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Abstract

To address a looming crisis of unreproducible
evaluation for named entity recognition, we
propose guidelines and introduce SeqScore,
a software package to improve reproducibil-
ity. The guidelines we propose are extremely
simple and center around transparency regard-
ing how chunks are encoded and scored. We
demonstrate that despite the apparent simplic-
ity of NER evaluation, unreported differences
in the scoring procedure can result in changes
to scores that are both of noticeable magni-
tude and statistically significant. We describe
SeqScore, which addresses many of the issues
that cause replication failures.

1 Introduction

There are many complex tasks in natural language
processing (NLP) where current evaluation stan-
dards are based around evolving metrics designed
to correlate well with human judgments, some com-
plex and some simple. For example, every year sees
the introduction and careful evaluation of new met-
rics for machine translation, summarization, and
natural language generation.

However, named entity recognition (NER) and
other chunk extraction tasks have largely been eval-
uated the same way since the CoNLL shared tasks
of the early 2000s (Tjong Kim Sang and Buchholz,
2000; Tjong Kim Sang, 2002; Tjong Kim Sang
and De Meulder, 2003). Following the CoNLL
chunking and NER shared tasks, a true positive pre-
diction typically requires exact matches1 in span
(the tokens or characters in a chunk) and the type
assigned to the chunk (e.g., person).

With such a simple metric, it would seem that
performing exact match NER evaluation would be
trivially simple. Precision, recall, and F1 are easy

1While there have been efforts to promote partial matching
(Chinchor, 1998; Segura-Bedmar et al., 2013) and focusing on
rarer entities (Derczynski et al., 2017), micro-averaaged exact
match F1 is still the most common metric in use for NER.

to compute; all that is required is to count true
positives, false positives, and false negatives. But
when it comes to evaluation, challenges emerge in
how evaluation is actually implemented. In the case
of NER, as we will demonstrate these challenges
emerge in the process of converting token-level
annotations and system predictions into spans.

We do not think it is sufficient to point out these
issues without attempting to provide a solution.
Inspired by successful efforts in the machine trans-
lation community to address similar issues (Post,
2018), we began developing a toolkit and set of
practices in summer 2020 to improve the replicabil-
ity of experiments for NER. Our toolkit, SeqScore,
provides researchers the necessary tools to score,
validate, and examine both system outputs and an-
notation. SeqScore is open source and has been
publicly released.2

This paper provides clear, easy-to-follow guide-
lines that facilitate reproducibility for NER (and
other chunking task) experiments, explains them,
provides a toolkit for easily following them, and
then presents experiments using SeqScore that
shows the impact of following them. The contribu-
tion of this paper is that it introduces and justifies
guidelines for NER experiment reproducibility and
provides a toolkit that makes them easy to follow.

2 Guidelines for reproducibility

We propose that in order to have sound and repro-
ducible NER evaluation, the following guidelines
should be followed:

1. Report what chunk encoding scheme was used
(e.g. BIO).

2. Use an external scorer—not one internal to the
system—and report which scorer was used.

3. Be explicit regarding what form of invalid
label sequence repair was used.

2https://github.com/bltlab/seqscore

https://github.com/bltlab/seqscore
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4. Only score against a gold standard that faith-
fully follows the chunk encoding scheme (e.g.
BIO) in use.

5. Use good statistical practices when reporting
results.

Many of these will seem like obvious ideas or
practices that should be taken as a given. However,
we have found almost no papers provide enough in-
formation to determine whether they are compliant
with all of these guidelines specifically, very few
papers report what scorer was used to produce the
reported scores, and many that provide accompa-
nying code do not include any evaluation code.

We examined several papers with state of the art
NER results on the CoNLL 2003 dataset consider-
ing guidelines 1, 2, and 3. Of these papers Liu et al.
(2019) follow 1, 2, and 3. Yamada et al. (2020)
explicitly follows guidelines 2 and 3. Luoma and
Pyysalo (2020) met guideline 1. Akbik et al. (2019)
give details of their scoring decision for a previous
paper, Akbik et al. (2018), mentioning they fixed
an prior error in scoring, but do not explicitly de-
tail how they fixed their scoring procedure for the
baseline in Akbik et al. (2019). All other papers
we surveyed did not explicitly satisfy guidelines 1,
2, and 3 (Wang et al., 2020, 2021; Shahzad et al.,
2021; Baevski et al., 2019; Yu et al., 2020; Jiang
et al., 2019; Li et al., 2020; Devlin et al., 2019).

As an example of a common departure from
these practices, many papers that perform NER ex-
periments publish the scores produced by NCRF++
(Yang et al., 2018). As previously detailed by Lig-
nos and Kamyab (2020), NCRF++ uses an internal
scorer with an undocumented label sequence repair
method, so reporting any numbers from it would
be contrary to guidelines 2 and 3. As Lignos and
Kamyab demonstrated, on a specific subset of mod-
els that produce a high number of invalid transi-
tions, that scorer produces F1 scores approximately
half a point higher than the most commonly-used
external scorer.

Guideline 4, which requires that the annotation
precisely follow the chunk encoding scheme, also
seems obvious. However, it was not actually fol-
lowed for 2 of the 4 datasets for the CoNLL NER
evaluations in 2002–3, as only the English and
Dutch data were free of errors of this type (see
Section 3.4). As these datasets are arguably the
most famous NER datasets in existence, this is sur-
prising. While this would only have a very minor

impact on evaluation results, an evaluation cannot
be reproducible if different scorers might interpret
the gold standard differently due to differences in
how invalid label sequences are handled (see Sec-
tion 3.2). When examining other NER datasets, we
have found more pervasive occurrences of invalid
label sequences.

We will not discuss guideline 5 in any detail as
practices change over time, but we will highlight
the need to report a distribution of scores, rather
than a single score. Reimers and Gurevych (2017)
demonstrate this clearly for NER specifically, and
SeqScore supports aggregating scoring across mul-
tiple runs and reporting summary statistics.

Many of these rules may seem like common
sense, but by enumerating them, we provide a pub-
lished “checklist” for researchers to follow.

3 The mechanics of NER evaluation

We now turn to explaining the mechanics of NER
evaluation to explain why following these guide-
lines is important. In this section, we explain the
subtleties of working with chunk encodings, which
will reinforce the importance of following the first
three guidelines.

3.1 The CoNLL tradition

Evaluating named entity recognition (NER) and
similar chunking tasks is conceptually straightfor-
ward. The primary metrics are the precision, re-
call, and F1 of the extracted chunks, often called
phrases, or for NER specifically, entities or men-
tions. The CoNLL-2000 shared task on chunking
(Tjong Kim Sang and Buchholz, 2000) set the first
and most long-lasting standard for distributing data
for and evaluating chunking tasks.

Briefly, this standard—which we will call
“CoNLL-style”—is that each dataset (train, etc.)
is represented in a sentence-split, tokenized, delim-
ited format. Each sentence consists of a sequence
of lines, and each line contains at least a token and
a label for that token. This format was accompa-
nied by a scoring script, conlleval.3 The labels
give information about the spans of the chunks, us-
ing encoding schemes that have developed from
the original IOB representation of Ramshaw and
Marcus (1995).

While some models may use more complex en-
codings, the current standard for datasets is that

3https://www.clips.uantwerpen.be/
conll2000/chunking/conlleval.txt

https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
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chunks are encoded using BIO (begin, inside, out-
side), where the first token of each chunk receives
a B- label, any following tokens in the chunk re-
ceive an I- label, and any tokens not contained in a
chunk receive O label. This standard format, albeit
with minor variations, has been used continuously
for NER datasets (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003; Benikova et al.,
2014; Derczynski et al., 2017, among others).

Not every evaluation of these type of tasks has
used this structure. Many datasets (e.g., Dod-
dington et al., 2004; Hovy et al., 2006; Strassel
and Tracey, 2016) use start and end offsets as the
primary method of identifying spans, which can
avoid issues related to tokenization and completely
dissociates the annotation from the encoding of
chunks using labels. As we show later, this disso-
ciation automatically removes a major source of
non-reproducibility in evaluation.

3.2 Scoring and repair
When it comes to evaluating system output, while
the CoNLL-style format is truly simple, the process
of using it for evaluation only seems simple.

The fundamental problem is that there is gen-
erally nothing that forces a system’s output—or
even the annotation (see Section 3.4)—to follow
the intended state machine of the scheme for en-
coding chunks. While using a CRF may reduce—
and constrained decoding (Lester et al., 2020) can
eliminate—invalid label transitions, we must still
be able to provide reproducible scoring methods
for models that do not use these approaches.

As shown in Table 1, if we are using BIO en-
coding, a system could produce the sequence O
I-ORG, illegally entering the “inside” state with-
out going through “begin.” Similarly, we might en-
counter a B-MISC I-ORG transition, beginning
a chunk of type MISC but then continuing into
an ORG chunk. Handling these invalid transitions
requires an implicit or explicit repair method.

3.3 Repairs in practice
Since the conlleval scoring script, scoring pre-
dicted labels and repairing the invalid sequences
that they contain have gone hand in hand. SeqScore
follows this tradition, allowing for scoring la-
bels that contain invalid sequences, but unlike
conlleval, its repair methods are configurable,
and unlike any other scorer we are aware of it
supports inspecting the repaired label sequences
through writing them to a file. By requiring the

user to select the repair method and making a pre-
viously invisible feature visible, we are making it
easy for users to follow guideline 3.

The user can specify whether to perform
conlleval-style repair, to discard invalid se-
quences, or to make no repairs (none), which will
raise an error if any invalid sequences are encoun-
tered. The differences between these repair meth-
ods are show in Table 1. Due to the complexities
of attempting to repair invalid label sequences in
BIOES,4 repair is only supported for BIO and IOB
encodings.

For example, given an I- followed by another
I- of differing type such as I-ORG I-LOC, one
could coerce either the first or second tag to match
the other and maintain that this is all one mention.
Another option is to treat the second tag as B- and
begin a new mention. The latter is what most scor-
ers do, but it should be noted that this is not a priori
the correct choice.

As we describe each repair method in more de-
tail, we will use examples from actual output on
the CoNLL 2003 English data. We used SeqScore
to find the invalid transitions in the BERT (Devlin
et al., 2019) model output from Tu and Lignos
(2021) and selected examples of each type.

For BIO, the possible invalid transitions are an I-
preceded by O (Table 2), an I- preceded by an I- of
a different type (Table 3), and an I- preceded by a
B- of a different type (Table 4). conlleval-style
scorers take the approach of changing any unex-
pected I- to a B- (thus our name “begin repair”),
while discard-style scorers discard tokens started
by an invalid sequence.

While begin and discard are the dominant re-
pair methods in use, other methods are possible.
Stanza’s (Qi et al., 2020) undocumented approach
(shown in Table 1) most closely resembles the dis-
card repair method but does not discard all invalid
sequences. For invalid sequences caused by a type
mismatch, Stanza uses the type of the last token as
the type for the whole mention, and unlike begin or
discard, keeps the entire span as a single mention.
For example, B-ORG I-ORG E-LOC would be de-
coded as one mention of type LOC, since LOC is
the type of the last token. While we have described
the repair methods that we are aware of, others
may exist whether intentionally or as accidental
deviations from more common repair methods.

4See Kroutikov (2019) for a discussion of the large number
of ways to score invalid BIOES sequences.
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Encoding his Liberal Democratic party and the Russian Duma

Valid O B-ORG I-ORG I-ORG O O B-MISC B-ORG

Invalid O I-ORG I-ORG I-ORG O O B-MISC I-ORG
Begin Repair O B-ORG I-ORG I-ORG O O B-MISC B-ORG
Discard Repair O O O O O O B-MISC O

Stanza Repair O O O O O O B-ORG I-ORG

Table 1: Valid and invalid BIO label sequences and repairs of the invalid sequence for the sentence fragment
his Liberal Democratic party and the Russian Duma from the CoNLL-03 English training data (lines 3633–40).
Labels that cause invalid transitions are bolded.

Repair Labels

None O I-ORG I-ORG O B-PER I-PER
Begin O B-ORG I-ORG O B-PER I-PER
Discard O O O O B-PER I-PER

Table 2: Original and repaired labels for Trade and In-
dustry Secretary Ian Lang (CoNLL-03 English)

Repair Labels

None O B-ORG I-ORG I-LOC O
Begin O B-ORG I-ORG B-LOC O
Discard O B-ORG I-ORG O O

Table 3: Original and repaired labels for the Oceanic
Control Center in (CoNLL-03 English)

Lignos and Kamyab (2020) demonstrate the vari-
ation that occurs due to different repair methods
for invalid label transitions, finding that at least
one NER toolkit takes an alternate approach to
handling invalid transitions that consistently pro-
duces higher F1 scores for some models than scor-
ing with conlleval. Its approach is not incor-
rect; these “edge cases” can be interpreted different
ways. However, the result is that different scorers
can produce different scores for the same output,
even though they claim to measure the same thing.

With these facts in mind, we believe that we are
approaching a replicability crisis for NER and other
chunking tasks, as scores cannot reliably be com-
pared across papers, and replications can fail due
to lack of information about the scoring procedure.

Repair Labels

None O B-LOC I-ORG I-ORG O
Begin O B-LOC B-ORG I-ORG O
Discard O B-LOC O O O

Table 4: Original and repaired labels for ( Rangoon )
University early (CoNLL-03 English)

3.4 Invalid transitions in gold standards

Most discussions of invalid label sequences fo-
cus on the system output, but widely-used anno-
tated data often contains invalid sequences as well.
For example, the CoNLL-02 Spanish data is BIO-
encoded but contains three invalid O to I- transi-
tions, one in each of the train, testa, and testb sub-
sets. The original IOB-encoded CoNLL-03 Ger-
man data contains 10 invalid transitions.5

While they may not have major impacts on
scores, these invalid sequences represent a repli-
cation issue. Any scorer using the discard repair
can remove mentions from the gold standard; even
if the number of mentions removed is small, it is
not an acceptable evaluation practice for the scorer
to effectively change the gold standard. If two
researchers use different repair methods and the
annotation contains invalid transitions, they are not
only evaluating their system output differently but
also not evaluating against the same gold standard.

One of the design tenets of SeqScore is that the
detection and repair of invalid label sequences is
explicit and configurable. SeqScore supports vali-
dating IO, IOB (IOB1), BIO (IOB2), and the iso-
morphic BIOES, BILOU, BMES, and BMEOW
(Radford et al., 2015) encodings.

Here is an example of validating the CoNLL-02
Spanish training data using SeqScore:
$ seqscore validate --labels BIO

esp.train

Encountered 1 errors in 1 tokens, 8323

sequences, and 1 documents in esp.train

Invalid transition O -> I-LOC for token

’San’ on line 221619

Our recommendation is that validation (and if

5We validated the CoNLL-02 Dutch, CoNLL-03 English,
GermEval 2014 (Benikova et al., 2014), and W-NUT 2017
Emerging and Rare Entities (Derczynski et al., 2017) data
sets and found no issues. The CoNLL-03 German data was
corrected in a later BIO-encoded release.
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needed, repair) be run on any invalid gold standards
before scoring. Doing so guarantees that the gold
standard faithfully follows the chunk encoding and
has no invalid transitions, so regardless of the repair
method used, the gold standard will be interpreted
the same way. This practice satisfies guideline 4.

3.5 Label conversion

SeqScore also supports conversion between valid
IO, IOB, BIO, BIOES, BMES, and BMEOW en-
codings using the convert subcommand. To pre-
vent malformed output, it raises an error if the input
contains any invalid sequences. The input can be
repaired using the repair subcommand if it is
IOB or BIO encoded. By separating repair and
conversion, there are no “hidden” changes.

Many other label scheme converters convert la-
bels at the token (rather than mention) level, which
allows invalid sequences to propagate from the in-
put to the output, sometimes with unexpected re-
sults. For example, Stanza converts to BIOES be-
fore scoring, passing along invalid label sequences
from BIO to BIOES. While in BIO invalid transi-
tions are limited to invalid I- labels, when invalid
BIO sequences are converted to BIOES, there are
many potential ways to convert them depending on
how the input was interpreted.

4 Experiments

Our paper so far has discussed the importance of
following the proposed guidelines but has not quan-
tified the impact of doing so. We conducted a series
of experiments on NER datasets to examine the ex-
tent to which the variations in scores from different
repair methods applied to system outputs could
lead to different results. These experiments also
demonstrate the usefulness of SeqScore as a pack-
age for producing a reproducible and complete set
of results for sequence labeling tasks.

As we show in the following experiments, NER
using large multilingual models fine-tuned on
lower-resourced datasets can show significant vari-
ation due to the scoring method used. We selected
lower-resourced datasets for two reasons. First, we
believe that this a major frontier for innovation in
NER, and many new results will be reported in
this area for years to come. Second, unlike higher-
resourced datasets, the current state of the art for
these datasets involves the application of large lan-
guage models, which are particularly prone to pro-
ducing invalid transitions.

Lang. Begin Discard ∆ p-value

amh 71.19 ±1.20 71.87 ±1.11 0.69 0.15
hau 89.78 ±0.41 90.12 ±0.47 0.34 0.19
ibo 84.18 ±0.94 84.57 ±0.86 0.39 0.33
kin 73.29 ±1.39 74.51 ±1.26 1.22 0.06
lug 80.02 ±0.90 80.32 ±0.85 0.30 0.29
luo 74.43 ±1.60 74.96 ±1.56 0.53 0.27
pcm 87.89 ±0.72 88.48 ±0.71 0.59 0.03
swa 87.43 ±0.55 87.79 ±0.62 0.36 0.17
wol 64.74 ±1.82 65.19 ±1.70 0.45 0.50
yor 77.63 ±0.17 78.40 ±1.04 0.77 0.07

Table 5: Comparison of F1 scores across repair meth-
ods using XLM-R and MasakhaNER data.

Lang. Begin Discard ∆ p-value

hau 86.87 ±0.38 87.36 ±0.32 0.49 0.01
ibo 84.82 ±0.77 85.14 ±0.72 0.32 0.32
kin 72.14 ±1.07 73.41 ±1.00 1.27 0.02
lug 80.42 ±1.04 80.83 ±1.05 0.41 0.29
luo 73.37 ±1.52 74.18 ±1.53 0.81 0.15
pcm 87.97 ±0.62 88.47 ±0.52 0.50 0.10
swa 86.73 ±0.49 87.12 ±0.52 0.39 0.13
wol 65.35 ±1.58 66.29 ±1.58 0.94 0.26
yor 78.96 ±0.86 79.87 ±0.75 0.91 0.03

Table 6: Comparison of F1 scores across repair meth-
ods using mBERT and MasakhaNER data.

4.1 Comparing repair methods

We evaluated two multilingual models, multilin-
gual BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020), on the MasakhaNER datasets
(Adelani et al., 2021) which cover 10 African lan-
guages. Both of the models were trained for 50
epochs, using 10 different random seeds; we re-
port the mean and standard deviation (as mean ±
std. deviation) of F1 across the seeds. Amharic
was excluded from the mBERT experiments, as
mBERT was not trained on its character set and
thus predicts no names. XLM-R was trained on all
10 MasakhaNER languages.

For each language, we report the difference in
mean F1 score between the begin and discard repair
methods for all languages except Amharic. We also
examine the difference in mean F1 score between
two models that are scored using different repair
methods. We provide statistical significance of
each comparison using the Wilcoxon rank-sum test,
which is computed using the ten F1 scores for each
configuration. We use the Wilcoxon rank-sum test
as it provides a robust comparison between two
distributions without assuming that the scores are
normally distributed, as there is no guarantee that
scores follow such a distribution.



45

As shown in Tables 5 and 6, the discard re-
pair method universally produces higher F1 scores.
Using the significance threshold of p < 0.05
(bolded), a handful of the comparisons between
repair methods are statistically significant, specifi-
cally the mBERT scores for Hausa, Kinyarwanda,
and Yoruba and the XLM-R scores for Nigerian
Pidgin. The results that are not statistically signif-
icant still demonstrate a noteworthy difference in
F1, with the discard score being 0.61 points higher
than begin on average across all comparisons, sta-
tistically significant or not.

It is not obvious why some models show a statis-
tically significant difference with the discard repair
method while others do not. Table 7 shows the
average count of invalid label sequences across
models and languages. While it is notable that Kin-
yarwanda and Yoruba have higher counts and hap-
pen to be significant in experiments using mBERT,
Hausa has a comparatively low count as does Nige-
rian Pidgin which also had significant results (see
Tables 5 and 6).

We also performed a small qualitative explo-
ration of invalid transitions. We classified the in-
valid transitions in three ways: the begin strategy
repairs in such a way that the repaired entity is cor-
rect, discard correctly discards a system predicted
entity where there should be none, or neither cor-
rectly repairs the predicted entity. In the case that
neither repair method is correct, discard favors a
higher F1 since the begin strategy creates a false
negative and false positive, while discard creates
only a false negative.

We examined the invalid transitions for XLM-R
Nigerian Pidgin and Wolof—selected due to having
the lowest and highest p-values, respectively—in
the test set output from the runs with the median
scores.6 Wolof had 3 of 13 invalid transitions cor-
rectly repaired by begin, while discard correctly
repaired only 2. For Nigerian Pidgin, begin cor-
rectly repaired only 1 of 12 while discard correctly
repaired 4 of 12.

While Nigerian Pidgin shows a larger gap be-
tween the effectiveness of the two repair methods,
ultimately the number of repaired transitions is
quite small due to their relative rarity and the small
size of data sets for lower-resourced languages and
thus it is difficult to draw conclusions. Our analysis
could not identify a simple explanation for the dif-

6As there were an even number of runs (10), we used the
higher of the two median runs for each language.

Lang. XLM-R mBERT

amh 13.9 ±4.33 -
hau 11.5 ±3.27 15.7 ±4.06
ibo 19.8 ±6.64 18.8 ±3.80
kin 39.3 ±7.04 40.3 ±8.87
lug 14.9 ±3.92 15.5 ±4.50
luo 12.7 ±5.01 14.9 ±3.93
pcm 17.8 ±6.81 12.9 ±5.59
swa 15.0 ±3.23 15.9 ±3.00
wol 10.8 ±4.07 17.3 ±5.36
yor 32.4 ±6.92 29.6 ±7.88

Table 7: Means and standard deviations of across runs
of the number of invalid transitions repaired for system
output for each model and language.

ferences observed across languages, and this merits
further examination in future work.

4.2 Simulating a real scenario
While we have shown that using a different repair
method can sometimes lead to significant differ-
ences in F1 scores, using different repair methods
on the exact same system output is not what hap-
pens in practice. Instead, the current situation is
more likely to be that two different system outputs
are unknowingly evaluated using differing repair
methods by different authors.

To simulate a more likely situation, suppose one
researcher has trained an mBERT model and an-
other has trained an XLM-R model but neither ex-
plicitly mentions what repair strategy was used
while scoring. We will now explore how the use of
different repair methods would affect the conclu-
sions drawn from researchers unknowingly using
different scoring procedures when comparing their
models.

In Table 8, we compare XLM-R using the begin
repair to mBERT using discard and XLM-R using
the discard repair to mBERT using begin. Suppose
one team used XLM-R with the discard method
to evaluate on Kinyarwanda while the other used
mBERT and begin. The team using XLM-R with
discard for scoring would have a score of 74.51
compared with the other team’s score of 72.14, for
a statistically significant difference in F1 of 2.37.
If the teams switched scoring methods, the mean
scores are much closer at 73.29 compared with
73.41, reducing the difference between the score to
0.12, which is statistically indistinguishable.

While Kinyarwanda is the most dramatic exam-
ple, the difference in F1 changes considerably de-
pending on the combination of repair methods used.
Of the 9 language datasets, 7 show a change in
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XLM-R mBERT XLM-R mBERT
Lang. Begin Discard ∆ p-value Discard Begin ∆ p-value

hau 89.78 87.36 2.42 0.0002 90.12 86.87 3.25 0.0002
ibo 84.18 85.14 0.96 0.0233 84.57 84.82 0.25 0.5708
kin 73.29 73.41 0.12 0.9397 74.51 72.12 2.37 0.0012
lug 80.02 80.83 0.81 0.0494 80.32 80.42 0.10 0.8206
luo 74.43 74.18 0.25 0.8206 74.96 73.37 1.59 0.0257
pcm 87.89 88.47 0.58 0.0452 88.48 87.97 0.51 0.1306
swa 87.43 87.12 0.31 0.2265 87.79 86.73 1.06 0.0012
wol 64.74 66.29 1.55 0.0696 65.19 65.35 0.16 0.8206
yor 77.63 79.87 2.42 0.0002 78.40 78.96 0.56 0.3447

Table 8: Comparison crossing models and repair methods.

whether the difference between models is statisti-
cally significant depending on which repair method
is used with each model, highlighting the impor-
tant of guideline 3. If in addition to using different
repair methods, if one researcher reported their
best test set score with no information about the
distribution—as we have discovered a recent state
of the art NER paper did—there would likely be
even larger differences.

These experiments show that if researchers do
not report their full scoring procedure, they may
inadvertently obfuscate which models actually per-
form better and their claims of improvement may
just be statistical noise. However, if researchers
use SeqScore, they can evaluate their system using
multiple repair techniques without the risk of using
two entirely different scorers, and their evaluations
will be replicable by other researchers.

5 Comparison with other toolkits

To place SeqScore in the context of other work
and to address the question of novelty, we compare
SeqScore to other similar tools.

5.1 Design Considerations

The primary goal of SeqScore is to provide a highly
usable scorer for chunk extraction sequence label-
ing tasks such as NER. But SeqScore is not just a
scorer; it is designed to address the entire lifecycle
of working with data: validating and examining
annotation, converting between various chunk en-
codings, identifying and repairing invalid label se-
quences, and finally producing scores. SeqScore is
implemented in Python, and like Git it uses subcom-
mands to perform each task, for example score
to score, and validate to validate files. While
other packages exist for scoring and handling in-
valid label sequences, no other package has the
convenience of everything in one place.

We believe this convenience lessens the barri-
ers to providing more detailed reporting of scoring
methods, and that this convenience and packag-
ing together of all of these features is a novelty of
SeqScore. For example, unlike conlleval and
every other NER scorer we examined, SeqScore
supports aggregating scores across multiple predic-
tion files for the same reference. This enables the
now-common practice of reporting the mean and
standard deviation across runs, aiding in following
guideline 5. While this is a simple feature, by re-
ducing the effort required to report these scores,
we believe we can help improve adoption of this
practice. Of the papers we surveyed, only about
two-thirds were clear about how many runs they
used and whether their reported score was an aver-
age or a best run.

Table 9 compares the features of SeqScore
against other packages for scoring and working
with sequence labeling data for chunking tasks.
While SeqScore is designed to include as many
features as possible, there are some features it does
not implement. One is partial match scoring, which
is implemented in nervaluate (Segura-Bedmar et al.,
2013)7 following the MUC scoring approach (Chin-
chor and Sundheim, 1993). Also, SeqScore only
processes CoNLL-style file formats.

NER scorers can broadly be grouped in terms of
how closely they resemble the conlleval Perl
script. There are direct re-implementations, those
that score in the same spirit as conlleval but
have additional features, and those that take a dif-
ferent approach to invalid labels. The set of scorers
we examine is not exhaustive but covers the most
widely-used ones.

7https://github.com/ivyleavedtoadflax/
nervaluate

https://github.com/ivyleavedtoadflax/nervaluate
https://github.com/ivyleavedtoadflax/nervaluate
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SeqScore Stanza NCRF++ iobes sighsmile spyysalo wnuteval seqeval conlleval

Warns for invalid label seqs. 3 3 3
begin repair 3 3 3 3 3 3
Discard repair 3 3 3 3 3
Converts label schemes 3 3 3 3
Scoring 3 3 3 3 3 3 3 3
Aggregation across runs 3

Table 9: Comparison of package features

5.2 conlleval reimplementations

To the best of our knowledge after testing on a num-
ber of datasets and edge cases, each of these is a
faithful replication of the original conlleval
Perl script: spyysalo conlleval.py8, and
sighsmile conlleval.py9. The spyysalo and
sighsmile re-implimentations differ from the orig-
inal conlleval script mainly in that they have
support for BIOES and are written in Python in-
stead of Perl.

5.3 conlleval-style scorers

wnuteval10 wnuteval is limited to the entity
types used in the shared task it was developed for.
It raises warnings about invalid transitions. How-
ever, it does not handle multiple mention encoding
schemes. We also found that it does not raise any
warnings or errors about uneven document lengths
between system and gold files; while this seems
like an unusual case to test, with the use of mod-
els set maximum sequence lengths as a decoding
hyperparameter, it is common to accidentally trun-
cate sentences when producing system output for
evaluation.

seqeval seqeval (Nakayama, 2018) can score on
many different label schemes. It is unique in being
one of the only scorers we examined that has more
than one approach to invalid label sequences, a
feature added concurrently with the development
of SeqScore. Seqeval refers to them as default
and strict modes. Default is conlleval-style
(begin), while strict is what we refer to as discard.

5.4 Internal scorers

There are also numerous internal scorers that are
part of larger NLP toolkits and packages. Though

8https://github.com/spyysalo/conlleval.
py

9https://github.com/sighsmile/
conlleval

10http://noisy-text.github.io/2017/
files/wnuteval.py

there are certainly plenty of others, we examine
evaluation methods found in NCRF++ and Stanza.
Neither of the approaches of these internal scorers
follow conlleval-style handling of invalid label
sequences.

Stanza Stanza (Qi et al., 2020) is a collection
of models and tools for NLP. It supports NER in
multiple languages and includes its own scorer im-
plementation. Stanza’s scorer is similar to discard
or seqeval’s strict mode, with a few exceptions.
Stanza also includes a number of tools for convert-
ing between schemes.

NCRF++ NCRF++ (Yang et al., 2018) is a frame-
work for doing neural sequence labeling tasks in
a highly configurable way. It implements its own
scorer with an approach to invalid sequences using
the discard method.

5.5 Handling invalid label transitions

Lester (2020) provides a library for parsing label
schemes, identifying invalid label sequences, con-
verting between label schemes, and enumerating
the legality of possible transitions. While this li-
brary is very useful for handling label schemes and
invalid transitions, it does not address what we be-
lieve is a necessary decoupling of the scorer from
the handling of invalid label sequences. While it is
capable of identifying invalid transitions and sup-
porting one’s own implementation to constrain or
repair invalid sequences, it does not provide com-
mon methods for repairing invalid sequences.

Lignos and Kamyab (2020) demonstrate the dif-
ference that can occur when two scorers handle
invalid label sequences differently. However, they
do not provide any software to evaluate these differ-
ences and only test using CoNLL-03 English data
with older neural models.

6 Conclusion

This paper has provided guidelines for reproducible
NER research and demonstrated the importance of

https://github.com/spyysalo/conlleval.py
https://github.com/spyysalo/conlleval.py
https://github.com/sighsmile/conlleval
https://github.com/sighsmile/conlleval
http://noisy-text.github.io/2017/files/wnuteval.py
http://noisy-text.github.io/2017/files/wnuteval.py
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following them, both by describing the principles
behind them and demonstrating the impact on ac-
tual scores. Ultimately, researchers can choose to
either accept the status quo—which for NER is
non-reproducible research due to both a lack of
standard practices and a lack of standard tools—or
attempt to elevate the practice in the field to higher
standards. We hope that by providing a software
toolkit to help follow these guidelines, we have
substantially reduced the barriers to performing
reproducible research for this task.

While we have created a software package to
accompany our recommendations—one that makes
following them extremely simple—we do not claim
that using SeqScore is necessary for reproducible
results. Just like sacreBLEU is not the only way
to produce a reproducible MT score, SeqScore is
not the only reproducible way to score NER out-
put. However, as it is actively maintained, well-
tested, and it can handle multiple repair methods,
we strongly encourage its use. By focusing on trans-
parency and prioritizing supporting reproducible
research in the design of SeqScore, we believe we
have produced a toolkit that can have substantial
positive impact on the field.

Adoption of this paper’s recommendations by
researchers will increase transparency in the scor-
ing process and enable standardization of scoring
methods in a field we believe is approaching a re-
producibility crisis.
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