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Abstract

We propose a new reference-free summary
quality evaluation measure, with emphasis on
the faithfulness. The measure is based on
finding and counting all probable potential in-
consistencies of the summary with respect to
the source document. The proposed ESTIME,
Estimator of Summary-to-Text Inconsistency
by Mismatched Embeddings, correlates with
expert scores in summary-level SummEval
dataset stronger than other common evaluation
measures not only in Consistency but also in
Fluency. We also introduce a method of gener-
ating subtle factual errors in human summaries.
We show that ESTIME is more sensitive to sub-
tle errors than other common evaluation mea-
sures.

1 Introduction

Summarization must preserve the factual consis-
tency of the summary with the text. Human anno-
tation of factual consistency can be accompanied
with detailed classification of factual errors, thus
giving a hope that the annotation scores are rea-
sonably objective (Kryscinski et al., 2020; Huang
et al., 2020; Vasilyev et al., 2020b; Gabriel et al.,
2020; Maynez et al., 2020).

Factual consistency of a summary is one of sev-
eral summary qualities; for the purpose of human
annotation these qualities can be specified in differ-
ent ways (Xenouleas et al., 2019; Kryscinski et al.,
2020; Fan et al., 2018; Vasilyev et al., 2020b; Fab-
bri et al., 2020). Summarization models nowadays
create satisfactorily fluent, coherent and informa-
tive summaries, but the factual consistency suffers
from hallucinations, entity swaps and other errors.
Some factual errors are easily noticeable; other
factual errors could be hardly noticeable even for
annotators (Lux et al., 2020; Vasilyev et al., 2020b)
- which is arguably even worse.

Existing summary evaluation measures are based
on several approaches, which may be sensitive to

some qualities more than to others. A question-
answering based evaluation estimates how helpful
is the summary in answering questions about the
source text (Xenouleas et al., 2019; Eyal et al.,
2019; Scialom et al., 2019; Deutsch et al., 2020;
Durmus et al., 2020; Wang et al., 2020). A text
reconstruction approach estimates how helpful is
the summary in guessing parts of the source text
(Vasilyev et al., 2020a,b; Egan et al., 2021). Evalu-
ation measures that use some kind of text similarity
can estimate how similar is the summary to special
human-written reference summaries (Zhang et al.,
2020; Zhao et al., 2019; Lin, 2004), or, more real-
istically, how similar is the summary to the source
text (Gao et al., 2020; Louis and Nenkova, 2009).

In order to assess how well an evaluation mea-
sure works for factual consistency, it is necessary
either to have a dataset of human-annotated imper-
fect machine-generated summaries (Bhandari et al.,
2020; Fabbri et al., 2020), or to have a dataset of ar-
tificially introduced factual errors in originally fac-
tually correct human-written summaries (Kryscin-
ski et al., 2020).

In this paper we focus on presenting a new evalu-
ation measure with emphasis on factual consistency.
Our contribution:

1. We introduce ESTIME: Estimator of
Summary-to-Text Inconsistency by Mis-
matched Embeddings1. Using human-
annotated machine-generated summaries of
SummEval (Fabbri et al., 2020), we compare
ESTIME with other evaluation measures.

2. We introduce a natural method of generating
subtle factual errors. We use it here to com-
pare the performance of ESTIME with other
measures on human-written summaries with
generated subtle errors.

1https://github.com/PrimerAI/blanc/tree/master/estime
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2 Methods

The motivations for our estimator:
1. Any location in a summary has a context that

loosely corresponds to a context in one or
more locations in the text.

2. In the most similar context, the summary
would normally use the same word that was
used in the text.

3. Summary generation models produce very
few new (not from the text) words per sum-
mary.

4. Transformer-made token embeddings are
highly contextual (Ethayarajh, 2019).

In order to estimate the consistency of a summary
with the text, we attempt to count all the summary
tokens that could be potentially related to a factual
error. To this end, we check embeddings of all the
tokens of the summary that have one or more occur-
rences in the text. For each embedding we find its
match: the most similar embedding in the text. If
the corresponding tokens are not the same, we add
up such mismatch into our score of inconsistency.
Our goal is not an error correction or precise loca-
tion of errors, but a score estimating the summary
consistency quality. The algorithm is simple:

1. Obtain embeddings for all tokens in the text.
In the summary, obtain embeddings only for
the tokens that occur at least once in the text.
To obtain an embedding of a token, mask
the token, run a token-prediction transformer
model on the context surrounding the token,
and take the embedding of the token from a
hidden layer.

2. For each of the obtained embeddings of the
summary tokens, find the most similar embed-
ding in the text. If the corresponding tokens
do not coincide, count this as a potential in-
consistency. The total number of such incon-
sistencies is our score, ESTIME.

We measure ’similarity’ of embeddings by their
scalar product. Thus, ESTIME score is the number
Na of ’alarms’:

Na =
∑
i:ti∈T

H( max
β:t′β 6=ti

(eie
′
β)− s(i)) (1)

s(i) ≡ max
α:t′α=ti

(eie
′
α) (2)

Here H is Heaviside function; the summary is a
sequence of tokens ti, each having embedding ei;

the text T is a sequence of tokens t′α, having em-
beddings e′α. The summation in Equation 1 is over
all the summary tokens ti that exist in the text T .
The count Na gets added +1 whenever the best
match to ei from the embeddings of unequal tokens
e′β exceeds the best match from the embeddings of
occurrences of the same token tα = ti in the text.

The tokens are obtained by the tokenizer cor-
responding to the token-prediction transformer
model. Notice that we do not verify the summary
tokens that do not occur in the text. Such tokens
still can influence the context used for embeddings
of other tokens. The algorithm is asymmetric with
respect to the summary and the text: it is supposed
to estimate summary-to-text inconsistency.

This approach is different from matching embed-
dings for sake of measuring similarity (e.g. similar-
ity between a summary and a reference summary in
BERTScore (Zhang et al., 2020)), and from using a
model trained to replace wrong tokens with correct
ones (Cao et al., 2020; Kryscinski et al., 2020).

The embeddings are taken using the pretrained
BERT model (Devlin et al., 2019) bert-large-
uncased-whole-word-masking of Transformers li-
brary (Wolf et al., 2020). While there is no crucial
difference with other varieties of BERT, ALBERT
and RoBERTa, this model showed a better overall
performance, and we used it for evaluations in the
next sections. For the sake of faster processing, we
do not run the model separately for each token, but
at a single run obtain embeddings for all tokens
separated by the distance of 8 tokens. This means
that the context for each masked token is a little
muddied by masking of a few other tokens, but the
distance of 8 tokens is large enough for the effect
to be negligible. The results of the next sections
are obtained with input size of 450 tokens (close
to max BERT input length). Finally, when input
window does not touch the beginning or end of the
text, we do not mask the tokens too close to the
edge of the window: no masking within the mar-
gin of 50 tokens at the edges of the input window.
The algorithm is simple, but for convenience we
provide the code2.

In the next sections we present results for the
versions ESTIME-12 and ESTIME-24, correspond-
ing to the embeddings from the middle (12th layer)
and from the top (24th layer) of the large BERT; as
explained later we also consider ESTIME-21.

2https://github.com/PrimerAI/blanc/tree/master/estime
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measure consistency relevance coherence fluency

ρ τ ρ τ ρ τ ρ τ
BLANC-AXXL 0.200 0.098 0.246 0.179 0.127 0.093 0.115 0.066
BLANC-BLU 0.207 0.102 0.217 0.156 0.116 0.085 0.112 0.065
(-)ESTIME-12 0.374 0.184 0.140 0.100 0.238 0.173 0.343 0.198
(-)ESTIME-21 0.404 0.200 0.188 0.134 0.300 0.217 0.399 0.232
(-)ESTIME-24 0.358 0.176 0.117 0.084 0.187 0.134 0.363 0.209
(-)J-Shannon 0.193 0.095 0.406 0.298 0.289 0.213 0.125 0.072
SummaQA-F1 0.174 0.085 0.16 0.113 0.089 0.065 0.12 0.069
SummaQA-P 0.197 0.097 0.179 0.127 0.112 0.082 0.133 0.076
SUPERT 0.297 0.147 0.306 0.222 0.236 0.175 0.175 0.101
BERTScore-F1 0.109 0.053 0.371 0.273 0.377 0.277 0.142 0.082
BERTScore-P 0.055 0.027 0.268 0.196 0.323 0.238 0.126 0.072
BERTScore-R 0.164 0.081 0.423 0.309 0.345 0.253 0.12 0.069
BLEU 0.095 0.047 0.213 0.153 0.176 0.128 0.140 0.080
ROUGE-L 0.115 0.057 0.241 0.174 0.170 0.124 0.079 0.045
ROUGE-1 0.137 0.067 0.302 0.220 0.184 0.134 0.080 0.046
ROUGE-2 0.129 0.063 0.245 0.177 0.146 0.105 0.063 0.036
ROUGE-3 0.149 0.073 0.251 0.180 0.160 0.116 0.066 0.038

Table 1: Summary level correlations ρ (Spearman) and τ (Kendall Tau-c) of quality estimators with human experts
scores. The top rows evaluation measures are reference-free, separated from the lower rows evaluation measures,
which need human references. In each column the highest correlation is bold-typed. The only p-values above 0.01
in this table are p=0.03 for BERTScore-P and p=0.01 for ROUGE-2.

3 Performance on human-annotated
machine-generated summaries

3.1 Correlations with expert scores
We used SummEval dataset 3 (Fabbri et al., 2020)
for comparing ESTIME with a few well known or
promising evaluation measures. The part of Sum-
mEval dataset that we use consists of 100 texts,
each text is accompanied by 16 summaries gen-
erated by 16 different models, making altogether
1600 text-summary pairs. Each text-summary pair
is annotated (on scale 1 to 5) by 3 experts for 4
qualities: consistency, relevance, coherence and
fluency. We took average of the expert scores for
each quality of a text-summary pair. Each text is
also accompanied by 11 human-written reference
summaries, for the measures that need them. (In
latest version of (Fabbri et al., 2020) a 17th model -
Pegasus dynamic mix - is added to the annotations.)

We calculated scores of ESTIME and other mea-
sures for all the 1600 summaries, and presented
their correlations with the average expert scores
in Table 1. The measures in Table 1 are split into
the group of reference-free measures (top) and the
measures requiring human-written references (bot-

3https://github.com/Yale-LILY/SummEval

tom). All the measures are based on certain prin-
ciples rather than on finetuning on some human-
annotated datasets. Here BLANC-help (Vasilyev
et al., 2020a) is calculated in two versions4, which
differ by the underlying models: BLU - bert-large-
uncased, and AXXL - albert-xxlarge-v2. ESTIME
and Jensen-Shannon (Louis and Nenkova, 2009)
values are negated. SummaQA (Scialom et al.,
2019) is represented by SummaQA-P (prob) and
SummaQA-F1 (F1 score)5. SUPERT (Gao et al.,
2020) is calculated as single-doc with 20 reference
sentences ’top20’6 (using bert-large-nli-stsb-mean-
tokens). BLEU (Papineni et al., 2002) is calcu-
lated with NLTK. BERTScore (Zhang et al., 2020)
(by default 7 using roberta-large) is represented by
F1, precision (P) and recall (R). For ROUGE (Lin,
2004) the ROUGE-L is calculated as rougeLsum8.

By design ESTIME should perform well for con-
sistency, and indeed it beats other measures in the
table. Being a one-sided summary-to-text estimator

4https://github.com/PrimerAI/blanc#blanc-on-summeval-
dataset

5https://github.com/recitalAI/summa-qa
6https://github.com/yg211/acl20-ref-free-eval
7https://github.com/Tiiiger/bert_score
8https://github.com/google-research/google-

research/tree/master/rouge
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of inconsistencies, ESTIME should not and does
not perform well for relevance. ESTIME performs
better than other measures for fluency, and rea-
sonably well for coherence (ESTIME-21 is better
for coherence than the rest of the reference-free
metrics). Interestingly, a comparison of ESTIME-
12 vs ESTIME-24 shows that the middle of the
transformer knows better than the top about all
the summary qualities except the fluency. In Ap-
pendix A we show and discuss a curious pattern
of dependency of correlations on the embeddings
layer. Correlations with all qualities peak around
the layer 21, then sharply drop by the top layer 24.
This is the reason we added ESTIME-21 to the ta-
ble. While ESTIME-21 is the best choice, each of
the three shown ESTIME versions is better than the
rest of the measures for consistency and fluency.

3.2 System level correlations

measure ρ τ

BLANC-AXXL 0.812 0.617
BLANC-BLU 0.724 0.567
(-)ESTIME-12 0.756 0.583
(-)ESTIME-21 0.821 0.633
(-)ESTIME-24 0.815 0.633
(-)J-Shannon 0.753 0.533
SummaQA-F1 0.862 0.667
SummaQA-P 0.912 0.750
SUPERT 0.832 0.633
BERTscore-F1 -0.029 -0.017
BERTscore-P -0.329 -0.217
BERTscore-R 0.885 0.733
BLEU -0.150 -0.017
ROUGE-L 0.376 0.283
ROUGE-1 0.694 0.517
ROUGE-2 0.779 0.600
ROUGE-3 0.888 0.717

Table 2: System level correlation ρ (Spearman) and τ
(Kendall Tau-c) of quality estimators with human ex-
perts scores of consistency. Top rows show reference-
free evaluation measures.

In Table 2 we show correlations on system level,
meaning that the scores (of automated measures
and of human experts) are averaged over the 100
texts, so that each array of scores has length only 16
rather than 1600 (Fabbri et al., 2020). The purpose
of this would be a comparison of the summarization
models. The results are shown for consistency only;
for other qualities some measures have p-value

higher than 0.05. The ranking of the measures
changes with averaging over the texts (Table 2 vs
Table 1). We may speculate that some measures
may be more sensitive to the model generation
style which can lead to less errors or more errors
on average; other measures may be more sensitive
to specific factual errors in each summary. If it
is true, we would have to be cautious about the
measures that do well on the system level and do
not do well on the summary level.

3.3 Discussion

While we must be cautious about picking evalu-
ation measure version most fitting human scores
(Vasilyev and Bohannon, 2021), using ESTIME-21
is probably justified by simultaneous maximum at
level 21 for all four summary qualities, as shown in
Figures 1 and 2 in Appendix A. For our definition
of ESTIME we preferred Na of Equation 1 rather
than the alternative definition Nw of Equation 3 in
Appendix B. Nw is counting all the text tokens that
managed to ’win’, i.e. to be closer to a summary
token than any text occurrence of the summary to-
ken. We are concerned that if the summary token is
bad (inconsistent with its context), the number of
the ’winners’ is large and might be fairly arbitrary.

We defined ESTIME in Equations 1 and 2 by
using simple scalar product of embeddings. In
Appendix C we show that using normalized embed-
dings only makes the correlations worse, by almost
fully erasing the ’Layer-21 maximum’.

In Appendix D we give an example of switching
to a simpler underlying model: bert-base-uncased.
This slightly weakens the correlations, and makes
the dependency on the layer id less sharp.

In Appendix E we give an example of exclud-
ing part of speech tokens from consideration by
ESTIME. This means that the summation in Equa-
tion 1 will use only tokens ti of some parts of
speech, and that the max will similarly restrict the
tokens t′β . Despite high frequency of determin-
ers in texts, the omission of the determiners from
ESTIME makes almost no difference.

As explained in Section 2, in obtaining embed-
dings we are using a somewhat spoiled context,
because we mask many tokens in a single input
(albeit requiring the masks to be reasonably sepa-
rated). In Appendix F we show that our separation
requirements are indeed reasonable, and making
them twice more strict barely change the correla-
tions.
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4 Performance on human summaries
with generated subtle errors

Machine-generated summaries, even by abstractive
summarization models, generally follow the source
text by frequently reproducing large spans from it.
Human summaries are more varied in describing
the source text, and it is interesting how useful can
be ESTIME for evaluating them. Fundamentally,
we are asking how flexible are the embeddings
in understanding the context. In order to answer
this question, we made random selection of 2000
text-summary pairs from CNN/Daily Mail dataset
(Hermann et al., 2015). For each human-written
summary we then added the same summary mod-
ified by generated factual errors. We thus made
4000 text-summary pairs. We assigned the ’golden’
scores as 1 to each clean summary, and 0 to each
summary with errors.

Our ’subtle errors’ generation method is simple,
heuristic-free and easily reproducible. In order
to generate an error, we randomly select a whole-
word token in the summary, mask and predict it
by an LM model (we used bert-base-cased). We
then select the top predicted candidate that is not
equal to the real token, and substitute it for the real
token. The resulting subtle errors are similar to
real machine-generated mishaps and hallucinations,
with the fluency preserved.

The evaluation task is now more difficult: the
summaries are human-written, and the errors are
subtle. Without labeling of the generated errors, we
cannot be confident of always having real factual
errors: large part of the generated errors are indeed
truly factual errors, but the rest disturb coherence
or fluency, or make synonyms. For purposes of a
preliminary simple evaluation here, and to ensure
high probability of having true errors, we gener-
ated 3 random errors in each ’score=0’ summary.
Table 3 shows that ESTIME is more sensitive to
the generated errors than other measures. Only
reference-free measures could be applied in this
situation. All p-values in the table are less than
10−3, except 0.023 for BLANC-AXXL, 0.002 for
Jensen-Shannon and 0.001 for SummaQA-P.

In Table 3 the correlation of ESTIME-21 with
generated errors turns out to be lower than the cor-
relation of ESTIME-24. If we guessed correctly in
Apendix A about the reasons for the drop of the cor-
relations between the layers 21 and 24 in Figures 1
and 2, then the relatively high value of ESTIME-24
indicates that it may have additionally benefited

from an information relevant to predicting tokens,
even when the generated token replacements are
not factual errors. In the near future we plan to
follow up these evaluations on a large fully labeled
dataset of ’subtle errors’.

measure ρ τ

BLANC-AXXL 0.036 0.042
BLANC-BLU 0.076 0.087
(-)ESTIME-12 0.138 0.159
(-)ESTIME-21 0.163 0.188
(-)ESTIME-24 0.169 0.195
(-)J-Shannon 0.048 0.055
SummaQA-F1 0.055 0.064
SummaQA-P 0.054 0.062
SUPERT 0.107 0.123

Table 3: Correlation ρ (Spearman) and τ (Kendall Tau-
c) of quality estimators with the presence of gener-
ated subtle errors in human summary. The dataset of
4000 text-summary pairs was created by random pick
of 2000 test-summary pairs from CNN / Daily Mail
dataset, duplicating these 2000 pairs, and by generat-
ing subtle errors in the 2000 duplicated summaries.

5 Conclusion

We introduced ESTIME: estimator of summary-to-
text inconsistency by mismatched embeddings, - a
measure of summary quality with emphasis on mea-
suring factual inconsistency between the summary
and the text. The fact that this simple measure cor-
relates with human-labeled consistency and fluency
much better than more complex measures tells us
about the current state of summary evaluation, and
about the power of contextual embeddings.

We also introduced a method for generating sub-
tle errors; the method has a potential for creating
consistent and realistic benchmark datasets for fac-
tual consistency. In the near future we intend to
release such fully labeled flexible dataset.
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A Dependency on layers

It is natural to expect that embeddings from top
layer would be good in characterizing context for
a token. In Figures 1 and 2 we show correlations
of SummEval expert scores with ESTIME versions
that are defined by a model layer from which the
embeddings are taken. (The model is bert-large-
uncased-whole-word-masking.) Immediate obser-
vation about the dependency of the correlation
value on the model layer is that after reaching maxi-
mum around layer 21, the correlation value quickly
drops at higher layers. At low levels the correlation
value increases fast by layer 5 (for coherence and
relevance or 7 (for consistency and fluency) and
then grows much slower, sometimes going flat or
even dropping down.

Figure 1: Kandall Tau-c correlation between Sum-
mEval experts scores and ESTIME using embeddings
taken from different layers of the model.

We have no guess why the dependency of the
correlations on the layer Id is so strong immediately
after the layer #2 and why it is weak further in the
wide range of the middle layers. However, we can
speculate about the sharp drop after the ’layer #21
peak’. It may be that below the layer #21 peak,
the BERT model keeps a lot of generic contextual
information for two reasons: it is trained for two
tasks (next sentence prediction and masked token
prediction), and each node has to be useful for
all or for the most of the nodes above. But after
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Figure 2: Spearman correlation between SummEval
experts scores and ESTIME using embeddings taken
from different layers of the model.

the peak, the last few layers at positions close to
each text token are strongly influenced by the token
prediction task.

In the plots shown in this Appendix, as well as
in all other plots through the paper, the correlations
p-values are below 0.05 (mostly far below). Unlike
the summary level correlations, the system level
correlations have not much data. This is why, keep-
ing only the correlations with p-values below 0.05,
we can show in Figure 3 only the consistency qual-
ity, and even for the consistency we have less range
of layers.

Figure 3: Spearman and Kendall Tau-c correlations
- system level - between SummEval experts scores
of consistency and ESTIME using embeddings taken
from different layers of the model.

B Count of winning tokens in text

ESTIME is defined in Equation 1 and is considered
through the paper as a count of ’alarming’ summary
tokens. It could be alternatively defined as a count
of all winner-tokens from the text, as defined in

Equation 3.

Nw =
∑
i:ti∈T

∑
β:t′β 6=ti

H((eie
′
β)− s(i)) (3)

In Figures 4 and 5 we see how Nw differs from
ESTIME (Na).

Figure 4: Kandall Tau-c correlation between Sum-
mEval experts scores and ESTIME by embeddings
from different layers of the model. Thick lines:
ESTIME (as defined by Equation 1 and considered
through the paper). Thin lines: Nw as defined by Equa-
tion 3.

Figure 5: Spearman correlation between SummEval ex-
perts scores and ESTIME by embeddings from differ-
ent layers of the model. Thick lines: ESTIME (as de-
fined by Equation 1 and considered through the paper).
Thin lines: Nw as defined by Equation 3.

C Normalization of embeddings

We used unnormalized embeddings for ESTIME.
From Figures 6 and 7 it is clear that normalizing
embeddings does not improve ESTIME. Curiously,
the effect of the normalization on the correlations
is in destroying the peak around the layer 21.
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Figure 6: Kandall Tau-c correlation between Sum-
mEval experts scores and ESTIME by embeddings
from different layers of the model. Thick lines: unnor-
malized embeddings (as used through the paper). Thin
lines: normalized embeddings.

Figure 7: Spearman correlation between SummEval ex-
perts scores and ESTIME by embeddings from differ-
ent layers of the model. Thick lines: unnormalized
embeddings (as used through the paper). Thin lines:
normalized embeddings.

This could mean that the lengths of the embed-
dings carry all the information necessary for creat-
ing the peak at the layer 21.

D Comparison with base BERT

As default and through the paper ESTIME uses the
model bert-large-uncased-whole-word-masking. In
Figures 8 and 9 we show an example of a com-
parison with another model - bert-base-uncased.
Unlike the large model, the bert-base-uncased has
0-12 range of its layers, and in the plots here we
rescaled them by x2, interpolating in between for
odd layer Ids. This allows to compare the trends
of the correlations along the relative depth of the
transformer. We observe the familiar quick rise at
low depth, a drop at high levels close to the out-
put, and a slow growth or plateau in between, - but

all these features are less sharp for the bert-base-
uncased. It is puzzling that a larger transformer,
with twice longer ’distance’ for backpropagation to
travel from the top to the bottom, has more distinct
features of quick rise, plateau, peak and drop, with
exact locations of the end of the quick rise and of
the peak.

Figure 8: Kandall Tau-c correlation between Sum-
mEval experts scores and ESTIME by embeddings
from different layers of the model. Thick lines:
the model is bert-large-uncased-whole-word-masking.
Thin lines: the model is bert-base-uncased.

Figure 9: Spearman correlation between SummEval ex-
perts scores and EESTIME by embeddings from dif-
ferent layers of the model. Thick lines: the model
is bert-large-uncased-whole-word-masking. Thin lines:
the model is bert-base-uncased.

E Example of excluding a part of speech

Throughout the paper we used all text tokens for
ESTIME. In Figures 10 and 11 we show an ex-
ample of excluding from consideration a part of
speech: determiners. Determiners occur very fre-
quently in the text, but exclusion of them does not
make much difference in the resulting correlations
with human scores, especially for the quality we
are most interested in: consistency.
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Figure 10: Kandall Tau-c correlation between Sum-
mEval experts scores and ESTIME by embeddings
from different layers of the model. Thick lines: all to-
kens are used, as is done throughout the paper. Thin
lines: tokens of determiners (part of speech) are not
used.

Figure 11: Spearman correlation between SummEval
experts scores and EESTIME by embeddings from dif-
ferent layers of the model. Thick lines: all tokens are
used, as is done throughout the paper. Thin lines: to-
kens of determiners (part of speech) are not used.

F Parameters for sparse masking

In Section 2 we explained that for faster processing
we take embeddings not one at a time, but as much
as fit into an input window, as long as the masking
is done with 8 tokens separation, and within the
margin 50 tokens from the input edges (unless input
edge touches the edge of the text). In Figures 12
and 13 we compare our default parameters with a
twice more sparse version: 16 tokens separation,
and 100 tokens margin. The sparser version should
be better, but slower to run. From the figures it is
clear that the sparser version has almost the same
correlations; our default sparsity is good enough.

Figure 12: Kandall Tau-c correlation between Sum-
mEval experts scores and ESTIME by embeddings
from different layers of the model. Thick lines: spar-
sity of the masking is defined by the distance 8 and the
margin 50 (see Section 2), as used through the paper.
Thin lines: Distance 8, margin 100.

Figure 13: Spearman correlation between SummEval
experts scores and EESTIME by embeddings from dif-
ferent layers of the model. Thick lines: sparsity of the
masking is defined by the distance 8 and the margin 50
(see Section 2), as used through the paper. Thin lines:
Distance 8, margin 100.


