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Abstract

Most of the time, when dealing with a par-
ticular Natural Language Processing task, sys-
tems are compared on the basis of global statis-
tics such as recall, precision, F1-score, etc.
While such scores provide a general idea of
the behavior of these systems, they ignore a
key piece of information that can be useful
for assessing progress and discerning remain-
ing challenges: the relative difficulty of test
instances. To address this shortcoming, we
introduce the notion of differential evaluation
which effectively defines a pragmatic partition
of instances into gradually more difficult bins
by leveraging the predictions made by a set
of systems. Comparing systems along these
difficulty bins enables us to produce a finer-
grained analysis of their relative merits, which
we illustrate on two use-cases: a compari-
son of systems participating in a multi-label
text classification task (CLEF eHealth 2018
ICD-10 coding), and a comparison of neu-
ral models trained for biomedical entity detec-
tion (BioCreative V chemical-disease relations
dataset).

1 Introduction

The analysis of NLP system results has mainly fo-
cused on evaluation scores meant to rank systems
and feed leaderboards. In tasks such as information
extraction, text classification, etc., evaluation gen-
erally relies on the comparison of a hypothesis (typ-
ically a system output) with a gold standard, gen-
erally produced through manual annotation. Since
the MUC-6 conference (Grishman and Sundheim,
1996), the metrics used were created for informa-
tion retrieval (Cleverdon, 1960): recall (true posi-
tive rate), precision (positive predictive value) and
their harmonic (possibly weighted) mean, the F1-
score. Evaluation scripts are widely available nowa-
days, for instance those of the CoNLL shared tasks
(Tjong Kim Sang and De Meulder, 2003). These
scripts rely on an annotation scheme based on the

BIO prefix used to specify whether a token is at
the beginning, inside or outside of an annotation
span, making it a de facto standard for NER evalu-
ation (Nadeau and Sekine, 2007). Many other NLP
tasks have developed or used their own metrics,
such as accuracy for classification, BLEU (Pap-
ineni et al., 2002) for machine translation, ROUGE
for machine translation and text summarization
(Lin, 2004), word error rate for automatic speech
recognition, etc. While evaluation is the key step
in shared tasks, developers also need to evaluate
the performance of their systems for feature selec-
tion or architecture design choices, especially when
several systems are combined (Jiang et al., 2016).

However, scores only are insufficient to capture
the behavior of systems and to provide a finer-
grained analysis of their pros and cons. Indeed,
though widely used, scores are not free of imperfec-
tions, as demonstrated by Peyrard et al. (2021) who
discuss the use of the average to aggregate eval-
uation scores. They show that very different sys-
tem behaviors can yield similar scores when using
the average and suggest an alternative aggregation
mechanism. Some researchers also call for going
beyond performance scores: Ethayarajh and Juraf-
sky (2020) suggest that performance-based eval-
uation (as promoted by leaderboards) overlooks
aspects such as utility, prediction cost, and robust-
ness of models. They recommend considering the
point of view of the user of models rather than just
performance scores to estimate their relevance.

Trying to provide a finer understanding of the
issues raised by the input text and of the limita-
tions of the evaluated systems, we propose a new
qualitative analysis method that takes into account
the observed relative difficulty of predicting gold
labels for each input. This difficulty is assessed
pragmatically based upon the number of systems
that predict a gold label (a true positive) for a given
input. As a qualitative method, its aim is not to com-
pute an evaluation measure nor to rank systems, but
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Figure 1: Example input file for a set of six sys-
tems. 1 means the system yielded a true positive for
the instance, and 0 means it did not (the instance was
‘missed’).

instead to obtain an overview of how different sys-
tems achieve the task, and thus understand where
their strengths and weaknesses are.

After explaining how the method works glob-
ally (Section 2), we illustrate it with data from two
shared tasks from the biomedical domain, one for
multi-label classification and another for named
entity recognition (Section 3), then discuss a few
points and directions for future investigation (Sec-
tion 4).

2 Differential evaluation: highlighting
the ‘difficulty’ of examples

Our qualitative analysis method, which we call
differential evaluation1, globally considers the var-
ious sets of correct instances (‘true positives’, or
’gold instances’) that were discovered by a set of
systems. Since the aim of the method is not to
produce a ranking, the considered systems can be
different systems performing the same task, as in
a shared task for example, or different versions of
the same system also performing a given task, as
in a development context.

As input, the algorithm takes a matrix of in-
stances and systems, as shown in Figure 1. For
each instance, it then computes how many sys-
tems discovered it correctly (i.e., in Figure 1,
’762_levodopa’ has been discovered by 6 systems,
’1034_cyp’ has been discovered by 4 systems, etc.)
This enables it to compute then how many instances

1https://github.com/PierreZweigenbaum/differential-
evaluation

Figure 2: Composition of bin-5 in the comparison of
six systems. Each instance (row) is missed by exactly
one system. Note that each system (column) may miss
multiple instances in this bin.

have been detected by all systems, by all systems
but one, by all systems but two, etc., and by no
system at all. This yields a grouping of instances
into bins depending on the number of systems that
discovered them. There are as many bins as there
are systems plus one for the set of instances that
were discovered by none of the systems. Bin-1 is
the set of instances detected by exactly one system,
bin-2 the set of instances detected by exactly two
systems, etc.; and bin-0, the set of instances that no
system was able to detect (see Section 3 for illus-
trated examples). Figure 2 shows the composition
of bin-5 in a case where six systems are compared,
and displays the percentage coverage of the bin
for each system. Figure 3 shows a schema of the
global scenario of the method.

Instances in bin-N (where N is the number of
considered systems), which holds the set of entities
discovered by all systems, can be considered as the
easiest to predict, while instances in bin-0, which
holds the set of entities that no system was able
to detect, can be seen as the most difficult. More-

https://github.com/PierreZweigenbaum/differential-evaluation
https://github.com/PierreZweigenbaum/differential-evaluation
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Figure 3: Differential evaluation scenario.
True positives (TPs) are displayed with absolute and relative
values (percentage of the number of instances in the bin) in
the output matrix, as in Table 1 and Figure 4 respectively.
System contributions to a bin can have a null intersection:
i.e. here, in bin-4, Systems B and C may be yielding TPs for
totally different sets of instances. Bins 1, 2 and 3 omitted for
conciseness.

over, bin-1, which holds instances discovered by
a single system, can be seen as the bin holding
the singular contribution of each system. As such,
bin-1 is particularly interesting when considering
system combination architectures or ROVER-like
performance measures (Fiscus, 1997).

Figure 4 presents one of the outputs of the
method, a heatmap of percentages of system TPs
relative to the total number of instances in each bin,
in this case for the CLEF eHealth 2018 ICD-10
coding task for Italian (we analyse this example
in detail in Section 3.1.1). The first column on
the left is bin-0, holding only 0 values as we have
said that bin-0 is the bin of instances missed by all

Figure 4: Percentage of labels (true positives) correctly
found by each system in each bin for Italian in the
CLEF eHealth 2018 ICD-10 coding task. Systems on
x-axis and bins on y-axis.

systems (as shown by Table 1, here 305 instances
were missed by all systems). The second column
from the left holds bin-1, and so on. Another out-
put of the method is the table of absolute values
corresponding to the percentages heatmap, such as
Table 1. It would then be interesting to investigate
whether a pattern emerges concerning the linguistic
nature of instances, which would help to chart the
difficulty of the task, and complete the qualitative
aspect of the analysis.

3 Experiments

In this section, we present insights that can be
drawn from the use of differential evaluation on
data related to two shared tasks addressing respec-
tively multi-label text classification and named en-
tity recognition, both in the biomedical domain.
Note that our algorithm processes the systems in
the order in which they are presented and that it is
not intended to create a new ranking of the systems,
but rather to provide more fine-grained information
to analyze how a given system has performed or
achieved its ranking.

3.1 CLEF eHealth 2018 ICD-10 coding
We show as an example the output obtained in the
comparison of systems in a multi-label text classifi-
cation task in Italian and Hungarian (Névéol et al.,
2018). In the gold standard, each input text is asso-
ciated to one or more true labels, i.e., codes in the
International Classification of Diseases (ICD-10).
A true positive system prediction is an association
between a given input text and one of the true labels
for this text in the gold standard. In this dataset,
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Systems bin-0 bin-1 bin-2 bin-3 bin-4 bin-5 bin-6 bin-7 bin-8 bin-9 bin-10 bin-11 Total TPs
per system

A 0 21 33 93 104 271 311 652 645 765 829 3800 7524
B1 0 69 163 224 472 648 1005 1245 1774 1390 3890 3800 14680
B2 0 31 126 172 434 575 959 1211 1760 1373 3886 3800 14327
C1 0 2 8 11 24 89 208 306 958 813 3658 3800 9877
C2 0 7 11 14 31 83 189 327 1005 660 3445 3800 9572
D1 0 9 55 105 331 463 823 1168 1608 1344 3884 3800 13590
D2 0 24 67 143 351 474 795 1073 1543 1284 3827 3800 13381
E1 0 6 60 77 183 289 639 982 1549 1327 3886 3800 12798
E2 0 2 60 78 184 312 665 1003 1557 1337 3886 3800 12884
F1 0 4 20 27 49 105 291 444 919 1125 3854 3800 10638
F2 0 10 29 34 57 131 289 458 930 1110 3855 3800 10703

Total per bin 305 185 316 326 555 688 1029 1267 1781 1392 3890 3800 15534

Table 1: Number of labels (true positives) correctly found by each system in each bin for Italian: absolute values.
Bin n contains the labels found by exactly n systems. Best performance in green, worst performance in red.

the evaluation method therefore compares label
attribution rather than entities.

3.1.1 Italian

Eleven systems were examined for Italian, and
15,534 labels were to be discovered. Some of the
teams that participated in the shared task submitted
two runs for variants of their base system, hence
names such as B1 and B2 when two systems are
submitted by the same team in Figure 4 and other
tables or figures. As shown in Table 1, bin-0 holds
305 labels found by none of the systems. Bin-
1 holds 185 labels found by exactly one system,
among which System A discovered 21 labels, Sys-
tem B1 discovered 69 labels, and so on. Bin-11
holds 3,800 labels found by all eleven systems.
Figure 4 and Table 1 show bin repartition with per-
centages and absolute values. In Table 1, column
“Total TPs per system” presents the total number
of labels found per system, and row “Total per bin”
contains the total number of labels to be found. We
use color codes to highlight the best/worst system
for each bin.

Performances are pretty steady, with System B1
outperforming all the others in every bin. The worst
results are shared by Systems C1 and C2, and Sys-
tem A that performs badly for bins-8 and 10, which
are among the “easiest” bins. As seen in Table 1,
although System E2 scores the worst for bin-1 with
only two labels discovered, it manages to keep up
with the performances of the other systems in the
other bins, and its global performance (12,884 total
TPs discovered) is pretty average. On the other
hand, Systems C1 and C2, which are the worst
systems across all bins, are not so bad globally
with 9,877 and 9,572 total TPs. In fact, System
A achieves a very low performance on two of the

Figure 5: Percentage of labels (true positives) correctly
found by each system in each bin for Hungarian. Sys-
tems on x-axis and bins on y-axis.

“easiest” bins, and thus yields less than half of the
total labels, despite a not so bad performance on
bin-1. Figure 4 shows that systems can be divided
into groups of better and worse performances (B1,
B2, D1, D2, E1, E2 vs. A, C1, C2, F1, F2). We
can also see that System B1 reaches a perfect score
over all easier bins up to bin-8, which hints at its
being robust on easy instances.

3.1.2 Hungarian
Figure 5 and Table 2 show the proportion and num-
ber of detected labels per system within each bin
for the Hungarian language2.

As highlighted by colors in Table 2, we can see
that globally, Systems G1 and G2 perform the best,
and Systems K1 and K2 perform the worst.

Just above K1 and K2 in terms of Total TPs per
system (Table 2), System J is the worst at detecting
labels from bin-8 (see also Figure 5), which can

2The data are not the same as that for Italian, hence the
different total values.
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Systems bin-0 bin-1 bin-2 bin-3 bin-4 bin-5 bin-6 bin-7 bin-8 bin-9 Total TPs
per system

G1 0 104 555 655 2855 4760 11246 37654 9034 26324 93187
G2 0 116 542 642 2828 4700 11239 37659 9028 26324 93078
H1 0 72 381 375 2001 3471 10080 37367 8749 26324 88820
H2 0 62 380 394 2019 3606 10620 37525 8985 26324 89915
I1 0 45 333 538 1375 2877 10293 36748 8980 26324 87513
I2 0 67 366 519 1356 2400 10208 36575 8695 26324 86510
J 0 136 126 364 557 2986 3331 37024 2134 26324 72982

K1 0 19 46 73 140 285 832 1693 8460 26324 37872
K2 0 7 45 40 89 215 947 1508 8303 26324 37478

Total per bin 1442 628 1387 1200 3305 5060 11466 37679 9046 26324 97537

Table 2: Number of labels (true positives) correctly found by each system in each bin for Hungarian: absolute
values. Bin n contains the labels found by exactly n systems. In this analysis, the systems are ordered in decreasing
order of F1-score, determined prior to the present analysis.

A1

17%

A2

18%B1

11%

B2
10%

C1

7%

C2

11%

D

22%

E1
3%

E21%

Figure 6: Proportion of labels discovered by exactly
one system, per system for Hungarian.

be considered “easy” labels, with a very low pro-
portion of 24% when all other systems are above
90%. In contrast however, it detects the largest
number of labels in bin-1 (see also Figure 6). This
is the only case where System G1 is significantly
outperformed. System J is therefore good at de-
tecting some “difficult” labels. This is a strong
indicator that this system is likely to use a method
that is quite different from the other systems and
might bring complementary expertise on some in-
puts, which deserves further investigation.

Another perspective comes from looking at the
overall performance for labels from bin-1, which,
contrary to the example of Italian where most of
bin-1 is yielded by four systems among eleven, is
distributed in a more balanced way among systems.
This means that labels from bin-1 are not yielded
by one unique system that would be outperform-
ing all the others, but that every system makes an
important contribution to this bin (Figure 6).

3.2 BioCreative V CDR entities

The BioCreative V chemical-disease relation
(CDR) task is originally a relation extraction task
(Wei et al., 2016). Its data can also be used to train
and evaluate entity-detection systems for chemical
and disease entities, which is what we examine
here. The dataset is made of 1,500 PubMed ab-
stracts of scientific papers, divided equally into
training, development and test. In the gold stan-
dard, each input token is associated to one true label
and named entities are encoded according to the
BIO (begin, inside, outside) scheme. In the present
work we deal with tokens rather than entities, so
that we can apply the presented method directly.
We consider that ‘O’ labels are negatives and that
all other labels are positives. A true positive system
prediction is an association between an input token
and a non-‘O’ label that is the gold-standard label
for this token.

We are comparing entity detection systems that
rely on word embeddings based upon Character-
Bert (El Boukkouri et al., 2020) or fastText (Bo-
janowski et al., 2017), pre-trained on different
corpora, either as-is or concatenated with knowl-
edge embeddings learned using node2vec (Grover
and Leskovec, 2016) on two biomedical vocabu-
laries (the Medical Suject Headings (MeSH), and
SNOMED CT). Moreover, we also consider a
variant of CharacterBert where the node2vec em-
beddings are injected within the model architec-
ture. The fastText embeddings are either ran-
domly initialized, which we note “fastTextRan-
dom”; pre-trained on a newswire corpus (Gigaword
(Graff et al., 2007)), which we note “fastTextGi-
gaword”; or on medical corpora (PubMed Cen-
tral3 and MIMIC-III (Johnson et al., 2016)), which

3https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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Model bin-0 bin-1 bin-2 bin-3 bin-4 bin-5 bin-6 bin-7 bin-8 bin-9 bin-10 bin-11 bin-12 Tot. TPs
/system

Enh.CharBertFromGenN2V 0 12 65 72 155 148 156 176 223 294 465 852 3894 6512
CharBertFromGen 0 9 70 75 147 147 158 174 228 287 477 868 3894 6534
CharBertGenN2V 0 1 10 41 107 112 139 168 199 282 466 868 3894 6287
CharBertGen 0 3 7 41 103 113 131 163 205 285 463 853 3894 6261
fastTextGigawordN2V 0 6 7 7 28 61 77 110 164 244 446 869 3894 5913
fastTextGigaword 0 0 3 7 19 60 78 111 106 196 343 812 3894 5629
fastTextMimicN2V 0 0 9 14 29 43 59 91 165 235 450 862 3894 5851
fastTextMimic 0 2 10 9 20 53 56 88 128 190 413 830 3894 5693
fastTextPubMedN2V 0 4 12 21 47 51 87 113 190 254 453 830 3894 5956
fastTextPubMed 0 3 10 29 39 83 101 116 182 247 449 862 3894 6015
fastTextRandomN2V 0 0 5 11 28 39 39 77 106 161 322 792 3894 5474
fastTextRandom 0 1 2 9 18 30 41 62 56 106 143 338 3894 4700
Total TPs per bin 178 41 105 112 185 188 187 207 244 309 489 876 3894 7015

Table 3: Absolute values for chemical NER. Best performance in green, worst performance in red, orange when
the random initialization is above one of the other initializations.

Models bin-0 bin-1 bin-2 bin-3 bin-4 bin-5 bin-6 bin-7 bin-8 bin-9 bin-10 bin-11 bin-12 Tot. TPs
/system

Enh.CharBertFromGenN2V 0 16 70 74 124 115 159 181 256 296 389 800 3617 6097
CharBertFromGen 0 44 89 92 142 123 164 179 247 289 389 791 3617 6166
CharBertGenN2V 0 14 29 66 106 110 137 166 238 278 378 795 3617 5934
CharBertGen 0 24 32 57 110 107 137 162 234 287 387 802 3617 5956
fastTextGigawordN2V 0 3 22 36 59 70 112 141 224 288 403 803 3617 5778
fastTextGigawordN2V 0 5 7 17 25 50 72 91 126 205 311 730 3617 5256
fastTextMimicN2V 0 6 12 25 39 54 103 144 207 257 359 791 3617 5614
fastTextMimic 0 13 12 29 33 51 85 94 145 200 325 746 3617 5350
fastTextPubMedN2V 0 6 15 32 64 65 141 162 236 292 408 814 3617 5852
fastTextPubMed 0 5 12 29 50 53 103 118 182 204 332 764 3617 5469
fastTextRandomN2V 0 10 27 41 52 52 85 112 177 223 314 717 3617 5427
fastTextRandom 0 10 9 24 28 40 58 60 96 124 195 489 3617 4750
Total TPs per bin 340 156 168 174 208 178 226 230 296 327 419 822 3617 7161

Table 4: Absolute values for disease NER. Best performance in green, worst performance in red, orange when the
random initialization is above one of the other initializations.

we respectively note “fastTextPubMed” and “fast-
TextMimic”. The CharacterBert models are either
pre-trained on general corpora (English Wikipedia
and OpenWebText (Gokaslan and Cohen, 2019)),
which we note “CharBertGen”; or pre-trained on
general corpora then re-trained on PubMed and
MIMIC-III, which we note “CharBertFromGen”.
In all cases the suffix “N2V” refers to a concatena-
tion with the node2vec knowledge representations,
with the exception of “Enh.CharBertFromGenN2V”
which refers to the variant of CharacterBERT
where the node2vec vectors are injected directly
within the architecture. This last model is pre-
trained on the general corpus then re-trained on
PubMed and MIMIC-III in order to be compared
with “CharBertFromGen”.

Tables 3 and 4 respectively show absolute values
for chemical and disease entity recognition, and
Figures 7 and 8 the corresponding bin percentages.

3.2.1 Global performances and pairwise
comparison of models

Overall, we can see that the contextual Charac-
terBert embeddings perform better than the static
fastText vectors in both chemical and disease recog-
nition, with the worst performances for randomly
initialized fastText embeddings. Moreover, we see
that the CharacterBert models trained on medical
data perform better than their general versions (Ta-
bles 3 and 4, Figures 7 and 8), which confirms
the interest of retraining the general models on in-
domain data.

Chemical CharacterBert seems to perform rather
similarly regardless of the combination with
node2vec embeddings. For fastText models, pair-
wise comparison in Table 5 shows that the intro-
duction of knowledge embeddings (node2vec) im-
proves recall. Comparison of bins further con-
firms this observation: we can see that the im-
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bin-1 bin-2 bin-3 bin-4 bin-5 bin-6 bin-7 bin-8 bin-9 bin-10 bin-11 Recall
EnhancedCharBertFromGenN2V 29 62 64 84 79 83 85 91 95 95 97 92,83
CharBertFromGen 22 67 67 79 78 84 84 93 93 98 99 93,14
CharBertGenN2V 2 10 37 58 60 74 81 82 91 95 99 89,62
CharBertGen 7 7 37 56 60 70 79 84 92 95 97 89,25
fastTextGigawordN2V 15 7 6 15 32 41 53 67 79 91 99 84,29
fastTextGigaword 0 3 6 10 32 42 54 43 63 70 93 80,24
fastTextMimicN2V 0 9 12 16 23 32 44 68 76 92 98 83,41
fastTextMimic 5 10 8 11 28 30 43 52 61 84 95 81,15
fastTextPubMedN2V 10 11 19 25 27 47 55 78 82 93 95 84,90
fastTextPubMed 7 10 26 21 44 54 56 75 80 92 98 85,74
fastTextRandomN2V 0 5 10 15 21 21 37 43 52 66 90 78,03
fastTextRandom 2 2 8 10 16 22 30 23 34 29 39 67,0

Table 5: Pairwise comparison of systems with or without addition of Node2Vec embeddings for chemical NER
(bin-0 and bin-12 are not considered). The best model for each bin is highlighted in green.

Figure 7: Percentage of labels (true positives) correctly
found by each system in each bin for chemical sub-
stances.

provement is made on “easy” entities (bins 8
through 11). However, for “fastTextPubMed” the
effect of node2vec is not so clear or even harm-
ful (bins 5 and 6). This phenomenon could
be explained by the fact that both PubMed and
the BioCreative CDR task are from the biomedi-
cal domain while MIMIC-III and Gigaword are
from somewhat different domains (clinical and
newswire domains respectively). In the case of
fastTextPubMed, adding medical knowledge em-
beddings seems to degrade performance.

Disease While node2vec has a strong positive ef-
fect on fastText models regardless of their source
corpus, pairwise comparison of recall for disease
NER in Table 6 shows that the addition of node2vec
is detrimental to CharacterBert models. However,
this analysis can be refined by comparing bin-wise
performances: for CharacterBert models trained on
medical data (top two lines), the versions that do

Figure 8: Percentage of labels (true positives) correctly
found by each system in each bin for diseases.

not use node2vec embeddings are better on “more
difficult” bins, while the enhanced version are ac-
tually better on “easier” bins.

3.2.2 Bin inspection
Browsing through the bins can give an idea of the
kinds of entities they hold. This can be done in
different ways.

Bin-0 exploration We inspect here the contents
of bin-0 for both the chemical and disease recog-
nition tasks, as this bin is supposed to hold false
negatives that resist all systems, i.e. the most diffi-
cult entities.

Bin-0 for both chemical and disease contains
occurrences of abbreviations, which occur quite
frequently within parentheses in the context of their
full form: for example “bs” for “bile salt” and “rd”
(sic) for “lenalidomide and dexamethasone” for
chemical, “mi” for “myocardial infarction” and
“mb” for “microbleeds” for disease. We also spot
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bin-1 bin-2 bin-3 bin-4 bin-5 bin-6 bin-7 bin-8 bin-9 bin-10 bin-11 Recall
EnhancedCharBertFromGenN2V 10 42 43 60 65 70 79 86 91 93 97 85,14
CharBertFromGen 28 53 53 68 69 73 78 83 88 93 96 86,11
CharBertGenN2V 9 17 38 51 62 61 72 80 85 90 97 82,87
CharBertGen 15 19 33 53 60 61 70 79 88 92 98 83,17
fastTextGigawordN2V 2 13 21 28 39 50 61 76 88 96 98 80,69
fastTextGigaword 3 4 10 12 28 32 40 43 63 74 89 73,40
fastTextMimicN2V 4 7 14 19 30 46 63 70 79 86 96 78,40
fastTextMimic 8 7 17 16 29 38 41 49 61 78 91 74,71
fastTextPubMedN2V 4 9 18 31 37 62 70 80 89 97 99 81,72
fastTextPubMed 3 7 17 24 30 46 51 61 62 79 93 76,37
fastTextRandomN2V 6 16 24 25 29 38 49 60 68 75 87 75,79
fastTextRandom 6 5 14 13 22 26 26 32 38 47 59 66,33

Table 6: Pairwise comparison of systems with or without addition of Node2Vec embeddings for disease NER
(bin-0 and bin-12 are not considered). The best model for each bin is highlighted in green.

expressions that should perhaps not be in the gold
standard, such as “abuse of cocaine and ethanol”
tagged as a disease, or typographic errors such as
“antithyroidmedications”.

Both bins also hold an important number of
single-character tokens such as punctuation marks
and digits. For disease recognition, these include
the determiner “a”, which occurs most of the time
as a part of a multi-word entity. A similar phe-
nomenon occurs with other tokens such as “of”.
Occurrences of these words seem to be due to multi-
word entities referring to diseases and conditions
such as “enlargement of pulse pressure”, “occlu-
sion of renal vessels”, “thrombosis of a normal
renal artery”. It seems that multi-word entities
account for a significant proportion of the gener-
ated errors, where systems only recover the first
word of a multi-word entity. For example, chem-
ical bin-0 holds all occurrences of “channel” and
“blockers” from “calcium channel blockers”, while
occurrences of “calcium” in this context are always
labelled correctly.

However, a quick inspection of other bins re-
veals that those part-of-speech and morphological
characteristics (punctuation, single-character en-
tities and abbreviations) are not specific to bin-0.
For instance, punctuation marks make for 14% of
chemical bin-0 tokens, and for 9 to 28% of bins 1
to 11 (0.07% for bin-12). In the case of disease
recognition, punctuation represents 8.8% of bin-0,
while ranging from 1.7% to 5.1% of bins 1 to 12
(this difference in proportions between chemical
and disease can be explained by the nature of the
entities, chemical entities often involving dots or
hyphens). Further exploration of the distribution of
part-of-speech and morphological categories may
lead to some understanding of the bins’ contents.

We also found two other phenomena both in
chemical bin-0 and in disease bin-0: hapax legom-
ena (‘hapaxes’) and ambiguous tokens.

Hapaxes are tokens that occur only once in the
whole data. In bin-0 of the chemical NER task, ex-
amples include “adrenergic”, “colony”, “steroidal”
or “agents”. In disease bin-0, examples include
“bacillary”, “audiogenic”, “choreic”, “teratogenic”.

Ambiguous tokens in bin-0 are due to their mul-
tiple or specific meanings in the corpus. This is the
case for token “chinese” (note that the corpus is
lower-cased), which occurs in “chinese herbal slim-
ming pill”, “chinese herbal”, “chinese herbs”, and
is systematically missed in the chemical recogni-
tion tasks. We assume that this is probably because
it is confused with “chinese” used as the nationality
of patients. The same applies to hapax “philadel-
phia” from “philadelphia chromosome”. These ex-
amples lead us to assume that specialized usage of
“common” vocabulary terms in chemical or disease
entities induces a difficulty for systems.

Distribution across bins Finally, another way to
perform bin inspection is to look at the distribution
of mentions of a same word across bins. As an
illustration, we use the distribution of “calcium” in
chemical bins (Table 7): one mention is in bin-1,
no mention is in bin-2 and 3, one mention is in
bin-4, etc. While most mentions of “calcium” are
retrieved by all eleven systems (29 mentions pre-
cisely), a total of six of those mentions are individ-
ually discovered respectively by exactly one, four,
five, nine, nine, and ten systems. This feedback
is potentially very useful, since we can then rank
every mention in ascending order of difficulty, and
proceed to look for explanations for why those six
mentions resist detection by a number of systems.
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bin-0 bin-1 bin-2 bin-3 bin-4 bin-5 bin-6 bin-7 bin-8 bin-9 bin-10 bin-11 bin-12
calcium 0 1 0 0 1 1 0 0 0 2 1 0 29

Table 7: Distribution of “calcium” occurrences through bins.

4 Discussion and future work

As we have seen, differential evaluation is a qualita-
tive analysis method that allows for more in-depth
evaluation when comparing the behavior of sev-
eral systems with each other. Rather than relying
only on the classical global metrics, it provides an
insight into how the performance of each system
is actually distributed in automatically-determined
subsets of examples relative to other systems, and
how systems contribute in their very own way.

As presented in the heatmap we used, harder
elements to process are in the first column while
easier elements are in the last column. This sorting
into several columns allows us to rapidly overview
how systems perform on a given task. Based on
the analysis we made on the content of bins from
several tasks and distinct domains, we observed
that the first bin is generally composed of elements
such as abbreviations and ambiguous words used
in several contexts (some of these contexts are a
part of an annotation while other contexts are not);
moreover, these elements are often short (two or
three characters long), which makes them difficult
to process for statistical approaches. In the case of
multi-label text classification for Hungarian (Sec-
tion 3.1.2), differential analysis provided an insight
that would have been overlooked by global scores.

Future directions include the following points.
First, as we have seen in Section 3.2.2, in the case
of named entity recognition, examples composed
of several tokens are counted token per token and
not as a whole entity. Including this dimension will
give another insight into the behavior of models
for named-entity recognition. A second direction
is to extend the current approach, which focuses
on recall, hence true positives against false nega-
tives, to take into account other basic evaluation
variables, namely false positives and true negatives.
A third useful direction would be to retrieve infor-
mation on the context of occurrence of examples
and their global features: sentence length, direct
context, average number of characters per token
for each bin, etc. Finally, a fourth direction would
be to automatically track the distribution of differ-
ent mentions of a same word across bins, as we
have done manually with “calcium” in the second

paragraph of Section 3.2.2. Linked to the previous
development regarding contextual information, this
would allow us to understand precisely why one
particular occurrence of a word is missed while the
others are more easily spotted.
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