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Abstract

In this paper, we introduce a new embedding-
based metric relying on trainable ranking mod-
els to evaluate the semantic accuracy of neu-
ral data-to-text generators. This metric is es-
pecially well suited to semantically and factu-
ally assess the performance of a text genera-
tor when tables can be associated with multi-
ple references and table values contain textual
utterances. We first present how one can im-
plement and further specialize the metric by
training the underlying ranking models on a le-
gal Data-to-Text dataset. We show how it may
provide a more robust evaluation than other
evaluation schemes in challenging settings us-
ing a dataset comprising paraphrases between
the table values and their respective references.
Finally, we evaluate its generalization capabil-
ities on a well-known dataset, WebNLG, by
comparing it with human evaluation and a met-
ric recently introduced based on natural lan-
guage inference. We then illustrate how it
naturally characterizes, both quantitatively and
qualitatively, omissions and hallucinations.

1 Introduction

Data-to-Text (D2T) generation (Kukich, 1983;
McKeown, 1985; Reiter and Dale, 1997) is a spe-
cialized task of natural language generation (NLG)
where a model takes as input (semi)-structured data
(e.g. a table) and generates a textual utterance that
is both syntactical and semantically faithful to the
input. Several architectures were proposed to solve
this task. They may rely strictly on templates (Gatti
et al., 2018; Puzikov and Gurevych, 2018; Wise-
man et al., 2018), separate planning (what to say)
from generation (how to say it) (Puduppully et al.,
2019; Moryossef et al., 2019) or be a fully derivable
neural architecture (Lebret et al., 2016; Wiseman
et al., 2017; Gehrmann et al., 2018). While achiev-
ing interesting performance at natural language
generation tasks (Lewis et al., 2020; Gehrmann
et al., 2021), pre-trained neural language models
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Figure 1: Round-trip evaluation in the table–hypothesis
setting (left) and reference–hypothesis setting (right).

(hence neural architectures in general), are prone to
hallucinate facts (Dušek et al., 2018) which brings
their usability at stake in sensitive domains such as
the legal one.

In this paper, we wish to promote the usability
of neural architecture by proposing a new trainable
automatic evaluation metric well suited to evalu-
ate the semantic accuracy of such D2T generator.
This metric is designed as a two factor “round-trip
evaluation” in order to assess the accuracy a given
generated hypothesis. First, we use the hypothe-
sis to try to recreate the original table by ranking
its values amongst all other values in the dataset.
Then, we retrieve similar references amongst all
other references in the dataset by ranking them
still using that same hypothesis. We illustrate both
round-trip evaluation scheme (table reconstruction
and reference ranking) in Figure 1.

Our approach is well suited to semantically and
factually assess a generator’s performance in cases
where the tables can be associated with multiple
references, and the tables’ values contain textual
utterances. We present how one can further special-
ize the proposed evaluation metric by training the
underlying ranking models on the target dataset,
hence providing a more robust evaluation. Re-
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lying on the mean average precision, we present
how it naturally characterizes, both quantitatively
and qualitatively, omissions and hallucinations of
a given generator. This framework offers great
flexibility in how it can be implemented and fur-
ther improved. We identify two main components
that can be tuned to improve the efficiency of our
proposed metric when evaluating NLG systems; a
similarity function between reference texts and the
underlying ranking models.

However, having a metric where the efficiency
is highly dependent on how it is implemented is
highly problematic for an absolute comparison
against other metrics or evaluation methodologies.
This is why we propose a way to “fix a metric” i.e.
how good, on the gold annotations, one implemen-
tation of the metric can be? Having a “fixed metric”
then allows us to evaluate NLG systems against
each other properly.

In our experiments, we first apply our met-
ric on a challenging dataset in the legal domain,
Plum2Text (Garneau et al., 2021). We show how
the specialization of the ranking models can be ben-
eficial or even necessary. More precisely, we illus-
trate these benefits when paraphrasing between the
data (i.e. table) and the reference text highly char-
acterizes the dataset in hand. Then, we illustrate its
generalization capabilities even in simpler settings
on a well-known D2T dataset, WebNLG (Gardent
et al., 2017). We show how it is able to discrimi-
nate a set of generators, and correlates positively
with human judgment. Our contribution is thus a
new trainable automatic D2T evaluation metric that
naturally characterizes both omissions and halluci-
nations of neural architectures.

2 Evaluating Data-to-Text Generation

Evaluating natural language generated text is a very
hard task. Reiter and Belz (2009) and Reiter (2018)
question the validity of widely used metrics. Sai
et al. (2020) provide an extensive survey of the
field, and more precisely separate the D2T evalu-
ation metrics along 2 dimensions: either they use
the table t or not (i.e. Table-Free), and either they
are trained or untrained metrics. For instance, auto-
matic evaluation metrics such as BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004) or METEOR
(Banerjee and Lavie, 2005) are not trained and nei-
ther use the table t. They only partially account
for the faithfulness of a given generated hypoth-
esis w.r.t its associated references. Even though

these metrics are widely used, they fall short to
capture factual aspects in a D2T setting, and corre-
late poorly with human judgment (Liu et al., 2016;
Novikova et al., 2017).

BLEURT (Sellam et al., 2020) is a metric trained
on English texts that is designed to better model
human judgment on generated texts. However, it
does not take into account the input table. Sun and
Zhou (2012) proposed iBLEU for paraphrase gen-
eration, an adaptation of the BLEU score that takes
into account the context (the original phrase), the
generated hypothesis and the reference. Its variant,
BLEU-T, rewards an hypothesis h that overlaps
with the content of the input table t as follows;

BLEU-T = αBLEU(h, t)+(1−α)BLEU(h, r)
where α is a parameter that balances faithfulness
between the table t and the reference r.

Table-Free Table

Untrained
BLEU,

ROUGE,
METEOR

PARENT,
BLEU-

T/iBLEU, NLI,
Ours

Trained BLEURT Ours

Table 1: Different metrics and their position in the eval-
uation spectrum, including the two variants of our pro-
posed metric which can be trained or not.

Wiseman et al. (2017) proposed an extractive
evaluation scheme where a model tries to identify
relations in h between a pair of entities in order
to recreate the table t that was used for the gen-
eration. Matching between the extracted entities
and the table values is simply done via string-to-
string comparison since the values in their dataset
are short textual utterance of up to a few tokens.
Dhingra et al. (2019) extended this metric (PAR-
ENT) by considering overlapping n-grams in the
generated hypothesis hwith both the table t and the
reference text r. More recently, Dušek and Kasner
(2020) proposed a metric that relies strictly on a
pre-trained version of a natural language inference
model (which will be referenced as “NLI” from
now on) that verifies if a given hypothesis is en-
tailed or not by the input table. They framed the
evaluation as a categorical result given an hypoth-
esis h (e.g. as being “Correct” or “Incorrect”) but
one can also use the underlying NLI model’s confi-
dence score for a softer evaluation. Using ranking
models supplement their approach by identifying
hallucinations and omissions (to some extent) and
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quantitatively characterizes both phenomena.

Trained metrics using the context (in our case t)
have been proposed for dialogue generation tasks
(Lowe et al., 2017; Tao et al., 2018). However
none of them is suitable for a D2T setting where
the characterization of hallucinations (and to some
extent omissions) are required in order to use a
neural D2T generator in production. We thus wish
to fill in this gap by presenting in the following
section a new evaluation scheme. This scheme
offers the advantage to exploit both the table t and
the reference r, to be based on ranking models, and
to be either trained or not. We illustrate in Table 1
where the metrics discussed in this section lie in the
table–table-free and trained–untrained spectrum.

3 Data-to-Text Evaluation through
Ranking

To assess the accuracy of a generated hypothesis h,
it can be useful to consider both the input table t
and the target reference r, i.e. validate the correct-
ness of h according to its table and its reference.
We thus propose a way to assess the fidelity of h by
reconstructing the table t (h ) t) and by retrieving
its corresponding reference(s) r (h ) r) using rank-
ing models. This premise is highly motivated by
the fact that similar text descriptions should be as-
sociated to semantically similar table contents. In
both settings, the ranking models are evaluated us-
ing the Average Precision (AP), which we describe
next.

3.1 Table Reconstruction

Borrowing from information retrieval terminology,
in the context of h ) t, we treat every value v in the
table t as a document and h as a query. Different
from the information extraction method proposed
by Wiseman et al. (2017)1, we wish to recreate t by
finding the corresponding set of values vi amongst
the set of possible table values V , given a ranker
Mv and the query hi. To do so, we retrieve a
ranked list of all the possible values V̂ =Mv(hi)
and compute the Precision at k (P@k) of the query

1The information extraction scheme is relevant where the
table values can be framed as triplets, where a model tries
to put the different extracted entities into relation (e.g. the
Rotowire dataset). Our method generalizes the table recon-
struction step whereas one can freely design its own ranker
model.

hi in the following way;

P@ki =
|vi@k ∩ V̂@k|
|V̂@k|

(1)

We can then compute the Average Precision of
the table reconstruction (APh ) t) given the follow-
ing formula;

APh ) t =
1

|vi|

|V̂ |∑
k=1

P@ki, (2)

giving us a sense of how well the ranker Mv

is able to retrieve the set of table values vi corre-
sponding to the hypothesis hi.

3.2 Reference Ranking
In the context of h ) r, we still treat h as the query,
but r as the document. In a case where multiple
references can be deduced by the same table (or
similar ones), it makes sense to take into consider-
ation other references that share some similarities
with the real reference. More precisely, a table t
could refer to multiple references with a certain de-
gree of correspondence, hence these references can
be seen as similar documents. We can even push
this further by assuming that if two tables ti and tj
share similarities amongst their values, their corre-
sponding references ri and rj will be semantically
similar.

Given ti, ri and tj , rj , we define the following
similarity function;

f : (ti, tj)→ di,j (3)

such that di,j is the degree of similarity between
between two tables ti and tj . This similarity func-
tion is a proxy to the semantic similarity between
ri and rj . For instance, by using the intersection
over union of ti and tj table values, we use the
following function; f = (ti ∩ tj)/(ti ∪ tj). We
thus consider, for a given ri and its associated table
ti, the set of references where di,∗ > δ as being
relevant references2. Given an hypothesis hi, we
can then query the set of references R in order to
get a ranked list of references R̂i =Mr(hi) where
Mr is a ranking model for the references. We de-
fine R∗i as being the ordered gold set of references
according to f .

Let the Cumulative Relevance Score (CRS) of
hi be

∑k
j=1 di,j . We define the estimated and

2We use δ > 0 in our experiments.
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true CRS at k being CRS applied on R̂i and
R∗i , yielding R̂i-CRS@k and R∗i -CRS@k respec-
tively. Formally, R̂i-CRS@k =

∑k
j=1 f(hi, r̂j)

and R∗i -CRS@k =
∑k

j=1 f(hi, r
∗
j ). We thus com-

pute Precision at k in the following way;

P@ki =
R̂i-CRS@ki
R∗i -CRS@ki

(4)

obtaining the APh ) r of hi with the following
formula;

APh ) r =
1

R∗i -CRS

|R|∑
k=1

P@ki × di,k (5)

where di,k, properly scales P@ki so that APh ) r

is between 0 and 1.
Finally, in both settings, we respectively com-

pute the mean Average Precision (mAP) over the
set of Hypotheses H;

mAPh ) t =
1

|H|

|H|∑
i=1

APh ) t
i (6)

mAPh ) r =
1

|H|

|H|∑
i=1

APh ) r
i (7)

where mAPh ) t illustrate the capacity of Mv to
rank the hypotheses H accordingly to their respec-
tive table values, and mAPh ) r the capacity ofMr

to rank the hypotheses H according to their similar
references (and implicitly their respective tables).

In an ideal world, evaluating on gold annotations,
both ranking modelsMv andMr should obtain a
mAP of 1. In practice, however, we can only hope
that each model will be as close as possible to 1,
mostly due to noise in the data, annotation errors,
or to the distribution of the data itself. In the next
section, we introduce a robust ranking model based
on sentence embeddings applied in both h ) t and
h ) r settings. We also introduce how this model
can be trained on the dataset in hand.

3.3 Training Ranking Models
We consider the embedding-based ranking models
using the information retrieval version of Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019),
based on the BERT architecture (Devlin et al.,
2019)3. More concretely, we use SBERT to encode

3In our experiments, we also tested a word co-occrurrence
ranking, Elasticsearch (https://www.elastic.co/),
as explained in Section 4.1.

both the set of possible table values V and the set
of references R into a list of vector representations
(i.e. matrices) V and R. We then encode the hy-
pothesis h into its respective vector representation
h. The modelsMv andMr re-order the vectors
in V and R according to the cosine similarity with
h, yielding V̂ and R̂ needed for the computation
of our metric.

Reimers and Gurevych (2019) showed that fine-
tuning SBERT on the downstream task’s dataset
can lead to substantial improvements. To this end,
we propose to fine-tune SBERT in both settings,
h ) t and h ) r, by creating their very specific train-
ing datasets. In our experiments, we used the mul-
tilingual version of BERT (Devlin et al., 2019) as
the base model, XLM-R (Conneau et al., 2020;
Reimers and Gurevych, 2020).

In the h ) t setting, for every value vi,j in table
ti with its corresponding reference ri, we create a
positive pair (vi,j , ri, 1). We then randomly sample
negative examples such that (vi,j , rm) is not within
the original dataset and fine-tune SBERT to dis-
criminate positive from negative pairs, (vi,j , rm, 0).

In the h ) r setting, we use Equation 3 to deter-
mine the similarity between two given references
ri and rj . Using the cartesian product of R × R,
we thus generate every possible reference pairs
with their respective similarity value, (ri, rj , di,j)
and fine-tune SBERT to maximize the similarity
between similar pairs, and minimize it between dis-
similar pairs. In practice, we down sample pairs
where di,j = 0 since it corresponds to 80% of the
generated pairs. While this training procedure is
very generic an applicable to most D2T datasets, it
can be modified to suit one’s specifics.

In both settings, we split the training data in a
train and validation sets of 80% and 20% respec-
tively. We fine-tuned SBERT for 4 epochs, keeping
only the best performing model on the validation
set. Regardless of the downstream dataset used,
using a GeForce 2080 graphic card, this process
took 4 hours for each setting.

3.4 Characterizing omissions and
hallucinations

An insightful way of qualitatively analyzing the
capacity of a given neural D2T generator is by
characterizing omissions and hallucinations. More
precisely, we want to know which element from the
table may have been forgotten by the generator and
which element in the generated text may be consid-

https://www.elastic.co/
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ered as hallucinations (Dušek et al., 2018; Dušek
and Kasner, 2020). We acknowledge the fact that
characterizing omissions may not be relevant in
cases we would only like to describe highlights of a
basketball game (Wiseman et al., 2017), especially
when there is a seperate planning step (Puduppully
et al., 2019; Moryossef et al., 2019). However,
in the legal domain, describing a semi-structured
document in its whole (omissions), and solely this
document (hallucinations), is of high importance
to foster a truthful view of a legal system (Beau-
chemin et al., 2020).

Using a ranking-based metric, we can potentially
identify which elements from the table are consid-
ered as omissions and what has been hallucinated
in the hypothesis. Intuitively, ranking models ba-
sically offer this characterization for free. Indeed,
on the table reconstruction side, considering the
gold set of n values v and the set of top n returned
values v̂ fromMt, we obtain the omissions by com-
puting the set difference of ot = v − v̂. As per the
implicit definition of hallucinations and assuming a
neural generator has been trained on a training set,
we define hallucinations as being values from the
training set that have been highly ranked. There-
fore, we compute hallucinations as at = v̂ − v
such that at ∈ Vtrain. On the reference retrieval
side, we consider the first retrieved reference and
its associated table (or set of values), v̂. We can
similarly compute omissions and hallucinations as
on the table reconstruction side, obtaining or and
ar. A given value vi ∈ v will considered omitted if
it is present in ot and or (i.e. 1.0), partially omitted
if it is present in either ot or or (i.e. 0.5) and not
omitted if it is not present in any of the sets (i.e.
0.0). The same logic applies to hallucinations.

Roughly speaking, the mean average precision
is a quantitative proxy loosely characterizing the
omissions and hallucinations. Indeed, the average
precision will consider not only the top n, but up
to the last value that should have been retrieve in
the list, thus making it an optimistic approximation
of omissions and hallucinations. On the reference
side, then again our metric is an optimistic approxi-
mation of omissions and hallucination in the sense
that we consider every other references having a
similarity score > 0. One could design a more
exact quantitative approximation of omissions and
hallucinations by only considering the first returned
reference by the ranking model and analyzing its
table with the corresponding true table t, as previ-

h ) t h ) r Avg.

Elasticsearch 0.588 0.596 0.592
SBERT Untrained 0.274 0.584 0.429

SBERT Trained 0.831 0.871 0.851

Table 2: Results of “fixing the metric” on Plum2Text
using Elasticsearch, SBERT Untrained and SBERT
Trained as different ranking models.

ously proposed.

4 Experiments

In this section, we first illustrate the benefits of
fine-tuning our proposed metric on the Plum2Text
target dataset (Garneau et al., 2021). We then
show how our metric can discriminate generators,
and analyze omission and hallucination rates using
WebNLG (Gardent et al., 2017).

4.1 Experiments with Plum2Text

In this section, we apply our metric on a
challenging French dataset in the legal field,
Plum2Text (Garneau et al., 2021), comprising ref-
erences being a paraphrase of the table’s values. It
is composed of pairs of plumitif –description. A
plumitif is a structured document containing all the
key steps of a judicial case. The purpose of this
dataset is to make the plumitifs more understand-
able to the population by generating a description
from the input data.

There is an interesting exercise when comes the
time to evaluate the effectiveness of a metric, es-
pecially when it is embedding-based. We dub this
exercise as “fixing the metric”, whereas we apply
it on the gold annotations, i.e. h = r. This exercise
tells us, to some extent, “how far we can go” with
a given generator w.r.t the evaluation metric in the
case we would know the answer. Using metrics
based on word overlap would obviously yield a
perfect score in the reference ranking setting. In
these experiments, we thus only consider “fixing
the metric” on the Plum2Text dataset since we do
not have access to human evaluation over systems’
outputs. This illustrates the challenge posed by
the Plum2Text dataset (paraphrasing) as well as the
benefits of fine-tuning our metric. As a baseline,
we use Elasticsearch’s ranking model (ES) based
on word co-occurrence.

We can see from Table 2 that, on the Gold anno-
tations, ES has decent performance on both h ) t
and h ) r. Supporting the findings of Reimers and
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h ) t Rank of v

Reference ri A Table ti’s Value v ES SBERT

the accused is charged with sexual
touching of his stepdaughter when she
was between 10 and 15 years old.

Section 151 – Sexual interference; Any person who,
for a sexual purpose, directly or indirectly touches, with
any part of the body or with any object, any part of the
body of a child under the age of sixteen years

20 1

the accused pleaded guilty to the fol-
lowing charges : to have, on #DATE, in
its possession 0,61 gram of cannabis

Section 4 – Possession of substance. Except as au-
thorized by the regulations, the possession of any sub-
stance listed in Appendix I, II or III is prohibited.

27 1

Table 3: Qualitative results of ES and SBERT fine-tuned model in the h ) t setting. We illustrate the ability of a
fine-tuned ranking model to properly rank a particular value v in the table ti given the hypothesis hi (in the case of
Gold annotations, ri).

h ) r Rank of rj
Reference ri Paraphrased Reference rj |di,j = 1.0 ES SBERT

he denies any sexual act committed. the accused states that he has nothing to re-
proach himself for. N/A 3

PER pleaded guilty to computer luring of six
teenage girls between the ages of 13 and 17.

a guilty plea [...] to communicating by means
of a computer with x, a person under the age
of sixteen [...]

N/A 4

Table 4: Qualitative results of both ES and SBERT fine-tuned in the h ) r setting. We show the ranking of a
paraphrased reference rj according to the hypothesis hi (in the case of Gold annotations, ri).

Gurevych (2019), a pre-trained version of SBERT
applied without fine-tuning on Plum2Text struggles
at ranking, especially in the h ) t setting (compris-
ing a lot of paraphrasing). However a fine-tuned
version of SBERT on Plum2Text yields strong per-
formance, achieving a score of 0.851. There is
inevitably a trade-off between using an untrained
or trained version of our metric. From the results
shown in Table 2 and in the context of paraphrases
and synonyms, an embedding-based ranking model
is definitely improving the evaluation.

4.1.1 Rankers’ Behavior on Paraphrases and
Synonyms

Supporting our claim that an embedding-based
ranking model would be better at evaluating the
generated hypotheses, especially when paraphrases
characterize the dataset in hand, we qualitatively
compare the ranking capabilities of the ES ranker
and SBERT fine-tuned model.

In the h ) t setting, we extract references r that
are a paraphrased version of a given table value
v. As illustrated in Table 34, SBERT learned syn-
onyms such as “sexual contacts” and “sexual touch-
ing”. SBERT also learned that “possession of sub-
stance” is related to drugs like cannabis or cocaı̈ne,
and is thus able to properly rank the associated ref-

4Note that all examples have been translated from French
to facilitate the comprehension of the reader.

erence even though there are different types of “pos-
sessions” (e.g. child pornography, illegal firearms).
As illustrated in the results, simply relying on word
co-occurrences yields poor ranking in cases where
synonyms are used and shows that an embedding-
based ranking model is clearly providing a better
performance.

In the h ) r setting, we analyze again the ranking
behaviour of both rankers on paraphrased refer-
ences. We can see in Table 4 that SBERT learned
the various ways “pleading guilty” can be ex-
pressed (rows 1 and 2). It also learned that “com-
municating with people of 16 years and under using
a computer” is similar to “computer luring of peo-
ple between 13 and 17 years old”. In most cases,
we did not see the paraphrased reference among
the top 200 results the ES ranker returned (N/A).

4.1.2 Motivation over a metric based on word
overlap

To motivate the need to fine-tune rankers (hence
the metric) for specific types of D2T datasets, we il-
lustrate the performance of the recently introduced
metric PARENT (Dhingra et al., 2019) on the gold
annotations of Plum2Text, referred to as “Original”
in Table 5. Without any surprises, the precision is
1.0 when h = r. The lower performance on the
recall (and thus F1-Score) is due to paraphrasing,
an inherent problem Dhingra et al. (2019) raised
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when they introduced their metric. To better il-
lustrate this problem, we evaluate PARENT on a
augmented version of Plum2Text i.e. for every pair
ri, rj where di,j = 1.0 and ri 6= rj , we create
a paraphrased example (ti, rj , ri) where ti is the
table, ri the hypothesis and rj its associated refer-
ence. We can see in Table 5 that the results drop
significantly due to the word overlap evaluation
behavior, even though they should be similar to the
Original Dataset.

Dataset Precision Recall F1-Score
Original 1.0 0.565 0.673

Augmented 0.355 0.24 0.191

Table 5: Evaluation of PARENT on the Original and
a Augmented version of Plum2Text (Garneau et al.,
2021)

4.2 Experiments with WebNLG
In this section, we show that, even if our metric
is well-suited for D2T dataset comprising textual
utterance as table values, it generalizes to more
common D2T settings as in WebNLG (Gardent
et al., 2017). Shimorina et al. (2018) provide hu-
man evaluation on the different systems’ outputs
(listed in Figure 2, as well as on the gold annota-
tions (webnlg). They considered three evaluation
dimensions; Fluency, Grammar, and Semantic. In
our case, we consider only the Semantic dimension.

First, we simply consider “fixing the metric”, i.e.
we apply our metric on the webnlg team’s outputs
(i.e. the gold annotations) and compare its values
against the human evaluation5 and the recently in-
troduced metric by Dušek and Kasner (2020) (NLI).
Results can be found in Figure 2. Intuitively, hu-
man evaluation should be very close to one (0.92)6,
and our trained metric achieves 0.88, which is close
to human evaluation. The NLI metric average score
is 0.73.

We then run the same experiment on a set of gen-
erators’ outputs (Shimorina et al., 2018) in order
to assess the capabilities of our proposed metric
to discriminate amongst systems (i.e. teams). By
looking at Figure 2, we can see that there is an
agreement on the macro level between the human

5Human annotators used a three-point Likert scale (1 =
Incorrect, 2 = Medium, 3 = Correct) and answers are averaged
over multiple annotators. We normalized the scores between
0–1 for an easier comparison

6Out of the 224 human evaluation on the gold annotations,
38 have a score below or equal to 0.77.

evaluation, our metric, and NLI in order to dis-
criminate between the teams that performed well
from the teams that did not. While the sample
size is rather small (10 teams), the Pearson cor-
relation score between human evaluation and our
metric, human evaluation and NLI, are both 0.92
(ρ < 0.005). The average difference between hu-
man evaluation and our metric is 0.09 while human
evaluation and NLI is 0.26. On the micro level,
correlation scores show another story; human eval-
uation and our metric yield a Pearson correlation
score of 0.47, human evaluation and NLI 0.59, our
metric and NLI 0.43 (ρ < 0.005 in every cases).
While there is a slight correlation between the dif-
ferent evaluation scheme, it seems that they do not
always agree at the utterance level, contradicting
one another in some cases. This point has already
been raised by Dušek and Kasner (2020), suggest-
ing that in some cases, the human evaluation is not
accurate. However we decide to leave this specific
analysis for future work.

4.2.1 Analysis of omissions and
hallucinations

We further analyze the capacity of our metric to
characterize omissions and hallucinations on the
systems’ outputs. To this end, we follow the
methodology introduced in Section 3.4 and com-
pute the estimated omission and hallucination rates
w.r.t to the capacity of underlying rankers. Omis-
sion rate is the number of times an input value v
was considered omitted by our metric, over the set
of n input values. Hallucinations rate is the number
of times a value v from the training set has been
improperly ranked at the top n expected values7.
We thus average the rates per system overall 223
examples for the WebNLG’s test set.

In this experiment, we are interested in com-
paring Neural vs Non-Neural architectures, and
see if our metric captures the implicit omis-
sion/hallucination behavior of neural generators.
Results are displayed in Table 6. On the gold an-
notations, we obtained 0.41 and 0.37 omission and
hallucination rates respectively. This is expected
mostly because the underlying rankers are not per-
fect. While achieving 0.88 average precision on
the gold annotations, this is an optimistic estima-
tion of the ranking capabilities (see Section 3.4

7Rates are computed w.r.t the hypotheses produced by
a given system. For example, Vietnam only produced 55
hypotheses given 223 input tables. We thus considered the
input values of the 55 input tables for the calculation.
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Figure 2: A comparison across human evaluation (semantic) on systems’ outputs of Shimorina et al. (2018), the
NLI metric proposed by Dušek and Kasner (2020), our metric trained and untrained. Our proposed metric, in every
cases except one, is closer to human evaluation than the NLI metric.

for a discussion on this topic). Also, according to
Dušek and Kasner (2020), there is some noise in
the human evaluation.

Regarding the teams’ statistics, we denote higher
omission and hallucination rates for 3 out 5 neural
systems. Interestingly, the estimated omission and
hallucination rates of Adapt are quite high, while
having a high semantic score from the human evalu-
ation. On the contrary, Tilburg-NMT has low omis-
sion and hallucination rates while having a low
human evaluation score. Melbourne has low omis-
sion and hallucination rates, which corroborates the
fact that it was a good system. Non-Neural systems
tend to be more stable on omissions and hallucina-
tions, which is expected. In future experiments, we
would like to compute the exact omission and hal-
lucination rates of each team. While being a very
time-consuming task, this evaluation will enable an
in-depth analysis of omissions and hallucinations
per system. This leads to the conclusion that, while
being a first step at characterizing/quantifying omis-
sions and hallucinations, more work has to be done
towards this direction since it is a crucial evaluation
aspect in D2T evaluation.

4.3 Is Fine-Tuning Worth the Shot?

In an era where deep learning models seem to be
the norm, it is nonetheless legitimate to ask our-
selves if training such a metric is worth the shot. In
the case of WebNLG, where the data is extracted
from Wikidata (Vrandečić and Krötzsch, 2014),
a proxy of Wikipedia, and the underlying trans-
former models of the metric have been pre-trained

Team Omission Hallucination
WebNLG 0.41 0.37

N
E

U
R

A
L

Adapt 0.55 0.47
Baseline 0.65 0.61
Melbourne 0.44 0.38
Pkuwriter 0.53 0.50
Tilburg-NMT 0.43 0.36

N
O

N
-N

E
U

R
A

L Tilburg-pipe 0.45 0.38
Tilburg-SMT 0.40 0.35
UPF-Forge 0.41 0.35
Vietnam 0.33 0.33

Table 6: Omission and Hallucination rates per team.
We compare the omission and hallucination rates be-
tween WebNLG (the gold standard), Neural and Non-
Neural architectures.

on Wikipedia, we see a negligible gain from fine-
tuning the metric. The lexical field is pretty much
the same, and the reference text does not show
many signs of paraphrasing.

5 Conclusion

In this paper, we introduced a new trainable automa-
tion evaluation metric relying on ranking models
which is specific to the D2T setting. To the best of
our knowledge, this is the first metric that naturally
quantifies omissions and hallucinations of neural
textual generators that can also handle paraphrases.
Characterizing omissions and hallucinations are of
important matter in a sensitive area such as the le-
gal domain. This lack of characterization is often a
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blocker to the use of recent neural generator mod-
els in the legal field. We hope that this metric will
also promote the use of recent advances in neural
textual generation in sensitive domains such as the
medical field.

In our future works, we would like to use our
metric to guide the decoding steps of neural D2T
generators in order to produce faithful textual de-
scriptions. As previously mentioned, the metric
that we proposed is well suited to semantically
and factually assess a generator’s performance in
cases where the tables can be associated with mul-
tiple references, and the tables’ values contain tex-
tual utterances. We wish to generalize the way
our method ranks table values through relevance
matching (Guo et al., 2016). This would be highly
desirable in cases where table values are only up to
a few tokens.
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