: SELECT Name FROM climber GROUP BY Name HAVING MIN(Points) = 6.0

Figure 2: Example SCFG Production Rules for selected SQL Clauses

83

MIN
RuleÑ x Select minimum Column from Table, SELECT MIN(Column) FROM Tabley

Example:
TableÑ x student addresses , Student Addresses y
ColumnÑ x monthly rental , monthly rental y
Output Production:
/ NL: Select minimum monthly rental from student addresses
\SQL: SELECT MIN(monthly rental) FROM Student Addresses

<=, <,ą,ą“
RuleÑ x Select Column1 from Table when Column2 Equality ColumnValue,
SELECT Column1 FROM Table WHERE Column2 Equality ColumnValuey

Example:
TableÑ x faculty , faculty y
Column1Ñ x faculty, Faculty y
Column2Ñ x campus, Campus y
EqualityÑ x greater than, > y
ColumnValueÑ x 20 , 20 y
Output Production:
/ NL: Select faculty from faculty when campus is greater than 20
\SQL: SELECT Faculty FROM faculty WHERE Campus > 20

AND
Rule Ñ x Base ConjunctionPhrase ConjunctionPhrase ColEqualityValue, Base ConjunctionPhrase
ConjunctionPhrase ColEqualityValuey

Example:
BaseÑ x Select all columns from parties in events when, SELECT * FROM Parties in Events
WHERE y
ConjunctionPhraseÑ x ColEqualityValue and , ColEqualityValue AND y
ColEqualityValueÑ x event id equals 9, Event ID = 9 y
ColEqualityValueÑ x role code equals Organizer, Role Code = ’Organizer’ y
ColEqualityValueÑ x party id equals 4, Party ID = 4 y
Output Production:
/ NL:
Select all columns from parties in events when event id equals 9 and role code equals Organizer
and party id equals 4
\SQL: SELECT * FROM Parties in Events WHERE Event ID = 9 AND Role Code =
’Organizer’ AND Party ID = 4

Figure 3: Example SCFG Production rules for other selected SQL operators

