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Abstract

Data annotation plays a crucial role in en-
suring your named entity recognition (NER)
projects are trained with the correct informa-
tion to learn from. Producing the most accu-
rate labels is a challenge due to the complex-
ity involved with annotation. Label inconsis-
tency between multiple subsets of data anno-
tation (e.g., training set and test set, or mul-
tiple training subsets) is an indicator of label
mistakes. In this work, we present an empiri-
cal method to explore the relationship between
label (in-)consistency and NER model perfor-
mance. It can be used to validate the label con-
sistency (or catch the inconsistency) in multi-
ple sets of NER data annotation. In experi-
ments, our method identified the label incon-
sistency of test data in SCIERC and CoNLL03
datasets (with 26.7% and 5.4% label mistakes).
It validated the consistency in the corrected
version of both datasets.

1 Introduction

Named entity recognition (NER) is one of the foun-
dations of many downstream tasks such as relation
extraction, event detection, and knowledge graph
construction. NER models require vast amounts of
labeled data to learn and identify patterns that hu-
mans cannot continuously. It is really about getting
accurate data to train the models. When end-to-end
neural models achieve excellent performance on
NER in various domains (Lample et al., 2016; Liu
et al., 2018; Luan et al., 2018; Zeng et al., 2020,
2021), building useful and challenging NER bench-
marks, such as CoNLL03, WNUT16, and SCIERC,
contributes significantly to the research commu-
nity.

Data annotation plays a crucial role in building
benchmarks and ensuring NLP models are trained
with the correct information to learn from (Luan
et al., 2018; Jiang et al., 2020; Yu et al., 2020). Pro-
ducing the necessary annotation from any asset at

scale is a challenge, mainly because of the com-
plexity involved with annotation. Getting the most
accurate labels demands time and expertise.

Label mistakes can hardly be avoided, especially
when the labeling process splits the data into mul-
tiple sets for distributed annotation. The mistakes
cause label inconsistency between subsets of anno-
tated data (e.g., training set and test set or multiple
training subsets). For example, in the CoNLL03
dataset (Sang and De Meulder, 2003), a standard
NER benchmark that has been cited over 2,300
times, label mistakes were found in 5.38% of the
test set (Wang et al., 2019). Note that the state-
of-the-art results on CoNLL03 have achieved an
F1 score of ∼ .93. So even if the label mistakes
make up a tiny part, they cannot be negligible when
researchers are trying to improve the results further.
In the work of Wang et al., five annotators were
recruited to correct the label mistakes. Compared
to the original test set results, the corrected test set
results are more accurate and stable.

However, two critical issues were not resolved in
this process: i) How to identify label inconsistency
between the subsets of annotated data? ii) How to
validate that the label consistency was recovered
by the correction?

Another example is SCIERC (Luan et al., 2018)
(cited ∼50 times) which is a multi-task (includ-
ing NER) benchmark in AI domain. It has 1,861
sentences for training, 455 for dev, and 551 for
test. When we looked at the false predictions given
by SCIIE which was a multi-task model released
along with the SCIERC dataset, we found that as
many as 147 (26.7% of the test set) sentences were
not properly annotated. (We also recruited five
annotators and counted a mistake when all the an-
notators report it.) Three examples are given in
Table 1: two of them have wrong entity types; the
third has a wrong span boundary. As shown in the
experiments section, after the correction, the NER
performance becomes more accurate and stable.
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Table 1: Three examples to compare original and corrected annotation in the test set of the SCIERC dataset. If the
annotation on the test set consistently followed the “codebook” that was used to annotate training data, the entities
in the first two examples would be labelled as “Task” (not “Method”) for sure.

Original Examples Corrected Examples
Starting from a DP-based solution to the [traveling sales-
man problem]Method, we present a novel technique ...

Starting from a DP-based solution to the [traveling salesman
problem]Task, we present a novel technique ...

FERRET utilizes a novel approach to [Q/A]Method known as
predictive questioning which attempts to identify ...

FERRET utilizes a novel approach to [Q/A]Task known as
predictive questioning which attempts to identify ...

The goal of this work is the enrichment of [human-machine
interactions]Task in a natural language environment.

The goal of this work is the [enrichment of human-machine
interactions]Task in a natural language environment.

(a) SCIERC (! = 550)

(b) WikiGold (! = 300) (c) WNUT16 (! = 500)
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Figure 1: Identifying label inconsistency of test set with training set: We sample three exclusive subsets (of size
x) from the training set (orange, green, and blue). We use one subset as the new test set (orange). We apply the
SCIIE NER model on the new test set. We build three new training sets: i) “TrainTest” (blue-red), ii) “PureTrain”
(green-blue), iii) “TestTrain” (red-blue). Results on SCIERC show that the test set (red) is less predictive of training
samples (orange) than the training set itself (blue or green). This was not observed on two other datasets.

Besides the significant correction on the SCI-
ERC dataset, our contributions in this work are as
follows: i) an empirical, visual method to identify
the label inconsistency between subsets of anno-
tated data (see Figure 1), ii) a method to validate
the label consistency of corrected data annotation
(see Figure 2). Experiments show that they are
effective on the CoNLL03 and SCIERC datasets.

2 Proposed Methods

2.1 A method to identify label inconsistency

Suppose the labeling processes on two parts of
annotated data were consistent. They are likely to
be equivalently predictive of each other. In other
words, if we train a model with a set of samples
from either part A or part B to predict a different
set from part A, the performance should be similar.

Take SCIERC as an example. We were wonder-
ing whether the labels in the test set were consistent
with those in the training set. Our method to iden-
tify the inconsistency is presented in Figure 1.

We sample three exclusive subsets (of size x)
from the training set. We set x = 550 according
to the size of the original test set. We use one of
the subsets as the new test set. Then we train the
SCIIE NER model (Luan et al., 2018) to perform
on the new test set. We build three new training
sets to feed into the model:
• “TrainTest”: first fed with one training subset

and then the original test set;
• “PureTrain”: fed with two training subsets;
• “TestTrain”: first fed with the original test set

and then one of the training subsets.
Results show that “TestTrain” performed the

worst at the early stage because the quality of the
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Figure 2: Validating label consistency in corrected test set: We corrected z of y + z sentences in the test set. We
sampled three exclusive subsets of size x, y, and w from the training set. We use the first subset (of size x) as the
new test set. We build four new training sets as shown in the figure and feed them into the SCIIE model (at the top
of the figure). Results show that the label mistakes (red parts of the curves on the left) do hurt the performance no
matter fed at the beginning or later; and the corrected test set performs as well as the training set (on the right).

original test set is not reliable. In “TrainTest” the
performance no longer improved when the model
started being fed with the original test set. “Pure-
Train” performed the best. All the observations
conclude that the original test set is less predic-
tive of training samples than the training set itself.
It may be due to the issue of label inconsistency.
Moreover, we do not have such observations on
two other datasets, WikiGold and WNUT16.

2.2 A method to validate label consistency
after correction

After we corrected the label mistakes, how could
we empirically validate the recovery of label con-
sistency? Again, we use a subset of training data
as the new test set. We evaluate the predictability
of the original wrong test subset, the corrected test
subset, and the rest of the training set. We expect to
see that the wrong test subset delivers weaker per-
formance and the other two sets make comparable
good predictions. Figure 2 illustrates this idea.

Take SCIERC as an example. Suppose we cor-
rected z of y + z sentences in the test set. The
original wrong test subset (“Mistake”) and the cor-
rected test subset (“Correct”) are both of size z.

Here z = 147 and the original good test subset
y = 404 (“Test”). We sampled three exclusive sub-
sets of size x, y, and w = 804 from the training set
(“Train”). We use the first subset (of size x) as the
new test set. We build four new training sets and
feed into the SCIIE model. Each new training set
has y + w + z = 1, 355 sentences.

• “TestTrainMistake”/“TestTrainCorrect”: the
original good test subset, the third sampled
training subset, and the original wrong test
subset (or the corrected test subset);
• “PureTrainMistake”/“PureTrainCorrect”: the

second and third sampled training subsets and
the original wrong test subset (or the corrected
test subset);
• “MistakeTestTrain”/“CorrectTestTrain”: the

original wrong test subset (or the corrected
test subset), the original good test subset, and
the third sampled training subset;
• “MistakePureTrain”/“CorrectPureTrain”: the

original wrong test subset (or the corrected
test subset) and the second and third sampled
training subsets.

Results show that the label mistakes (i.e., origi-
nal wrong test subset) hurt the model performance
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(a) Original with label mistakes

(b) Corrected

Figure 3: Identifying label inconsistency and validating
the consistency in the original & corrected CoNLL03.

whenever being fed at the beginning or later. The
corrected test subset delivers comparable perfor-
mance with the original good test subset and the
training set. This demonstrates the label consis-
tency of the corrected test set with the training set.

3 Experiments

3.1 Results on SCIERC

The visual results of the proposed methods have
been presented in Section 2. Here we deploy five
state-of-the-art NER models to investigate their per-
formance on the corrected SCIERC dataset. The
NER models are BiLSTM-CRF (Lample et al.,
2016), LM-BiLSTM-CRF (Liu et al., 2018), single-
task and multi-task SCIIE (Luan et al., 2018), and
multi-task DyGIE (Luan et al., 2019).

As shown in Table 2, all NER models deliver
better performance on the corrected SCIERC than
the original dataset. So the training set is more
consistent with the fixed test set than the original
wrong test set. In future work, we will explore

Table 2: Five NER models perform consistently better
on the corrected SCIERC than on the original dataset.

Method Corrected SCIERC Original SCIERC
P R F1 P R F1

BiLSTM-CRF 58.35 47.95 52.64 56.13 48.07 51.79
LM-BiLSTM-CRF 62.78 58.20 60.40 59.15 57.15 58.13
SCIIE-single 71.20 62.88 66.79 65.77 60.90 63.24
SCIIE-multi 72.66 63.22 67.61 67.66 61.72 64.56
DyGIE-multi 69.64 67.02 68.31 65.09 65.28 65.18

more baselines in the leaderboard.

3.2 Results on CoNLL03

Based on the correction contributed by (Wang et al.,
2019), we use the proposed method to justify label
inconsistency though the label mistakes take “only”
5.38%. It also validates the label consistency after
recovery. Figure 3(a) shows that starting with the
wrong labels in the original test set makes the per-
formance worse than starting with the training set
or the good test subset. After label correction, this
issue is fixed in Figure 3(b).

4 Related Work

NER is typically cast as a sequence labeling prob-
lem and solved by models integrate LSTMs, CRF,
and language models (Lample et al., 2016; Liu
et al., 2018; Zeng et al., 2019, 2020). Another idea
is to generate span candidates and predict their type.
Span-based models have been proposed with multi-
task learning strategies (Luan et al., 2018, 2019).
The multiple tasks include concept recognition, re-
lation extraction, and co-reference resolution.

Researchers notice label mistakes in many NLP
tasks (Manning, 2011; Wang et al., 2019; Eskin,
2000; Kvĕtoň and Oliva, 2002). For instance, it is
reported that the bottleneck of the POS tagging task
is the consistency of the annotation result (Man-
ning, 2011). People tried to detect label mistakes
automatically and minimize the influence of noise
in training. The mistake re-weighting mechanism
is effective in the NER task (Wang et al., 2019). We
focus on visually evaluating the label consistency.

5 Conclusion

We presented an empirical method to explore
the relationship between label consistency and
NER model performance. It identified the la-
bel inconsistency of test data in SCIERC and
CoNLL03 datasets (with 26.7% and 5.4% label
mistakes). It validated the label consistency in
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multiple sets of NER data annotation on two bench-
marks, CoNLL03 and SCIERC.
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