
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1239–1250
November 7–11, 2021. c©2021 Association for Computational Linguistics

1239

Learning Logic Rules for Document-level Relation Extraction

Dongyu Ru†‡, Changzhi Sun‡∗, Jiangtao Feng‡, Lin Qiu†,
Hao Zhou‡, Weinan Zhang†∗, Yong Yu†, Lei Li§†

†Shanghai Jiao Tong University ‡ByteDance AI Lab
§University of California, Santa Barbara

{maxru,lqiu,wnzhang,yyu}@apex.sjtu.edu.cn
{sunchangzhi,fengjiangtao,zhouhao.nlp}@bytedance.com

lilei@cs.ucsb.edu

Abstract
Document-level relation extraction aims to

identify relations between entities in a whole

document. Prior efforts to capture long-range

dependencies have relied heavily on implic-

itly powerful representations learned through

(graph) neural networks, which makes the

model less transparent. To tackle this chal-

lenge, in this paper, we propose LogiRE, a

novel probabilistic model for document-level

relation extraction by learning logic rules. Lo-

giRE treats logic rules as latent variables and

consists of two modules: a rule generator and

a relation extractor. The rule generator is to

generate logic rules potentially contributing

to final predictions, and the relation extrac-

tor outputs final predictions based on the gen-

erated logic rules. Those two modules can

be efficiently optimized with the expectation-

maximization (EM) algorithm. By introduc-

ing logic rules into neural networks, LogiRE

can explicitly capture long-range dependen-

cies as well as enjoy better interpretation.

Empirical results show that LogiRE signifi-

cantly outperforms several strong baselines in

terms of relation performance (∼1.8 F1 score)

and logical consistency (over 3.3 logic score).

Our code is available at https://github.
com/rudongyu/LogiRE.

1 Introduction

Extracting relations from a document has attracted

significant research attention in information extrac-

tion (IE). Recently, instead of focusing on sentence-

level (Socher et al., 2012; dos Santos et al., 2015;

Han et al., 2018; Zhang et al., 2018; Wang et al.,

2021a,b), researchers have turned to modeling di-

rectly at the document level (Wang et al., 2019;

Ye et al., 2020; Zhou et al., 2021), which provides

longer context and requires more complex reason-

ing. Early efforts focus mainly on learning a power-

ful relation (i.e., entity pair) representation, which

∗corresponding authors.
†Work is done while at ByteDance.

Figure 1: An example of relation identification

by utilizing rules. The three labeled sentences

describe the relations royalty_of (Harry,UK), sib-
ling_of (William,Harry), and spouse_of(Kate,William),
respectively. The identification of the relation roy-
alty_of (Kate,UK) requires the synthesis of information

in three sentences. It can be easily derived from the

demonstrated rule and the other three relations.

implicitly captures long-range dependencies. Ac-

cording to the input structure, we can divide the

existing document-level relation extraction work

into two categories: the sequence-based model and

the graph-based model.

The sequence-based model first leverages differ-

ent sequence encoder (e.g., BERT (Devlin et al.,

2019), RoBERTa (Liu et al., 2019)) to obtain token

representations, and then computes relation repre-

sentations by various pooling operations, e.g., aver-

age pooling (Yao et al., 2019; Xu et al., 2021), at-

tentive pooling (Zhou et al., 2021). To further cap-

ture long-range dependencies, graph-based mod-

els are proposed. By constructing a graph, words

or entities that are far away can become neighbor

nodes. On top of the sequence encoder, the graph

encoder (e.g., GNN) can aggregate information

from all neighbors, thus capturing longer depen-

dencies. Various forms of graphs are proposed, in-

cluding dependency tree (Peng et al., 2017; Zhang
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et al., 2018), co-reference graph (Sahu et al., 2019),

mention-entity graph (Christopoulou et al., 2019;

Zeng et al., 2020), entity-relation bipartite graph

(Sun et al., 2019) and so on. Despite their great

success, there is still no comprehensive understand-

ing of the internal representations, which are often

criticized as mysterious "black boxes".

Learning logic rules can discover and represent

knowledge in explicit symbolic structures that can

be understood and examined by humans. At the

same time, logic rules provide another way to ex-

plicitly capture interactions between entities and

output relations in a document. For example in

Fig. 1, the identification of royalty_of(Kate,UK)
requires information in all three sentences. The

demonstrated logic rule can be applied to directly

obtain this relation from the three relations locally

extracted in each sentence. Reasoning over rules

bypasses the difficulty of capturing long-range de-

pendencies and interprets the result with intrinsic

correlations. If the model could automatically learn

rules and use them to make predictions, then we

would get better relation extraction performance

and enjoy more interpretation.

In this paper, we propose LogiRE, a novel

probabilistic model modeling intrinsic interactions

among relations by logic rules. Inspired by RNN-

Logic (Qu et al., 2021), we treat logic rules as

latent variables. Specifically, LogiRE consists of a

rule generator and a relation extractor, which are

simultaneously trained to enhance each other. The

rule generator provides logic rules that are used by

the relation extractor for prediction, and the rela-

tion extractor provides some supervision signals to

guide the optimization of the rule generator, which

significantly reduces the search space. In addition,

the proposed relation extractor is model agnostic,

so it can be used as a plug-and-play technique for

any existing relation extractors. Those two modules

can be efficiently optimized with the EM algorithm.

By introducing logic rules into neural networks,

LogiRE can explicitly capture long-range depen-

dencies between entities and output relations in a

document and enjoy better interpretation. Our main

contributions are listed below:

• We propose a novel probabilistic model for rela-

tion extraction by learning logic rules. The model

can explicitly capture dependencies between enti-

ties and output relations, while enjoy better inter-

pretation.

• We propose an efficient iterative-based method

to optimize LogiRE based on the EM algorithm.

• Empirical results show that LogiRE significantly

outperforms several strong baselines in terms of

relation performance (∼1.8 F1 score) and logical

consistency (over 3.3 logic score).

2 Related Work

For document-level relation extraction, prior ef-

forts on capturing long-range dependencies mainly

focused on two directions: pursuing stronger

sequence representation (Nguyen and Verspoor,

2018; Verga et al., 2018; Zheng et al., 2018) or

including prior for interactions among entities as

graphs (Christopoulou et al., 2019). For more pow-

erful representations, they introduced pre-trained

language models (Wang et al., 2019; Ye et al.,

2020), leveraged attentions for context pooling

(Zhou et al., 2021), or integrated the scattered infor-

mation according to a hierarchical level (Tang et al.,

2020). Aiming to model the intrinsic interactions

among entities and relations, they utilized implicit

reasoning structures by carefully designing graphs

connecting: mentions to entities, mentions in the

same sentence (Christopoulou et al., 2019; Sun

et al., 2019), mentions of the same entities (Wang

et al., 2020; Zeng et al., 2020), etc. Nan et al.

(2020); Xu et al. (2021) directly integrated similar

structural dependencies to attention mechanisms in

the encoder. These approaches contributed to ob-

taining powerful representations for distinguishing

various relations but lacked interpretability on the

implicit reasoning. Another approach that can cap-

ture dependencies between relations is the global

normalized model (Andor et al., 2016; Sun et al.,

2018). In this work, we focus on how to learn and

use logic rules to capture long-range dependencies

between relations.

Another category of related work is logical rea-

soning. Many studies were conducted on learning

or applying logic rules for reasoning. Most of them

(Qu and Tang, 2019; Zhang et al., 2020) concen-

trated on reasoning over knowledge graphs, aim-

ing to deduct new knowledge from existing triples.

Neural symbolic systems (Hu et al., 2016; Wang

and Poon, 2018) combined logic rules and neural

networks to benefit from regularization on deep

learning approaches. These efforts demonstrated

the effectiveness of integrating neural networks

with logical reasoning. Despite doc-RE providing

a suitable scenario for logical reasoning (with rela-

tions serving as predicates and entities as variables),
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Figure 2: The overview of LogiRE. LogiRE consists of two modules: a rule generator 𝑝𝜃 and a relation extractor

𝑝𝑤 . For a given document D and a query triple 𝑞, we treat the required logic rules as latent variables 𝒛, aiming to

identify the corresponding truth value 𝑦. During inference, we sample from the rule generator for the latent rule

set and use the relation extractor to predict 𝑦 given the rules. The overall objective (maximizing the likelihood)

is optimized by the EM algorithm. In the E-step, we estimate the approximate posterior 𝑞(𝒛); In the M-step, we

maximize a lower bound of the likelihood w.r.t. 𝜃, 𝑤.

no existing work attempted to learn and utilize rules

in this field. Using hand-crafted rules, Wang and

Pan (2020); Wu et al. (2020) achieved great success

on sent-level information extraction tasks. How-

ever, the rules were predefined and limited to low-

level operations, restricting their applications.

3 Method

In this section, we describe the proposed method

LogiRE that learns logic rules for document-level

relation extraction. We first define the task of

document-level relation extraction and logic rules.

Document-level Relation Extraction Given a

set of entities E with mentions scattered in a doc-

ument D, we aim to extract a set of relations R.

A relation is a triple (ℎ, 𝑟, 𝑡) ∈ R (also denoted by

𝑟 (ℎ, 𝑡)), where ℎ ∈ E is the head entity, 𝑡 ∈ E is the

tail entity and 𝑟 is the relation type describing the

semantic relation between two entities. Let T𝑟 be

the set of possible relation types (including reverse

relation types). For simplicity, we define a query

𝑞 = (ℎ, 𝑟, 𝑡) and aim to model the probabilistic dis-

tribution 𝑝(𝒚 |𝑞,D), where 𝒚 ∈ {−1, 1} is a binary

variable indicating whether (ℎ, 𝑟, 𝑡) is valid or not,

and ℎ, 𝑡 ∈ E, 𝑟 ∈ T𝑟 . In this paper, bold letters

indicate variables.

Logic Rule We extract relations from the docu-

ment by learning logic rules, where logic rules in

this work have the conjunctive form:

∀{𝑒𝑖}
𝑙
𝑖=0 𝑟 (𝑒0, 𝑒𝑙) ← 𝑟1(𝑒0, 𝑒1) ∧ · · · ∧ 𝑟𝑙 (𝑒𝑙−1, 𝑒𝑙)

𝑒𝑖 ∈ E, 𝑟𝑖 ∈ T𝑟 and 𝑙 is the rule length. This

form can express a wide range of common logical

relations such as symmetry and transferability. For

example, transferability can be expressed as

∀{𝑒0, 𝑒1, 𝑒2} 𝑟 (𝑒0, 𝑒2) ← 𝑟 (𝑒0, 𝑒1) ∧ 𝑟 (𝑒1, 𝑒2)

Inspired by RNNLogic (Qu et al., 2021), to infer

high-quality logic rules in the large search space,

we separate rule learning and weight learning and

treat the logic rules as the latent variable. LogiRE

consists of two main modules: the rule generator

and the relation extractor, which are simultaneously

trained to enhance each other. Given the query 𝑞 =
(ℎ, 𝑟, 𝑡) in the document D, on the one hand, the

rule generator adopts an auto-regressive model to

generate a set of logic rules based on 𝑞, which was

used to help the relation extractor make the final

decision; on the other hand, the relation extractor

can provide some supervision signals to update

the rule generator with posterior inference, which

greatly reduces the search space with high-quality

rules.
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Unlike existing methods to capture the interac-

tions among relations in the document by learn-

ing powerful representations, we introduce a novel

probabilistic model LogiRE (Sec. 3.1, Fig. 2),

which explicitly enhances the interaction by learn-

ing logic rules. LogiRE uses neural networks to

parameterize the rule generator and the relation ex-

tractor (Sec. 3.2), optimized by the EM algorithm

in an iterative manner (Sec. 3.3).

3.1 Overview
We formulate the document-level relation extrac-

tion in a probabilistic way, where a set of logic

rules is assigned as a latent variable 𝒛. Given a

query variable 𝒒 = (𝒉, 𝒓, 𝒕) in the document D, we

define the target distribution 𝑝(𝒚 |𝒒,D) as below1:

𝑝𝑤,𝜃 (𝒚 |𝒒) =
∑
𝒛

𝑝𝑤 (𝒚 |𝒒, 𝒛)𝑝𝜃 (𝒛 |𝒒)

where 𝑝𝜃 is the distribution of the rule generator

which defines a prior over the latent variable 𝒛 con-

ditioned on a query 𝒒 (we assume the distribution

of 𝒛 is independent from the document D), and 𝑝𝑤
is the relation extractor which gives the probability

of 𝒚 conditioned on the query 𝒒, latent 𝒛, and the

document D. Given the gold label 𝑦∗ of the query

𝑞 in the document D, the objective function is to

maximize the likelihood as follows:

L(𝑤, 𝜃)= log 𝑝𝑤,𝜃 (𝑦
∗ |𝑞) (1)

Due to the existence of latent variables in the ob-

jective function L, we use the EM algorithm for

optimization (Sec. 3.3).

3.2 Parameterization
We use neural networks to parameterize the rule

generator and the relation extractor.

Rule Generator The rule generator defines the

distribution 𝑝𝜃 (𝒛 |𝒒). For a query 𝑞, the rule gener-

ator generates a set of logic rules denoted by 𝒛 for

predicting the truth value 𝒚 of the query 𝑞.

Formally, given a query 𝑞 = (ℎ, 𝑟, 𝑡), we gen-

erate logic rules that takes the form of 𝑟 ← 𝑟1 ∧

· · · ∧ 𝑟𝑙. Such relation sequences [𝑟1, . . . , 𝑟𝑙] can

be effectively modeled by an autoregressive model.

In this work, we employ a Transformer-based au-

toregressive model AutoReg𝜃 to parameterize the

rule generator, which sequentially generates each

relation 𝑟𝑖 . In this process, the probabilities of gen-

erated rules are simultaneously computed. Next,

1For simplicity, we omit D in distributions 𝑝𝑤,𝜃 and 𝑝𝑤 .

we assume that the rule set 𝒛 obeys a multinomial

distribution with 𝑁 rules independently sampled

from the distribution AutoReg𝜃 (rule|𝑞):

𝑝𝜃 (𝒛 |𝑞) ∼ Multi(𝒛 |𝑁,AutoReg𝜃 (rule|𝑞)),

where Multi denotes multinomial distribution, 𝑁
is a hyperparameter for the size of the set 𝒛 and

AutoReg𝜃 defines a distribution over logic rules

conditioned on the query 𝑞. 2

Relation Extractor The relation extractor de-

fines 𝑝𝑤 (𝒚 |𝒒, 𝒛). It utilizes a set of logic rules

to get the truth value of 𝒚 corresponding to the

query 𝒒. For each query 𝑞, a rule ∈ 𝒛 is able to

find different grounding paths on the document

D. For example, Alice
father
−−−−→Bob

spouse
−−−−−→Cristin is

a grounding path for the rule mother(𝑒0, 𝑒2) ←

father(𝑒0, 𝑒1)∧spouse(𝑒1, 𝑒2). Following the prod-

uct t-norm fuzzy logic (Cignoli et al., 2000), we

score each rule as follows:

𝜙𝑤 (rule)= max
path∈P(rule)

𝜙𝑤 (path)

path: 𝑒0
(ℎ)

𝑟1
−→ 𝑒1

𝑟2
−→ 𝑒2 → · · ·

𝑟𝑙
−→ 𝑒𝑙

(𝑡)

𝜙𝑤 (path)=
𝑙∏

𝑖=1
𝜙𝑤 (𝑒𝑖−1, 𝑟𝑖 , 𝑒𝑖)

where P(rule) is the set of grounding paths

which start at ℎ and end at 𝑡 following a rule.

𝜙𝑤 (𝑒𝑖−1, 𝑟𝑖 , 𝑒𝑖) is the confidence score obtained

by any existing relation models. 3

To get the probability (fuzzy truth value) of 𝒚, we

synthesize the evaluation result of each rule in the

latent rule set 𝒛. The satisfaction of any rule body

will imply the truth of 𝒚. Accordingly, we take the

disjunction of all rules in 𝒛 as the target truth value.

Following the principled sigmoid-based fuzzy logic

function for disjunction (Sourek et al., 2018; Wang

and Pan, 2020), we define the fuzzy truth value as:

𝑝𝑤 (𝒚 |𝑞, 𝒛)= Sigmoid(𝒚 · score𝑤 (𝑞, 𝒛))

score𝑤 (𝑞, 𝒛)= 𝜙𝑤 (𝑞) +
∑

rule∈𝒛
𝜙𝑤 (𝑞, rule)𝜙𝑤 (rule)

where 𝜙𝑤 (𝑞) and 𝜙𝑤 (𝑞, rule) are learnable

scalar weights. 𝜙𝑤 (𝑞) is a bias term for bal-

ancing the score of positive and negative cases.

2The generative process of a rule set 𝒛 is quite intuitively
similar to a translation model, and we simply generate 𝑁 rules
with AutoReg𝜃 to form 𝒛.

3This is why our approach is plug-and-play.
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𝜙𝑤 (𝑞, rule) estimates the score, namely, the qual-

ity of a specific rule. 𝜙𝑤 (rule) evaluates the ac-

cessibility from the head entity ℎ to the tail entity

𝑡 through the meta path defined by rule’s body.

Applying logic rules and reasoning over the rules

enable the relation extractor to explicitly model-

ing the long-range dependencies as the interactions

among entities and relations.

3.3 Optimization
To optimize the likelihood L(𝑤, 𝜃) (Eq. 1), we up-

date the rule generator and the relation extractor

alternately in an iterative manner, namely the EM

algorithm. The classic EM algorithm estimates the

posterior of the latent variable 𝒛 according to cur-

rent parameters in the E-step; The parameters are

updated in the M-step with 𝒛 obeys the estimated

posterior. However, in our setting, it is difficult to

compute the exact posterior 𝑝(𝒛 |𝒚, 𝒒) due to the

large space of 𝒛. To tackle this challenge, we seek

an approximate posterior 𝑞(𝒛) by a second-order

Taylor expansion. This modified version of poste-

rior forms a lower bound on log 𝑝𝑤,𝜃 (𝒚 |𝒒), since

the difference between them is a KL divergence

and hence positive:

log 𝑝𝑤,𝜃 (𝒚 |𝒒)︷������������������������︸︸������������������������︷
E

𝑞 (𝒛)

[
log

𝑝𝑤,𝜃 (𝒚, 𝒛 |𝒒)

𝑝𝑤,𝜃 (𝒛 |𝒒, 𝒚)

]
−

lower bound︷������������������������︸︸������������������������︷
E

𝑞 (𝒛)

[
log

𝑝𝑤,𝜃 (𝒚, 𝒛 |𝒒)

𝑞(𝒛)

]

= KL
(
𝑞(𝒛) | |𝑝𝑤,𝜃 (𝒛 |𝒒, 𝒚)

)
≥ 0

Once we get 𝑞(𝒛), we can maximize this lower

bound of log 𝑝𝑤,𝜃 (𝒚 |𝒒).

E-step Given the current parameters 𝜃, 𝑤, E-step

aims to compute the posterior of 𝒛 according to the

current parameters 𝜃, 𝑤. However, the exact poste-

rior 𝑝𝑤,𝜃 (𝒛 |𝒒, 𝒚) is nontrivial due to its intractable

partition function (space of 𝒛 is large). In this work,

we aim to seek an approximate posterior 𝑞(𝒛).
By approximating the likelihood with the second-

order Taylor expansion, we can obtain a conjugate

form of the posterior as a multinomial distribution.

The detailed derivation is listed in Appendix. A.

Formally, we first define 𝐻 (rule) as the score func-

tion estimating the quality of each rule:

𝐻 (rule) = log AutoReg𝜃 (rule|𝒒)+
𝑦∗

2

(
1
𝑁
𝜙𝑤 (𝑞) + 𝜙𝑤 (𝑞, rule)𝜙𝑤 (rule)

)

Intuitively, 𝐻 (rule) evaluates rule quality in two

factors. One is based on the rule generator 𝑝𝜃 ,

Algorithm 1 EM Optimization for L(𝑤, 𝜃)

1: while not converge do
2: For each instance, use the rule generator

𝑝𝜃 to generate a set of logic rules 𝒛( |𝒛 | = 𝑁).
3: Calculate the rule score 𝐻 (rule) of each

rule for approximating the posterior of rule:

𝑝(rule|𝒒). ⊲ E-step

4: For each instance, update the rule generator

AutoReg𝜃 based on the sampled rules from

𝑝(rule|𝒒).
5: For each instance, update the relation ex-

tractor 𝑝𝑤 based on generated logic rules 𝒛
from the updated rule generator. ⊲ M-step

6: end while

which servers as the prior probability for each rule.

The other is based on the relation extractor, and it

takes into account the contribution of the current

rule to the final correct answer 𝑦∗. Next, we use

𝑝(rule|𝑞) to denote the posterior distribution of the

rule given the query 𝑞:

𝑝(rule|𝑞) ∝ exp (𝐻 (rule))

Thus the approximate posterior also obeys a multi-

nomial distribution.

𝑞(𝒛) ∼ Multi (𝑁, 𝑝(rule|𝑞))

M-step After obtaining the 𝑞(𝒛), M-step is to

maximize the lower bound log 𝑝𝑤,𝜃 (𝒚 |𝒒) with re-

spect to both 𝑤 and 𝜃. Formally, given each data

instance (𝑦∗, 𝑞,D) and the 𝑞(𝒛), the objective is to

maximize

Llower =

LG︷�����������������︸︸�����������������︷
E

𝑞 (𝒛)
[log 𝑝𝜃 (𝒛 |𝑞)] +

LR︷�������������������������︸︸�������������������������︷
E

𝑞 (𝒛)
[log 𝑝𝑤,𝜃 (𝑦

∗ |𝒛, 𝑞)]

where LG,LR are the objective of the rule genera-

tor and the relation extractor, repectively.

For the objective L𝐺 , it can be further converted

equally as

LG = E �̂� (rule |𝑞) [AutoReg𝜃 (rule|𝑞)]

To compute the expectation term of LG we sam-

ple from the current prior 𝑝𝜃 (𝒛 |𝑞) for a sample

𝑧, and evaluate the score of each rule as 𝐻 (rule),
normalized score over 𝐻 (rule) are regarded as the

approximated 𝑝(rule|𝑞). Then we use sampled

rules to update the AutoReg𝜃 (rule|𝑞). Intuitively,
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Dataset #Doc. #Rel. #Ent. #Facts

DWIE
train 602

65
16494 14410

dev 98 2785 2624
test 99 2623 2459

DocRED
train 3053

96
59493 38180

dev 1000 19578 12323
test 1000 19539 -

Table 1: Statistics of Document-level RE Datasets

we update the rule generator 𝑝𝜃 (𝒛 |𝑞) to make it

consistent with the high-quality rules identified by

the approximated posterior.

For the objective L𝑅, we update the relation ex-

tractor according to the logic rules sampled from

the updated rule generator. The logic rules explic-

itly capturing more interactions between relations

can be fused as input to the relation extractor, which

yields better empirical results and enjoys better in-

terpretation. Finally, we summarize the optimiza-

tion procedure in Algorithm 1.

4 Experiments

We conduct experiments on multi-relational

document-level relation extraction datasets: Do-

cRED (Yao et al., 2019) and DWIE (Zaporojets

et al., 2020). The statistics of the two datasets are

listed in Table 1. Pre-processing details of DWIE

are described in Appendix B.

Evaluation Besides the commonly used F1 met-

ric for relation extraction, we also include other two

metrics for comprehensive evaluation of the mod-

els: ign F1, logic. ign F1 was proposed in (Yao

et al., 2019) for evaluation with triples appearing

in the training set excluded. It avoids information

leakage from the training set. We propose logic for

evaluation of logical consistency among the predic-

tion results. Specifically, we use the 41 pre-defined

rules on the DWIE dataset to evaluate whether the

predictions satisfy these gold rules. The rules have

a similar form to logic rules defined in Sec. 3. We

name the precision of these rules on predictions as

logic score. Note that these rules are independent

of the rule learning and utilization in Sec. 3 but

only used for logic evaluation.

Experimental Settings The rule generator in our

experimental settings is implemented as a trans-

former with a two-layer encoder and a two-layer

decoder, hidden size set to 256. We empirically

find the tiny structure is enough for modeling the

required rule set. We set the size of the latent rule

set 𝑁 to 50. We limit the maximum length of logic

rules to 3 in our setting.

4.1 Baselines

We compare our LogiRE with the following base-

lines on document-level RE. The baselines are also

used as corresponding backbone models in our

framework. Yao et al. (2019) proposed to apply

four state-of-the-art sentence-level RE models to

document-level relation extraction: CNN, LSTM,

BiLSTM, and Context-Aware. (Zeng et al., 2020)

proposed GAIN to leverage both mention-level

graph and aggregated entity-level graph to simu-

late the inference process in document-level RE,

using graph neural networks. Zhou et al. (2021)

proposed ATLOP, using adaptive thresholding to

learn a better adjustable threshold and enhancing

the representation of entity pairs with localized

context pooling. The implementation details of the

baselines are shown in Appendix B.

4.2 Main Results

Our LogiRE outperforms the baselines on all of the

three metrics. (We mainly analyze the results on

DWIE with all three metrics can be evaluated. The

results on DocRED are demonstrated in Table 3

and discussed in Sec. 4.3.)

Our LogiRE consistently outperforms various

backbone models. It outperforms various baselines

on the DWIE dataset as shown in Table 2. We

achieve 2.02 test ign F1 and 1.84 test F1 improve-

ments on the current SOTA, ATLOP. The compati-

bility between LogiRE and various backbone mod-

els shows the generalization ability of our LogiRE.

The consistent improvements on both sequence-

based and graph-based models empirically verified

the benefits of explicitly injecting logic rules to

document-level relation extraction.

The improvements on graph-based models in-

dicate the effectiveness of modeling interactions

among multiple relations and entities. Despite

graph-based models provide graphs (Christopoulou

et al., 2019; Wang et al., 2020) consisting of con-

nections among mentions, entities, and sentences,

they seek more powerful representations which im-

plicitly model the intrinsic connections. Our Lo-

giRE instead builds explicit interactions among

the entities and relations through the meta path de-

termined by the rules. The improvements on the

current SOTA for graph-based model empirically

proved the superiority of such explicit modeling.
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Model Dev Test

ign F1 F1 logic ign F1 F1 logic

CNN 37.65 47.73 51.70 34.65 46.14 54.69
CNN + LogiRE 40.31(+2.65) 50.04(+2.71) 72.84(+21.14) 39.21(+4.65) 50.44(+4.30) 73.47(+18.78)

LSTM 40.86 51.77 65.64 40.81 52.60 61.64
LSTM + LogiRE 42.79(+1.93) 53.60(+1.83) 69.74(+4.10) 43.82(+3.01) 55.03(+2.43) 71.27(+9.63)

BiLSTM 40.46 51.92 64.87 42.03 54.47 64.41
BiLSTM + LogiRE 42.59(+2.13) 53.83(+1.91) 73.37(+8.50) 43.65(+1.62) 55.14(+0.67) 77.11(+12.70)

Context-Aware 42.06 53.05 69.27 45.37 56.58 70.01
Context-Aware + LogiRE 43.88(+1.82) 54.49(+1.44) 73.98(+4.71) 48.10(+2.73) 59.22(+2.64) 75.94(+5.93)

GAIN 58.63 62.55 78.30 62.37 67.57 86.19
GAIN + LogiRE 60.12 (+1.49) 63.91(+1.36) 87.86 (+9.56) 64.43 (+2.06) 69.40(+1.83) 91.22(+5.02)

ATLOP 59.03 64.82 81.98 62.09 69.94 82.76
ATLOP + LogiRE 60.24(+1.21) 66.76(+1.94) 86.98(+5.00) 64.11(+2.02) 71.78(+1.84) 86.07(+3.31)

Table 2: Main results on DWIE. (The underlined statistics pass a t-test for significance with 𝑝 value < 0.01.)

Model Test

ign F1 F1

GAIN 57.93 60.07
GAIN + LogiRE 58.62(+0.69) 60.61(+0.54)

ATLOP 59.14 61.13
ATLOP + LogiRE 59.48(+0.34) 61.45(+0.32)

Table 3: Comparison on DocRED. The improvements

are less significant with reasons analyzed in Sec. 4.3.

Our model achieves better logical consistency

compared with the baselines. The results show

that LogiRE achieves up to 18.78 enhancement on

the logic metric. Even on the graph-based model,

GAIN, we obtain a significant improvement of 5.03

on logical consistency. The improved logic score

shows that the predictions of LogiRE are more

consistent with the regular logic patterns in the

data. These numbers are evidence of the strength

of our iterative-based optimization approach by

introducing logic rules as latent variables.

4.3 Analysis & Discussion

We analyze the results on DocRED data and dis-

cuss the superiority of our LogiRE on capturing

long-range dependencies and interpretability. The

capability of capturing long-range dependencies is

studied by inspecting the inference performance on

entity pairs of various distances. The interpretabil-

ity is verified by checking the logic rules learned

by our rule generator and the case study on predic-

tions.

Analysis on DocRED Results In comparison

with the significant improvements on DWIE, the

enhancement of LogiRE on DocRED is less sig-

nificant. Our analysis shows that the reasons are

Figure 3: Distribution of Distance Between Entity Pairs

in DocRED

relatively shorter dependencies in DocRED and the

logical inconsistency caused by incomplete annota-

tions.

a) Shorter Dependencies in DocRED Shorter

dependencies in DocRED lower the demand for

capturing long-range correlations among entities

and relations. We show the distribution of distance

between entity pairs in Fig. 3. 79.26% of entity

pairs in DocRED have distances less than 100 to-

kens. The examples in DocRED are less difficult

on capturing long-range dependencies. More analy-

sis and comparison can be found in Zaporojets et al.

(2020). The representation-based approaches can

already perform well in such cases. The benefits of

modeling long-range dependencies through logical

reasoning will be smaller.

b) Logical Inconsistency in DocRED The jus-

tification of predictions after reasoning may be not

accurate because of missing annotations. We cal-

culated the error rate of a few easy-to-verify logic

rules as shown in Table. 4. The 7 rules, selected
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implication rule error rate

father(ℎ, 𝑧) ∧ spouse(𝑧, 𝑡) → mother(ℎ, 𝑡) 24.07%

replaces−1 (ℎ, 𝑡) → replaced_by(ℎ, 𝑡) 22.22%

capital−1 (ℎ, 𝑡) → capital_of(ℎ, 𝑡) 28.24%

father−1 (ℎ, 𝑡) → child(ℎ, 𝑡) 10.26%

followed−1 (ℎ, 𝑡) → follows(ℎ, 𝑡) 22.40%

capital−1 (ℎ, 𝑡) → capital_of(ℎ, 𝑡) 28.24%

P150−1 (ℎ, 𝑡) → P131(ℎ, 𝑡) 19.71%

Table 4: The logical inconsistency in the DocRED (for

conciseness, P150 represents the relation ’contains ad-

ministrative territorial entity’ and P131 represents the

relation ’located in the administrative territorial entity’).

The shown easy-to-verify gold rules have high error

rates in DocRED while a considerable part of rela-

tions (12.96%) are involved in as atoms in shown rules.

Those missing annotations make the learning of logic

rules difficult. Inconsistent patterns or statistics be-

tween training and test may lead to unfair evaluation

of relation extraction performance.

Figure 4: Performance gaps between ATLOP and

LogiRE-ATLOP for entity pairs with different dis-

tances.

by case study, have a considerable part (12.96%)

of labeled relations may participate in as atoms.

However, the statistics in the table demonstrated

that all the 7 rules have error rates higher than 10%.

The numbers indicated that a notable partition of

true relations are missing. The results obtained by

reasoning over logic rules may be wrongly justified

since the data is not exhaustively annotated.

According to the analysis above, our LogiRE

has greater potential than that demonstrated as the

overall performance on DocRED.

Logic rules are shortcuts for comprehension.
The performance enhancement of our LogiRE be-

comes more prominent when the distance between

entity pairs gets longer. We plot the performance of

ATLOP and ATLOP-based LogiRE on the DWIE

dataset with four groups of entity pair distances in

Fig. 4. The distance is calculated as the number of

played_by(ℎ, 𝑧) ∧ plays_in(𝑧, 𝑡) → character_in (ℎ, 𝑡)
(parent_of(ℎ, 𝑧) ∨ child_of(ℎ, 𝑧) ∨ spouse_of(ℎ, 𝑧))

∧ royalty_of(𝑧, 𝑡) → royalty_of(ℎ, 𝑡)

event_in2−1 (ℎ, 𝑧) ∧ event_in0(𝑧, 𝑡) → in0(ℎ, 𝑡)
minister_of(ℎ, 𝑧) ∧ in0(𝑧, 𝑡) → citizen_of(ℎ, 𝑡)

member_of−1 (ℎ, 𝑧) ∧ agent_of(𝑧, 𝑡) → based_in0(ℎ, 𝑡)

Table 5: Example rules extracted from LogiRE trained

on the DWIE dataset.

tokens in between the nearest mentions of an entity

pair. Results indicate that our LogiRE performs

better on capturing long dependencies.

Relation extraction for entity pairs with longer

distances in between generally performs worse. As

shown in the figure, the performance starts to drop

as the distance surpasses 100 tokens, indicating

the difficulty of modeling long-range dependen-

cies. The redundant information in a long con-

text impedes accurate semantic mapping through

powerful representations. This issue increases the

complexity of modeling and limits the potential of

representation-based approaches.

Our framework with latent logic rules injected

can effectively alleviate this problem. The perfor-

mance drop of our LogiRE is smaller when the dis-

tance between entities gets larger. For entity pairs

of distances larger than 400, our LogiRE achieves

up to 4.47 enhancement on test ign F1. By rea-

soning over local logic units (atoms in rules), we

ignore the noisy background information in the text

but directly integrate high-level connections among

concepts to get the answer.

The reasoning process of our LogiRE is in line

with the comprehension way of we human beings

when reading long text. We construct basic con-

cepts and connections between (local logic atoms)

for each local part of the text. When the collected

information is enough to fit some prior knowledge

(logic rules), we deduct new cognition from the ex-

isting knowledge. Our LogiRE provides shortcuts

for modeling long text semantics by adding logic

reasoning to naive semantics mapping.

Interpretability by Generating Rules Our Lo-

giRE enjoys better interpretability with the gener-

ated latent rule set. After the EM optimization, we

can sample from the rule generator for high-quality

rules that may contribute to the final predictions.

Besides the gold rules previously shown for eval-

uating logic, LogiRE mines more logic rules from

the data, as shown in Table. 5. These logic rules

explicitly reveal the interactions among entities and
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Figure 5: Inference cases of our LogiRE on DWIE by using ATLOP as the backbone model. The grey arrows are

relations extracted by the backbone model, solid lines representing true relations while dashed lines representing

false relations. The green arrows are new relations correctly extracted by logical reasoning. The blue arrows

indicate the potential reasoning paths. We also demonstrate a negative case. In the third example, the red arrow

represents a wrong relation extracted by reasoning over wrongly estimated atoms.

relations in the same document as regular patterns.

LogiRE is more transparent, exhibiting the latent

rules by the rule generator.

Case Study Fig. 5 shows a few inference cases

of our LogiRE, including two positive examples

and a negative one. As shown in the first two exam-

ples, LogiRE can complete the missing relations in

the backbone model’s outputs by utilizing logical

rules. The soft logical reasoning can remedy the

defects of representation-based approaches under

specific circumstances. However, the extra reason-

ing may also exacerbate errors by reasoning over

wrongly estimated logic units. The third example

shows such a case. The wrongly estimated atom

in0(Vega, Germany) leads to one more wrong re-

lation extracted by reasoning. Fortunately, such

errors in our LogiRE will be more controllable be-

cause of the transparency in the logical reasoning

part.

5 Conclusion

In this paper, we proposed a probabilistic model Lo-

giRE, which utilizes rules and conducts reasoning

over the rules for document-level relation extrac-

tion. The logic rules are treated as latent variables.

We utilize the EM algorithm to efficiently max-

imize the overall likelihood. By injecting rules

to the relation extraction framework, our LogiRE

explicitly models the long-range dependencies in

docRE as interactions among relations and enti-

ties, thus enjoying better interpretability. Empir-

ical results and analysis show that LogiRE out-

performs strong baselines on overall performance,

logical consistency, and capability for capturing

long-range dependencies.
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A Approximation of the True Posterior

The exact posterior of the latent rule set 𝒛 is difficult

to be directly calculated because of the large space.

In this section, we provide the detailed derivation

for the approximate posterior.

log 𝑝(𝒛 |𝒚, 𝒒,D)

= log 𝑝𝑤 (𝒚 |𝒒, 𝒛,D) + log 𝑝𝜃 (z|q) + 𝐶

= log
1

1 + 𝑒−𝒚 ·score(q,z)
+
∑
𝑧∈𝒛

log 𝑝𝜃 (𝑧 |𝒒) + 𝐶

≈
1
2
𝒚 · score𝑤 (𝒒, 𝒛) +

∑
𝑧∈𝒛

log 𝑝𝜃 (𝑧 |𝒒) + 𝐶

=
∑

rule∈𝒛
(
1
2
𝒚 · (

1
𝑁
(𝜙𝑤 (𝒒) + 𝜙𝑤 (𝒒, rule)𝜙𝑤 (rule))

+ log AutoReg𝜃 (rule|𝒒)) + 𝐶
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The approximation is obtained by the following

second-order Taylor expansion:

− log(1 + 𝑒−𝑥) = − log 2 +
𝑥

2
+𝑂 (𝑥2)

By such approximation, we can decompose the

posterior to each rule in the latent rule set. We first

define the score for each rule:

𝐻 (rule) = log AutoReg𝜃 (rule|𝒒)+
𝑦∗

2

(
1
𝑁
𝜙𝑤 (𝑞) + 𝜙𝑤 (𝑞, rule)𝜙𝑤 (rule)

)

Then, it’s easy to obtain that the approximated

posterior 𝑞(𝒛) and the prior 𝑝𝜃 are conjugate dis-

tributions.

𝑞(𝒛) ∼ Multi(𝑁,
1
𝑍

exp(𝐻 (rule)))

where 𝑍 is the normalization factor.

B Implementation Details

DWIE Dataset Preprocessing The original

DWIE dataset (Zaporojets et al., 2020) is designed

for four sub-tasks in the information extraction,

including named entity recognition, coreference

resolution, relation extraction, and entity linking.

In this paper, we focus on the document-level RE

task. We only use the dataset for document-level

relation extraction. The original dataset published

802 documents with 23130 entities in total, 702 for

train and 100 for test. In our setting, we remove

the entities without mentions in the context. Af-

ter the cleaning, we have 700 documents for train

and 99 documents for test. The training set is then

randomly split into two parts: 602 documents for

train and 98 for development. The statistics of the

preprocessed dataset are shown in Table 1 of the

main body.

Baselines We use their published open-source

code to implement the baselines (Yao et al., 2019;

Zeng et al., 2020; Zhou et al., 2021), as well as

the backbone models in our framework. The pre-

trained language models used in GAIN and AT-

LOP follows the original paper (Zeng et al., 2020;

Zhou et al., 2021), using the pre-trained bert-base-

uncased and bert-base-cased models respectively.

The hyperparameters reserve the same as in their

papers.


